
SQL Server Magazine Connections November 7-10, 2005

@Copyright 2005, Gert E.R. Drapers
Immersion Events – Intense, Focused, Real-world Training! 1

SQL Server 200x
Optimizing Stored Procedure

Performance

Kimberly L. Tripp
SQLskills.com

Email: Kimberly@SQLskills.com
Blog: http://www.SQLskills.com/Blogs/Kimberly

http://www.SQLskills.com

Speaker – Kimberly L. Tripp

• Independent Consultant/Trainer/Speaker/Writer

• Founder, SYSolutions, Inc. www.SQLskills.com

● Email: Kimberly@SQLskills.com
● Become a subscriber on SQLskills.com and learn about new resources

which can improve your productivity and server performance!

• Microsoft Regional Director http://msdn.microsoft.com/isv/rd/

• SQL Server MVP http://mvp.support.microsoft.com/

• Author for some SQL Server 2005 Whitepapers on MSDN
(links from home page on www.SQLskills.com)

• SQL Server 2005 Launch Content Manager – Data
Platform Track Sessions, Demos and Cross-training

• Writer/Editor for SQL Magazine www.sqlmag.com

SQL Server Magazine Connections November 7-10, 2005

@Copyright 2005, Gert E.R. Drapers
Immersion Events – Intense, Focused, Real-world Training! 2

Overview

• Initial Processing - Review
● Resolution
● Compilation/Optimization
● Execution/Recompilation

• Recompilation Issues
● When do you want to Recompile?
● Options for Recompilation?
● What to Recompile?

• For extra info: Stored Procedure Best
Practices
● Naming Conventions
● Writing Solid Code
● Excessive Recompilations – How? Detecting?

Processing of Stored Procedures

Compiled plan placed in
unified cache

Compilation

Execution
(first time

or recompile)

Resolution*

Optimization

Parsing

Resolution
Creation

sysobjects
Name, type, etc.
syscomments
Text of object
syscolumns
Parameter list
sysdepends

Object dependencies

SQL Server Magazine Connections November 7-10, 2005

@Copyright 2005, Gert E.R. Drapers
Immersion Events – Intense, Focused, Real-world Training! 3

Compilation/Optimization
• Based on parameters supplied
• Future executions will reuse the plan
• Complete optimization of all code passed

(more on this coming up…statement-based
recompilation and/or modular code!)

• Poor coding practices can cause
excessive locking/blocking

• Excessive recompilations can cause poor
performance

Execution/Recompilation

• Upon Execution if a plan is not already in cache
then a new plan is compiled and placed into
cache

• What can cause a plan to become invalidated
and/or fall out of cache:
● Server restart
● Plan is aged out due to low use
● DBCC FREEPROCCACHE (sometime desired to force

it)
• Base Data within the tables - changes:

● Same algorithm as AutoStats, see Q195565 INF: How
SQL Server 7.0 and SQL Server 2000 Autostats Work

SQL Server Magazine Connections November 7-10, 2005

@Copyright 2005, Gert E.R. Drapers
Immersion Events – Intense, Focused, Real-world Training! 4

Recompilation Issues

RECOMPILATION = OPTIMIZATION
OPTIMIZATION = RECOMPILATION

• When do you want to recompile?
• What options do you have Recompilation?
• How do you know you need to recompile?
• Do you want to recompile the entire

procedure or only part of it?
• Can you test it?

When to recompile?

• When the plan for a given statement within
a procedure is not consistent in execution
plan–due to parameter changes

• Cost of recompilation might be significantly
less than the execution cost of a bad plan!

• Why?
● Faster Execution with a better plan
● Saving plans for reuse is NOT always

beneficial
● Some plans should NEVER be saved

• Do you want to do this for every procedure?
● No, but start with the highest priority/expensive

procedures first!

SQL Server Magazine Connections November 7-10, 2005

@Copyright 2005, Gert E.R. Drapers
Immersion Events – Intense, Focused, Real-world Training! 5

Options for Recompilation

• CREATE … WITH RECOMPILE
• EXECUTE … WITH RECOMPILE
• sp_recompile objname
• Statement Recompilation

● The old way
• Dynamic String Execution
• Modularized Code

● The new way
• OPTION(RECOMPILE)
• OPTIMIZE FOR

(@variable_name = literal_constant, ...)

CREATE … WITH RECOMPILE

• When procedure returns widely varying
results

• When the plan is not consistent
• For SMALL procedures
• For backward compatibility
• Why?

● 2000: Only complete procedure recompiles
● 2005: Statement level recompilation

• Always target the smallest amount possible
to recompile!

SQL Server Magazine Connections November 7-10, 2005

@Copyright 2005, Gert E.R. Drapers
Immersion Events – Intense, Focused, Real-world Training! 6

EXECUTE WITH RECOMPILE

• Excellent for Testing
• Verify plans for a variety of test cases

• EXEC dbo.GetMemberInfo 'Tripp' WITH
RECOMPILE

• EXEC dbo.GetMemberInfo 'T%' WITH RECOMPILE
• EXEC dbo.GetMemberInfo '%T%' WITH

RECOMPILE
• Do the execution plans match?
• Are they consistent?
• Yes then create the procedure normally
• No Determine what should be

recompiled

Statement-level Recompilation

• The old way: Modularizing your code
● Doesn’t hurt!
● May allow better reuse of code “snippets”

• The new way: “inline recompilation”
● OPTION(RECOMPILE)

• Excellent when parameters cause the execution plan to widely
vary

• Bad because EVERY execution will recompile
● OPTIMIZE FOR (@variable_name = literal_constant,

...)
• Excellent when large majority of executions generate the same

optimization time
• You don’t care that the minority may run slower with a less than

optimal plan?

SQL Server Magazine Connections November 7-10, 2005

@Copyright 2005, Gert E.R. Drapers
Immersion Events – Intense, Focused, Real-world Training! 7

Modular Code – Still works!

IF (expression operator expression)
SQL Statement Block1

ELSE
SQL Statement Block2

Scenario 1 – upon first execution…
Parameters are passed such that the ELSE condition
executes – BOTH Block1 and Block2 are optimized with
the input parameters

Scenario 2 – upon first execution…
Parameters are passed such that the IF condition
executes – ONLY Block1 is optimized. Block2 will be
optimized when a parameter which forces the ELSE
condition is passed.

See ModularProcedures.sql

Solution?
Do not use a lot of

conditional SQL
Statement Blocks

Call separate stored
procedures instead!

sp_recompile

• Can be used to periodically and directly force
recompilation of a procedure (or trigger)

• Can be used on tables and views to indirectly
force the recompilation of all procedures and
triggers that reference the specified table or view

• Does not actually recompile the procedures
Instead it invalidates plans for next execution

• SQL Server invalidates plans as data changes
• Never really negative – especially if you run it at

night as part of batch processing after index
rebuilds or statistics updates with FULLSCAN

SQL Server Magazine Connections November 7-10, 2005

@Copyright 2005, Gert E.R. Drapers
Immersion Events – Intense, Focused, Real-world Training! 8

Extra Info – Stored Procedure Best
Practices

• Naming Conventions
● Owner Qualify
● Do not use sp_

• Modifying Procedures
• Write Solid Code

● Writing Better Queries/Better Search
Arguments

● Changing Session Settings
● Interleaving DML/DDL
● Temp Table Usage
● Modular Code

• Detecting Excessive Recompilations

Naming Conventions
• Owner Qualify to Eliminate Ambiguity

● On execution
EXEC dbo.procname

● On creation
CREATE PROC dbo.procname
AS
SELECT columnlist FROM dbo.tablename
EXEC dbo.procname

• Minimize Blocking – initial cache lookup by owner will fail.
It will not cause a recompile but excessive lookups can
cause significant blocking and cache misses.

• Do not use sp_ in stored procedure names – causes
cache misses on lookup as well because SQL Server
looks in master first!

See KB Article Q263889

SQL Server Magazine Connections November 7-10, 2005

@Copyright 2005, Gert E.R. Drapers
Immersion Events – Intense, Focused, Real-world Training! 9

Modifying Procedures

• DROP and RECREATE
● Loses the dependency chain stored in sysdepends
● Loses the permissions already granted
● Invalidates all plans

• ALTER PROC
● Loses the dependency chain stored in sysdepends

Retains the permissions
● Invalidates all plans

• To retain the dependency chain you must also
ALTER all procedures that depend on the
procedure being altered.

Changing SESSION Settings

• Certain Session Settings can be set within a stored
procedure – some can be desired:
● SET NOCOUNT ON
● SET QUOTED_IDENTIFIER OFF (not recommended except for

backward compatibility and upgrades)
• Some Session Settings will cause EVERY execution to

force a recompile:
● ANSI_DEFAULTS
● ANSI_NULLS (tip: do not use WHERE col = null, use col IS

NULL)
● ANSI_PADDING
● ANSI_WARNINGS
● CONCAT_NULL_YIELDS_NULL (tip: use the ISNULL function to

concatenate strings)
• Recommendation: DO NOT Change these session

settings in the client or the server!
See “SET Options that Affect Results” in the BOL

SQL Server Magazine Connections November 7-10, 2005

@Copyright 2005, Gert E.R. Drapers
Immersion Events – Intense, Focused, Real-world Training! 10

Interleaving DML/DDL Statements

• Objects that don’t exist at procedure first
execution cannot be optimized until statement
execution

• Upon execution of a DDL statement the
procedure gets recompiled to recompile the plans
for the DML

• But wait – not all of the objects are created…so
later executions of DDL force recompilation
AGAIN…

• Don’t interleave DDL and DML separate it…
• All DDL at the beginning of the proc, all DML

later!

Data Manipulation

• Derived Tables
● Nested Subquery in FROM clause
● May optimize better than temp tables/variables

• Views
● Another option – rewrite existing temp table code to use

views instead (simple rewrite)
● May optimize better than temp tables/variables

• Temp Tables
● Should be considered

• Table Variables
● Limitations might not affect you
● Might be the most optimal

SQL Server Magazine Connections November 7-10, 2005

@Copyright 2005, Gert E.R. Drapers
Immersion Events – Intense, Focused, Real-world Training! 11

Temp Table Usage

• Temp Table can create excessive recompilations
for procedures. Consider creating permanent
tables (with indexes) and manipulating data
there.

• Consider dropping and re-creating or rebuilding
indexes as part of the procedure instead!

• Try not to create tables conditionally (IF create…
ELSE create…)

• Use Profiler to see if there are significant
recompiles

• Use KEEP PLAN on SELECT statements if data
changes more than 6 times but the plan should
not change.

Table Variable Usage

• Scope is limited to the local
procedure\transaction

• Does not cause excessive recompiles due to
local only access
● No re-resolution on CREATE/ALTER
● Temp Tables need re-resolution for nested procedures

• Only Key Indexes can be created
● Definition of Table allows PRIMARY KEY/UNIQUE

constraint indexes
● Use TEMP TABLES if large volumes of data will be

manipulated – create the right indexes for access
• Population

● Does not support INSERT EXEC
● Does not support SELECT INTO

SQL Server Magazine Connections November 7-10, 2005

@Copyright 2005, Gert E.R. Drapers
Immersion Events – Intense, Focused, Real-world Training! 12

Temp Table vs. Table Variables

• Temp Table
● PROs

•Can create useful nonclustered non-unique indexes to improve
join performance
•Can access from other nested procedures
•Can populate with INSERT EXEC or SELECT INTO

● CONs
•Potential for excessive recompiles due to resolution

• Table Variable Table
● PROs

•Local only – no excessive recompiles
● CONs

•Cannot create additional nonclustered indexes
•Not flexible on population

Detecting SP Recompilation

Remote rowset schema, binding or permission changed.
Gets stats from remote server, may recompile. If you’re going to another server often – for a
relatively small amount of static data you might consider periodically brining over a local copy?

6

Temp table schema, binding or permission changed
Change coding practice for #temptable5

Set option changed in batch
Best Coding practice: Consistency in client session settings. Consistency in development
environment. Only use SET options when connection is started and when procedure is created.

4

Object not found at compile time, deferred check at run-time
If the objects on which the procedure are based are permanent objects consider recreating3

Statistics changed
Thresholds for statistics of the different types of tables vary.
Empty Tables (Permanent >= 500, Temp >= 6, Table Variables = No threshold)
Tables with Data (Perm/Temp >= 500 + 20% cardinality, Table Variables = No threshold)
If consistent plan then eliminate recompiles from changes in statistics by using (KEEPFIXED
PLAN) optimizer hint in SELECT

2

Local Schema, bindings or permissions changed between compile and execute
or executions
Shouldn’t happen often. If it does, isolate where/how changes occur and batch/sched. off hours

1

Event = SP:Recompile & Column = EventSubClass

SQL Server Magazine Connections November 7-10, 2005

@Copyright 2005, Gert E.R. Drapers
Immersion Events – Intense, Focused, Real-world Training! 13

Profiling SP Performance

• Create New Trace (SQLProfilerTSQL_sps)
• Replace SP:StmtStarting w/SP:StmtCompletion

● Better if you want to see a duration (starting
events don’t have a duration)

● Add Duration as a Column Value
• If short term profiling for performance:

● Add columns: Reads, Writes, Execution Plan
• Always use Filters

● Database Name (only the db you want)
● Exclude system IDs (checkbox on filter dialog)

Event Notifications
& WMI Events
Trace=SP:Recompile

Review

• Initial Processing - Review
● Resolution
● Compilation/Optimization
● Execution/Recompilation

• Recompilation Issues
● When do you want to Recompile?
● Options for Recompilation?
● What to Recompile?

• For extra info: Stored Procedure Best Practices
● Naming Conventions
● Writing Solid Code
● Excessive Recompilations – How? Detecting?

SQL Server Magazine Connections November 7-10, 2005

@Copyright 2005, Gert E.R. Drapers
Immersion Events – Intense, Focused, Real-world Training! 14

• Whitepaper: Query Recompilation in SQL
Server 2000
http://msdn.microsoft.com/library/default.asp?
url=/nhp/Default.asp?contentid=28000409

• Webcasts:
http://support.microsoft.com/default.aspx?PR
=pwebcst&FR=0&SD=MSDN&LN=EN-
US&CT=SD&SE=NONA

Resources

