
SQL Server 2008: Table and Index
Partitioning Hands-on Lab

Table of Contents
Lab Introduction ... 3

Objectives ... 3
Prerequisites ... 3
Estimated Time... 3
Tips on how to successfully complete the lab exercises 4

Lab Exercises .. 5
Understanding Partitioned Tables Using a Date Range .. 10

Understanding the concepts – Range Partition Function 10
Understanding the concepts – Partition Scheme .. 12
Understanding the concepts – Partitioned Table .. 13
Understanding the concepts – The Sliding Window Scenario 17

Additional Partitioning Resources ... 24

Content created by

SQL Server 2008: Table and Index Partitioning
Microsoft Hands-on Labs

Page 3 of 24

Lab Introduction
Objectives

The goal of these hands-on lab
materials is to get an
understanding of when to use one
of the more advanced features of
SQL Server 2008: Table and Index
Partitioning.

The intent of these exercises is to
provide you with best practices and
implementation details for SQL
Server 2008. As with all software
development projects, your
production environment may differ
from this build and this
environment. Be sure to design,
implement, and test your final
architecture extensively to minimize
downtime and data loss.

For the latest details on SQL
Server 2008, please visit
http://www.microsoft.com/sql/.

After completing these self-paced labs, you will be able to:

 Understand appropriate uses for Partitioning

 Create, setup and manage partitioned tables

 Read execution plans to see when a partitioned object is being
accessed as well as understand which partitions are being used

 Create indexes on partitioned tables

 Understand when constraints are required within partitioned
tables

 Effectively switch data in and out of the partitioned table
scenario

 Use the SQL Server Management Studio (SSMS) to manage
solutions and projects

 Use SQL Server Management Studio to modify and execute
SQLCMD mode scripts

 Use SQL Server Management Studio to execute queries and
review their plan of execution

Prerequisites Experience with Administration and Optimization tasks in SQL
Server 2000 or SQL Server 2005

 Experience with the SQL Server 2005 Tools or SQL Server
2008 Tools is very helpful

 Familiarity with the Transact-SQL language

 Desire to sink your teeth into SQL Server 2008!

Estimated Time 75 minutes

SQL Server 2008: Table and Index Partitioning
Microsoft Hands-on Labs
Page 4 of 24

Tips on how to successfully complete the lab exercises

IIMMPPOORRTTAANNTT

The labs (and therefore all of the lab scripts) are expecting that you have a local instance called
SQLDev01 with the SQL Server 2008 AdventureWorks2008 sample database already installed.
If you do not already have this database installed please download and install it from CodePlex
here: http://msftdbprodsamples.codeplex.com/.

If your instance is not a named instance with the name of SQLDev01 then scripts that access
backup files may need to be modified for the correct path. Please review the scripts slowly
before executing them and you will have success!

As for the lab itself, be sure to read the Tasks column and its associated notes before executing
anything. Then, proceed to follow the detailed steps for step by step instructions on what to
verify, review, execute, etc. Please check off steps as you complete them and execute steps in the
order in which they are listed. As a best practice, read the entire step, think about what it is meant
to accomplish and then execute it. There are numerous steps that you do NOT immediately
execute and instead may have you review and/or alter what you might expect your normal
behavior to be in order to show you a new feature or two. There are lots of notes along the way,
all of which give you insight into special features, cool tips and often best practices. It’s not a
speed contest to finish first. Take it slow, review the steps and you’ll get a lot more out of your
workshop experience.

Finally, as the complexity of the exercise increases, the need to follow steps in a certain order
also increases. Some exercises may fail if steps are missed and worse yet, other exercises might
require you to start over if/when steps are missed. Consider using a pen/pencil to mark off
steps as you complete them. Additionally, consider taking a step back from each step to
think about what you’re trying to accomplish. This will help to minimize errors and
increase learning as you may be able to predict certain steps and/or think of additional
things to test and learn!

SQL Server 2008: Table and Index Partitioning
Microsoft Hands-on Labs

Page 5 of 24

Lab Exercises
Background

The concept of partitioning is not new to SQL Server 2008. In fact, forms of partitioning have been possible in every
release. However, without features to aid in creating your partitioning scheme, partitioning it is often extremely
cumbersome and underutilized as the design is misunderstood by users and developers unfamiliar with the design.
Beginning in SQL Server 7.0, Microsoft has been significantly improving the features related to partitioning and
SQL Server 2005’s release made the largest advances.
In that release, SQL Server simplified partitions – for both developer and user – in mind. Some of the performance
and manageability benefits relate to managing the sliding window scenario. More specifically, some of the major
benefits are:

1. Load data into a new partition of existing partitioned table with minimal disruption in data access in the
remaining partitions

2. Load data into a new partition of existing partitioned table with performance equal to loading the same data
into a new empty table

3. Delete portion of a partitioned table minimally impacting access to the rest of the table
4. Perform various maintenance operations on per partition basis by rolling partitions in and out of the

partitioned table
5. Simplify design of large tables that need to be partitioned for performance purposes
6. Improve performance over all previous releases for partitions

For more information, please read the SQL Server 2005 Partitioned Tables and Indexes whitepaper on MSDN,
written by Kimberly L. Tripp.

Objectives

After completing this lab, you will be able to:

 Understand the scenarios for which you would use partitioning:

 Understand the requirements of partitioning

o Partition Functions – Define the partition boundaries.

o Partition Schemes – Map the partitions to physical filegroups within the database. A Partition
Scheme always references a Partition Function.

 Understand Range Partitioned Scenarios, specifically managing the Sliding Window Scenario

Scenarios for using partitioning

There are many exciting features related to partitioning, this lab exposes many of them. Expected time to complete
the entire lab – while reading documentation, so that you can grasp all of the concepts fully – is 75 minutes. If you
continue the lab with reading the whitepaper and executing the 6 scripts associated with the whitepaper – 5 hours.

Primary Use: Data Archiving and Mixed OLTP/Decision Support Scenarios

Biggest Benefit to SQL Server 2008 Partitioning: The ability to “switch out” old data and “switch in” new
data – extremely quickly. Range partitions are best when data access is typically decision support data
over large periods of time. In this case, you care specifically where the data is located so that only the
appropriate partitions are accessed when necessary. Additionally, as transactional data becomes
available you will want to add that data in – easily and quickly.

SQL Server 2008: Table and Index Partitioning
Microsoft Hands-on Labs
Page 6 of 24

Sliding Window Lab Scenario: To show how easily data can be switched in and out, you will define
partitions based on calendar quarters (first quarter is January through March, second quarter is April
through June, etc.) using a range partition. This is most appropriate for decision support scenarios
where data access is focused to specific time periods or mixed environments where data pattern usage
varies. It is not a requirement of partitioning that the boundaries be equally spaced, nor do they have to
follow a specific pattern, such as months or quarters. However, for this lab and for simplicity, this is
the pattern that will be used.

Lab Scenario

You are the database administrator for the AdventureWorks2008 database. You manage an Orders table and the
performance has suffered greatly as you bring additional OLTP data in as well as when you remove the older
unneeded data. Subsequently, all range-based management for decision support has become difficult as the table has
become larger. At all times, you want users to have access to one year of order information. However, when each
new set of data becomes available, the process of inserting that data and rebuilding the indexes slows overall access
to the table for more than 3 hours. You decide to use range-based partitioning to improve the management of data
and performance.

In the first part of the exercise, you decide to partition the table for decision support operations based on specific
date-based quarters to improve manageability (moving data in and out of the table) and performance. For this lab
scenario, the one year’s worth of data will cover the four calendar quarters starting with third quarter of 2003
(OrderDate >= Jul 01, 2003) through end of 2nd Quarter 2004 (OrderDate < Jul 01, 2004). In the first part of the
exercise, you will define and configure your Partitioned Table scenario and in the second part of the exercise, you
will begin to understand Range Partition Management. In the second half, you will see how partitions are managed
when data needs to be removed (the older data – third quarter of 2003) and new data needs to be added (the new data
– third quarter of 2004). Regardless of the amount of data moving in and out of your partitioned tables; you can
management these changes effectively.

Tasks Detailed Steps

Open the Partitioning
Scripts solution –
which contains all 10
scripts needed to work
through this lab as
well as the whitepaper
exercises.

1. From the Windows task bar, select Start | All Programs | Microsoft SQL Server
2008 | SQL Server Management Studio.

2. When SQL Server Management Studio opens, you are prompted to connect. In the
Connect to Server dialog, enter the following connection properties and then click
Connect.

 Server type: Database Engine
 Server name: (local)\SQLDEV01
 Authentication: Windows Authentication

3. Select the File | Open | Project/Solution menu item. Navigate to the C:\AlwaysOn
Labs\Partitioning Lab directory. Select
PartitioningScripts.ssmssln and click Open.

4. Once open in SQL Server Management Studio, navigate to the Solution Explorer
window. If this window is not open, select Solution Explorer from the View drop-
down menu.

5. In the Solution Explorer window, notice that there are three projects in one solution.
The solution is titled: Solution ‘PartitioningScripts’ and the three projects
are titled: Lab Scripts, Whitepaper Scripts and Xtra-
ILLExtendedExercises. For these exercises, you will focus on the project titled:
Lab Scripts. The “Whitepaper Scripts” project corresponds with the SQL Server
2005 Partitioned Tables and Indexes whitepaper on MSDN; however, this version of
the scripts found in this VPC uses a partitioning function that specifies boundaries that

SQL Server 2008: Table and Index Partitioning
Microsoft Hands-on Labs

Page 7 of 24

Tasks Detailed Steps
fall to the right. The extra “ILL” project is meant for self-paced study and in
“instructor-led lab” scenarios. Typically, used in lectures related to partitioned views,
partitioned tables and online piecemeal restore. If time permits, consider going through
the rest of these scripts at the end of this lab.

Create filegroups and
files on which the
future partitioned
table will reside

1. Under the Queries section of the Lab Scripts project, double-click on the file titled:
Script1 – AddFilegroups.sql to open this into a query window.

Note: the files will be placed in the AdventureWorks2008Test subdirectory on drive
C:\. In most production environments, these files would be on separate hard drives – or
multiple partitions might be combined within filegroups. For this exercise and for
simplicity, all files will be placed in this directory. However, this directory does not exist.
In the first part of this script, you will execute the section labeled: Lab Setup: Step One to
create this directory. To successfully execute this command, you must be in SQLCMD
Mode.

2. Change to allow SQLCMD Mode, if not already set. Select SQLCMD Mode from
the Query menu. Notice how some lines appear highlighted in gray. This signifies a
SQLCMD command.

3. Highlight and Execute the complete !!mkdir line in SQLCMD Mode.

 !!mkdir C:\AdventureWorks2008Test . . .

4. In the next section of the script (lines 30-51), you will create a test copy of the
AdventureWorks2008 database named AdventureWorks2008Test. Execute this
section:

BACKUP DATABASE AdventureWorks2008
TO DISK = N'C:\Ad...Original.BAK'
WITH INIT, STATS = 10
GO

RESTORE DATABASE [AdventureWorks2008Test]
FROM DISK = N'C:\Ad...Original.BAK'
WITH FILE = 1,
 MOVE N'AdventureWorks2008_Data'
 TO N'C:\...TestData.mdf'

 , MOVE N'AdventureWorks2008_Log'
 TO N'C:\... TestLog.ldf'
 , MOVE N'FileStreamDocuments'
 TO N'C:\...FileStream.Documents'
 , NOUNLOAD, STATS = 10
 GO

Once the test copy of the database has been restored, you can create the files and
filegroups. For this lab, the filegroups are named based on the data they will hold.
However, in many “rolling range” scenarios you will want to reuse the same files and
filegroups and just cycle through them – always keeping the same files/filegroups but
changing what data resides in them. If that’s the case, you will want to use generic naming
conventions for the filegroups and files. To better see what data resides where and to show
management with new files and filegroups (for each quarter), specific date-related names

SQL Server 2008: Table and Index Partitioning
Microsoft Hands-on Labs
Page 8 of 24

Tasks Detailed Steps
will be used for both the files and the filegroups.

5. Create four filegroups that will later hold the partitions of your partitioned table.
Execute the next section of the script to create four filegroups:

ALTER DATABASE AdventureWorks2008Test
ADD FILEGROUP [2003Q3]
GO

ALTER DATABASE AdventureWorks2008Test
ADD FILEGROUP [2003Q4]
GO

ALTER DATABASE AdventureWorks2008Test
ADD FILEGROUP [2004Q1]
GO

ALTER DATABASE AdventureWorks2008Test
ADD FILEGROUP [2004Q2]
GO

A filegroup is only a name to a location within a database. The physical location of the data
within a filegroup is based on the files that are within a filegroup. A file can only be in one
filegroup but a filegroup can have many files. When a filegroup has many files, space is
allocated to objects by using a “round-robin” algorithm and essentially these files will be
proportionally filled over time – yielding better resource utilization for larger objects –
especially when not partitioned. When using a partitioned table strategy, it is more likely
that each partition reside in one file as no single partition will warrant multiple files.

6. Create one file in each of the four filegroups. Execute the final section of the script to
create these files:

ALTER DATABASE AdventureWorks2008Test
ADD FILE
 (NAME = N'RPFile1',
 FILENAME = N'C:\AdventureWorks2008Test\RPFile1.ndf',
 SIZE = 5MB,
 MAXSIZE = 100MB,
 FILEGROWTH = 5MB)
TO FILEGROUP [2003Q3]
GO

ALTER DATABASE AdventureWorks2008Test
ADD FILE
 (NAME = N'RPFile2',
 FILENAME = N'C:\AdventureWorks2008Test\RPFile2.ndf',
 SIZE = 5MB,
 MAXSIZE = 100MB,
 FILEGROWTH = 5MB)
TO FILEGROUP [2003Q4]
GO

ALTER DATABASE AdventureWorks2008Test
ADD FILE

SQL Server 2008: Table and Index Partitioning
Microsoft Hands-on Labs

Page 9 of 24

Tasks Detailed Steps
 (NAME = N'RPFile3',
 FILENAME = N'C:\AdventureWorks2008Test\RPFile3.ndf',
 SIZE = 5MB,
 MAXSIZE = 100MB,
 FILEGROWTH = 5MB)
TO FILEGROUP [2004Q1]
GO

ALTER DATABASE AdventureWorks2008Test
ADD FILE
 (NAME = N'RPFile4',
 FILENAME = N'C:\AdventureWorks2008Test\RPFile4.ndf',
 SIZE = 5MB,
 MAXSIZE = 100MB,
 FILEGROWTH = 5MB)
TO FILEGROUP [2004Q2]
GO

7. Verify that your AdventureWorks2008Test database has these new filegroups and files
and that they’re all of the appropriate size. Execute the final batch to review the file
and filegroup properties:

USE AdventureWorks2008
go

sp_helpfile
go

8. Close the file: Script1 – AddFilegroups.sql.

Add a new Orders
table – for testing and
comparisons between
partitioned and non-
partitioned structures

In order to compare plans and differences between partitioned and non-partitioned
tables, a copy of a subset of data will be created in a simple non-partitioned table.
There is nothing new in this part of the lab – these steps are necessary to create a copy
of data and make some interesting modifications for later examples.

1. Under Queries section of Lab Scripts project, double-click Script2 –
CreateOrders.sql

2. In the query window, review and then Execute this script. You should have 2757
rows in the new Orders table.

3. Close the file: Script2 - CreateOrders.sql.

SQL Server 2008: Table and Index Partitioning
Microsoft Hands-on Labs
Page 10 of 24

Understanding Partitioned Tables Using a Date Range
In this exercise, you will create a range partition function, a partition scheme, and a partitioned table. Once created,
you will load data into the table, add a clustered index and get a feel for how the query plans differ between
partitioned and non-partitioned tables.

Understanding the concepts – Range Partition Function
The first step in partitioning a table is to specify the function that you will use to designate how the rows will be
directed to the partitions. A range partition always covers the complete range of possible data values – from negative
infinity to positive infinity. Because of this, when you specify n boundaries, your partitioned object will have n+ 1
partitions.

In a partition function, you need to define the boundary points. In this scenario, four filegroups have been created.
Each filegroup will store one calendar quarter of the Orders data. If four boundaries are used, then five partitions
will be created (more on this coming up).

In the range partitioning syntax, there are two ways to partition data – LEFT or RIGHT. Specifying LEFT or RIGHT
determines whether or not the boundary condition is an upper boundary or a lower boundary – in the first or second
partition. In other words, if the first value (or boundary condition) of a partition function is 20031001 then the values
within that partition will be:

 For LEFT
 1st partition is all data < = 20031001
 2nd partition is all data > 20031001

 For RIGHT
 1st partition is all data < 20031001
 2nd partition is all data => 20031001

If you are using a datetime data type remember that a date with no time implies a 0 time of 12:00am. If LEFT is
used with this type of data then you’ll end up with Oct 1 12:00am data in the 1st partition and the rest of Oct in the
2nd partition.

Logically, it is best to use beginning values (of the second partition set) with RIGHT and ending values (of the first
partition set) with LEFT. The four following clauses create identical partitioning structures – for data:

SQL Server 2008: Table and Index Partitioning
Microsoft Hands-on Labs

Page 11 of 24

RANGE LEFT FOR VALUES ('20030930 23:59:59.997',
 '20031231 23:59:59.997',
 '20040331 23:59:59.997',
 '20040630 23:59:59.997')

RANGE RIGHT FOR VALUES ('20030701 00:00:00.000',
 '20031001 00:00:00.000',
 '20040101 00:00:00.000',
 '20040401 00:00:00.000')
OR
RANGE RIGHT FOR VALUES ('20030701',
 '20031001',
 '20040101',
 '20040401')

As another option, you can also use functions within your partition function.
However, only the actual (the literal) boundary point will be stored.

RANGE LEFT FOR VALUES (dateadd (ms, -3, '20030701'),
 dateadd (ms, -3, '20031001'),
 dateadd (ms, -3, '20040101'),
 dateadd (ms, -3, '20040401'),

The datetime data type adds a bit of complexity here but we need to make sure we setup the correct boundary case.
Notice the simplicity with RIGHT – this is easier as the default time is 12:00:00.000am. For LEFT there is added
complexity due to the datatime datatype. The reason that 23:59:59.997 MUST be chosen is that datetime data does
not guarantee precision to the millisecond. Instead datetime data is precise to the nearest timetick (3.33ms). In the
case of 23:59:59.999 this exact timetick is not available and instead the value gets rounded to the nearest timetick
which is 00:00:00.000 (12:00:00.000am) of the following day. With this rounding the boundaries will not be defined
properly. For datetime data you must use caution with millisecond values. With SQL Server 2008, you can also use
new date and time data types; using a data type that stores only a date (and no time) would eliminate this timetick
rounding problem. For more details on the new data types, see the books online topic: Date and Time Data Types
and Functions (Transact-SQL).

In our example, notice the partition is based on the OrderDate column yet the partition function does not specify
the name of the column, only the data type. A partition function is more “general” and it not tied directly to a table.
The range partition function will be named OrderDateRangePFN and will be defined using RIGHT. Because of the
simplicity in defining RIGHT-based partition functions with date-related data types, RIGHT is preferred.

USE AdventureWorks2008Test
GO
CREATE PARTITION FUNCTION OrderDateRangePFN(datetime)
AS
RANGE RIGHT FOR VALUES ('20030701',
 '20031001',
 '20040101',
 '20040401')
GO

There are absolutely no performance or later manageability reasons to choose right over left or visa versa. The most
complex part about right and left are in the initial partition function. As you work through the sliding window
scenario (i.e. split and merge exercises), consider keeping scratch paper available to draw out your partitioning

SQL Server 2008: Table and Index Partitioning
Microsoft Hands-on Labs
Page 12 of 24

scheme and where the data resides – and where you want the data to go. This will make visualization (and later
automation) a lot easier to understand. In terms of partition function creation, be sure to understand these best
practices:

 Always enter a boundary point for each partition you want to create, this will create n+1 partitions

 When creating a RIGHT PARTITION FUNCTION always use the lower boundaries of your data partitions

 When creating a LEFT PARTITION FUNCTION always use the upper boundaries of your data partitions.

Tasks Detailed Steps

Create the Partition
Function – that will
later be used by the
Orders table

1. In the Solution Explorer window, under Queries section of Lab Scripts project,
double-click: Script3 – RangePartitionedTable.sql.

2. In the query window, review and then Execute the first part of this script – just to
create the partition function:

CREATE PARTITION FUNCTION
OrderDateRangePFN(datetime)
AS
RANGE RIGHT FOR VALUES
(
 '20030701',
 '20031001',
 '20040101',

 '20040401')
GO

NOTE: Make sure you change database context to AdventureWorks2008 first!

Understanding the concepts – Partition Scheme
A partition function only defines logical boundary points, not the specific location on which the partitions should
reside. A partition scheme maps the partitions to physical locations – specifically filegroups – of your database. If
you created a partition function with four boundary points then you will have a portioned object with five partitions.
Remember, a partition function must cover the entire range from negative infinity to positive infinity.

Because of the best practices used above, your partition function will not cause record relocation when data is
moved in or out of your partitioned object. As a further best practice, one of your partitions will remain empty. If
efficient data management in the sliding window scenario is desired, then a LEFT-based partition function will end
up with an empty partition on the far right and a RIGHT-based partition function will end up with an empty partition
on the far left. This will ensure that no rows move.

There is no need for a special location for the filegroup that will remain empty. For the empty partition, you can use
the Primary filegroup.

Tasks Detailed Steps

Create the Partition
Scheme – that will
later be used by the
Orders table

In Script3 – RangePartitionedTable.sql, review and execute the second
part of this script – just to create the partition scheme, note that comments (shown in
green) have been excluded from the code shown here:

CREATE PARTITION SCHEME OrderDatePScheme
AS
PARTITION OrderDateRangePFN

TO ([PRIMARY], [2003Q3], [2003Q4],
 [2004Q1], [2004Q2])

GO

SQL Server 2008: Table and Index Partitioning
Microsoft Hands-on Labs

Page 13 of 24

Understanding the concepts – Partitioned Table
Once the partitioning function has defined the datasets, and the partitioning scheme has defined which datasets
target which filegroups, you can create the partitioned table. To create a partitioned table the table must include a
column with the data type used in the creation of the partition function. The ON clause defines which partitioning
scheme this table uses (OrderDatePScheme) and the column of the table that dictates row to partition (a.k.a.
scheme) location.

Because it’s likely that your data has constraints that are more restricting than a partition function (remember, the
function covers every possible value!), it’s a good practice to restrict your data to enforce this property. Constraints
on the base table are not required for partitioned tables to work; however, they can ensure both data integrity as
well as better management if the data is restricted properly. The “current” version of the table will store data from
2003 Q3 to 2004 Q2. To enforce this, a check constraint will be added to the OrderDate column.

Performance note: If you are creating a new partitioned table then the
table can be created directly on a partition scheme. However, if you are
loading existing data from another table/database, it is often better to
load data *without* constraints and then add the constraints AFTER the
data is loaded. Additionally, if your load process also includes data
cleansing and/or transformations – you might want to break this process
down into multiple, separate steps:
 1) Load the data into an empty heap structure located on a staging area
(this staging area will be reused each month) which is not partitioned
 2) Perform data consistency checks, constraints, transformations, etc.
 3) Build the clustered index on the destination filegroup OR if
partitioning, the destination partition scheme.

In this example, the tables are small. For simplicity, the constraints and scheme are added to the CREATE TABLE
definition and then INSERT…SELECT is used to copy data from another table. For larger tables this would not be
ideal. If time permits, consider rewriting the code in Script3 to: create the table first (no constraints, not partitioned),
load the data (using INSERT…SELECT) and then add the constraints and “partition” the table. However, this is a
bit of a trick question, in order to partition an already existing table, you need to partition by rebuilding (or adding) a
clustered index to the table. A heap cannot be partitioned – and kept as a heap. Later in the script you will create a
clustered index. If the table had not already been partitioned, then the creation of the clustered index would move the
data into a partitioned structure – as a single step.

Tasks Detailed Steps

Create the
Partitioned
Table, load the
data and verify
the row locations
using new
partition
functions

1. In Script3 – RangePartitionedTable.sql, review and Execute the next
section of this script – just to create the partitioned object - OrdersRange:

CREATE TABLE AdventureWorks2008Test.[dbo].[OrdersRange]
(

 [OrderID] [int] NOT NULL,
[EmployeeID] [int] NULL,
[VendorID] [int] NULL,
[TaxAmt] [money] NULL,
[Freight] [money] NULL,
[SubTotal] [money] NULL,
[Status] [tinyint] NOT NULL ,
[RevisionNumber] [tinyint] NULL,
[ModifiedDate] [datetime] NULL,
[ShipMethodID] tinyint NULL,
[ShipDate] [datetime] NOT NULL,

SQL Server 2008: Table and Index Partitioning
Microsoft Hands-on Labs
Page 14 of 24

Tasks Detailed Steps
[OrderDate] [datetime] NOT NULL
 CONSTRAINT OrdersRangeYear
 CHECK ([OrderDate] >= '20030701'
 AND [OrderDate] < '20040701'),
[TotalDue] [money] NULL

)
ON OrderDatePScheme (OrderDate)
GO

2. Execute the next section of this script to load data into the OrdersRange table by using
INSERT…SELECT from the previously created Orders table:
INSERT INTO OrdersRange
SELECT o.[OrderID]
 , o.[EmployeeID]
 , o.[VendorID]
 , o.[TaxAmt]
 , o.[Freight]
 , o.[SubTotal]
 , o.[Status]
 , o.[RevisionNumber]
 , o.[ModifiedDate]
 , o.[ShipMethodID]
 , o.[ShipDate]
 , o.[OrderDate]
 , o.[TotalDue]
FROM dbo.Orders AS o
GO

To aid in determining where data resides, a new function was created. The breakdown of this
function is that you add $partition. to the partition function name function(value)
and then you pass in a value. The value is executed against the partition function and the result
is the partition number.

3. The data has been loaded into the partitions. Execute the next section of this script to show

each OrderDate and the partition number on which the row resides.

SELECT OrderDate,
 $partition.OrderDateRangePFN(OrderDate)
 AS 'Partition Number'
FROM OrdersRange
ORDER BY OrderDate

GO

4. In addition to seeing the partition for each individual row, the next query will show the row
count in each range as well as the min and max OrderDate for each partition.

 SELECT $partition.OrderDateRangePFN(OrderDate)
 AS 'Partition Number'
 , min(OrderDate) AS 'Min Order Date'
 , max(OrderDate) AS 'Max Order Date'
 , count(*) AS 'Rows In Partition'
FROM OrdersRange
GROUP BY $partition.OrderDateRangePFN(OrderDate)
ORDER BY 1
GO

Create Clustered In general, a table is typically more optimized when the table is clustered. Many of the best

SQL Server 2008: Table and Index Partitioning
Microsoft Hands-on Labs

Page 15 of 24

Tasks Detailed Steps
Indexes on both
tables to
determine the
changes and
impact to the
execution plan.

clustered indexes are those that help to improve query performance, minimize fragmentation
and offer benefits to certain types of table access. In a range partitioned table scenario (which is
date-based), you typically have an ideal clustered index by clustering on your partitioning key.
If you cluster by partition key alone then there are some negative side effects. Internally the
clustering key must be unique – if you were to create an already unique clustering key then this
would eliminate some overhead on INSERT/UPDATE and disk space. An ideal clustering key
would be on the OrderDate and PurchaseOrderID columns. Since the clustered index will
define how the data is stored, it must be created on the partition scheme.

1. Execute the following part of the script to create a clustered index on your partitioned
table:

CREATE CLUSTERED INDEX OrdersRangeCLInd
ON OrdersRange(OrderDate, OrderID)
ON OrderDatePScheme(OrderDate)
GO

2. For comparisons, Execute the following part of the script to create a similar index on the
non-partitioned Orders table:

CREATE CLUSTERED INDEX OrdersCLInd
ON Orders(OrderDate, OrderID)
ON [PRIMARY]

3. Execute the following two queries and in the Execute plan tab examine the query plan.

SELECT * FROM Orders
SELECT * FROM OrdersRange
GO

4. In the Execution plan tab, what’s interesting to note is that the Properties window (F4)
gives more details than the tooltips (“mousing” over the various icons), so be sure to check
both options. Place your cursor over the Clustered Index Scan clause as well as click on it
to select it and populate the Properties window. In the Properties window notice the
“Actual Partitions Accessed” of 1..5 and Actual Partition Count of 5.

SQL Server 2008: Table and Index Partitioning
Microsoft Hands-on Labs
Page 16 of 24

 If you’re interested, there is no difference in the plans generated on this execution versus
an execution where the tables do not have clustered indexes (well, except that each of the
plans say Table Scan instead of Clustered Index Scan). The only difference is that the
clustered index defines the order of the data so instead of seeing “Table Scan” you will
now see Clustered Index scan.

However, this example does show an important point about the creation of an index over a
partitioned table – its simplicity. Once a table has been partitioned, you interact with it just
as you would a regular table (in terms of indexes). Instead of having to create indexes for
each partition, the partitioned table dictates the logical breakdown (through the partition
function) as well as the physical storage location (through the partition scheme).

Also note, when creating the clustered index, the OrderDatePScheme does not need to
be specified because the heap structure was already created on the partitioning scheme. If
a clustered index does not change the definition (i.e. you do not supply an ON clause),
then the clustered index follows the same scheme as the table unless. If you were to
specify a different partition scheme or a non-partitioned filegroup destination for the
clustered index, you would either change the partition scheme or make this table a non-
partitioned table. This is useful to know because significant changes (more than just a
single partition switch in or out) to a table’s structure and location should always be
handled through clustered index changes. For example, if you want to make an existing 4
partition table have 8 partitions (and existing data will move) – it’s better to create a new

SQL Server 2008: Table and Index Partitioning
Microsoft Hands-on Labs

Page 17 of 24

partition function and new partition scheme and then rebuild the clustered index on the
new scheme than it is to split 4 times (causing record relocation on each split). In the next
section, the concepts of the sliding window scenario will be explained further.

5. Close the file: Script3 - RangePartitionedTable.sql.

Understanding the concepts – The Sliding Window Scenario
Each month, when new data becomes available – you need to bring it into your large table. When this is a single
table, the process of updating indexes during the load creates poor performance and significant fragmentation. To
optimize the load process, you will work with a separate table instead. This “table” – really a soon-to-be-partition in
disguise – will be loaded and manipulated independently of the partitioned table. This process allows the existing
table to be unaffected and the isolation of the manipulation against the new table to be more efficient. Once ready,
you will remove the old data (Q3 of 2003) from the partitioned table (a.k.a. – the data to be archived will be
switched out) and then add the new data (Q3 of 2004) to the partitioned table (a.k.a. – the new data will be switched
in).

The entire process consists of these general steps:
1. Get the “staging out” table ready (this is for the partition you plan to remove)
2. Get the “staging in” table (and data) ready (this is more complex)

 Load/transform/cleanse (loading data into a staging heap table in a staging filegroup/area)
 Build the clustered index on the correct destination filegroup

3. Alter the partition scheme to set next used (based on the filegroup where you created the clustered index in
step 1)

4. Split the function to add the new boundary point (this will put the boundary point on the filegroup specified
by setting next used)

Note: none of the first 4 steps impact the actual table AND you can prepare them (the staging in/out tables) in any
order!

5. Switch “IN” the new data
6. Switch “OUT” the old data

Note: steps 5 and 6 can be in either order – and are FAST (re: metadata only operations)
7. Merge the boundary point (from the emptied [switched out] partition)
8. Backup/remove the old data (drop the table)

In our lab, the range partitioned table has data from Q3 2003 through Q2 2004. For this example, we will process the
new quarter’s data (Q3 2004) and then simply switch the “staging” table into the partitioned table as a partition.
When switching partitions you will find it’s a fast process as only metadata is changed – as long as row location and
data movement do not occur!

Tasks Detailed Steps

Build a location for
the new data to move
into – effectively a
staging “in” location –
without disrupting the
current (and active)
OrdersRange table.

1. In the Solution Explorer window, under Queries section of Lab Scripts project,
double-click: Script4 – RollingRangeScenario.sql.

2. In the query window, create a filegroup into which this data will be loaded and where
the data will reside.

ALTER DATABASE AdventureWorks2008Test
ADD FILEGROUP [2004Q3]
GO

Important Concerns: Depending on filegroup size and the impact you want to your
current data set, you have a few options for how you proceed with the switch in and out of
data. You could get rid of the old data first and then reuse the existing filegroup for the

SQL Server 2008: Table and Index Partitioning
Microsoft Hands-on Labs
Page 18 of 24

Tasks Detailed Steps
new data coming it (but then you’d want to have used more generic file and filegroup
names) or you can create a new location without reusing the existing file and filegroup.
The pro to the latter approach is that we don’t need to wait for file creation time. The con
to the this approach is that we’d need to remove the quarter before we load the new quarter
which means that there would be a window (possible a quite large one) where the
“window” of data includes only 3 quarters and not four. Because of features in SQL Server
2008 – including instant initialization – the “wait” time for creating files – even large files
– should not be significant. However, your SQL Server must be configured to support
instant initialization as it is not enabled by default.

3. Add a file to the filegroup – following the same pattern you used earlier:

ALTER DATABASE AdventureWorks2008Test
ADD FILE
 (NAME = N'2004Q3',
 FILENAME = N'C:\AdventureWorks2008Test\2004Q3.ndf',
 SIZE = 5MB,
 MAXSIZE = 100MB,
 FILEGROWTH = 5MB)
TO FILEGROUP [2004Q3]
GO

Important Concerns: Different quarters with more or less data must be sized
appropriately and you should always pre-allocate the space so that time is not wasted
through autogrowth. Additionally, you may want these files to be on different hard drives.
However, for the purposes of this lab – and for simplicity – drive C:\ is going to be used.

4. Next, you will create a separate non-partitioned table in which to hold the data that
will later become the new partition to the partitioned table. This table MUST have the
EXACT structure and clustered index of the table that it will become a partition of.
Additionally, to ensure a fast “switch” constraints are required in order to restrict this
table’s data to only the range which will be used within the partition. For optimal
performance we will create the table, populate it with data, and then create the
clustered index.

CREATE TABLE
AdventureWorks2008Test.[dbo].[Orders2004Q3]
(
 [OrderID] [int] NOT NULL,
 [EmployeeID] [int] NULL,
 [VendorID] [int] NULL,
 [TaxAmt] [money] NULL,
 [Freight] [money] NULL,
 [SubTotal] [money] NULL,
 [Status] [tinyint] NOT NULL ,
 [RevisionNumber] [tinyint] NULL,
 [ModifiedDate] [datetime] NULL,
 [ShipMethodID] tinyint NULL,
 [ShipDate] [datetime] NOT NULL,
 [OrderDate] [datetime] NOT NULL
 CONSTRAINT Orders2004Q3MinDate
 CHECK (OrderDate >= '20040701'),
 [TotalDue] [money] NULL

SQL Server 2008: Table and Index Partitioning
Microsoft Hands-on Labs

Page 19 of 24

Tasks Detailed Steps
) ON [2004Q3]
GO

ALTER TABLE
AdventureWorks2008Test.[dbo].[Orders2004Q3]
ADD CONSTRAINT Orders2004Q3MaxDate
 CHECK (OrderDate < '20041001')
go

-- Populate new table with Q3 2004 data.

INSERT INTO
AdventureWorks2008Test.[dbo].Orders2004Q3
 SELECT o.[PurchaseOrderID]
 , o.[EmployeeID]
 , o.[VendorID]
 , o.[TaxAmt]
 , o.[Freight]
 , o.[SubTotal]
 , o.[Status]
 , o.[RevisionNumber]
 , o.[ModifiedDate]
 , o.[ShipMethodID]
 , o.[ShipDate]
 , o.[OrderDate]
 , o.[TotalDue]
FROM AdventureWorks2008.Purchasing.PurchaseOrderHeader AS o
 WHERE o.OrderDate >= '20040701'
 AND o.OrderDate < '20041001'
GO

-- The table *must* have the same clustered
-- index definition!

CREATE CLUSTERED INDEX Orders2004Q3CLInd
ON Orders2004Q3(OrderDate, OrderID)
ON [2004Q3]

GO

Important Concerns: Depending on how many rows may or may not meet the constraint
requirements (this depends a lot on the validity of the data source), you might want to load
the data, clean it up, then add the constraint and then create the clustered index.

Also, at this point the new data is ready to be “switched” in. However, if you want to
minimize the time between switching the old data out and the new data in (in order to
always maintain as close to one year of data as possible), you might want to prepare to
“switch” out the old data first.

Build a location for
the old data to move
to – effectively a
staging “out” location.

For switching partitions out you MUST have a table with the EXACT same definition and
clustered index created on the same filegroup of the partition you are switching out of the
partitioned table. In this case we’re going to switch out Q3 2003 – which is on filegroup
2003Q3.

SQL Server 2008: Table and Index Partitioning
Microsoft Hands-on Labs
Page 20 of 24

Tasks Detailed Steps
1. Create the staging table on the appropriate filegroup:

CREATE TABLE
AdventureWorks2008Test.[dbo].[Orders2003Q3]
(
 [OrderID] [int] NOT NULL,
 [EmployeeID] [int] NULL,
 [VendorID] [int] NULL,
 [TaxAmt] [money] NULL,
 [Freight] [money] NULL,
 [SubTotal] [money] NULL,
 [Status] [tinyint] NOT NULL ,
 [RevisionNumber] [tinyint] NULL,
 [ModifiedDate] [datetime] NULL,
 [ShipMethodID] tinyint NULL,
 [ShipDate] [datetime] NOT NULL,
 [OrderDate] [datetime] NOT NULL,
 [TotalDue] [money] NULL
) ON [2003Q3]
GO

-- The table must have the same clustered
-- index definition!

CREATE CLUSTERED INDEX Orders2003Q3CLInd
ON Orders2003Q3(OrderDate, OrderID)
ON [2003Q3]
GO

Note: No constraint is necessary for switching data out; the table’s data will be coming
from the partition’s data – which is already restricted. The ONLY constraints that are
required in the partitioned table scenario are those on the table that will be switched in.

2. In order to switch out a partition you must state the partitioned table’s name and the
partition number which is being “removed.” The partition is only being removed from
the partitioned table – the data is NOT deleted. However, the data will NOT be seen
via the OrdersRange table any longer. The only access to this data is via the
Orders2003Q3 table- into which the partition’s data was “switched.”

ALTER TABLE OrdersRange
SWITCH PARTITION 2
TO Orders2003Q3

GO
NOTE: It might seem challenging to require knowledge of the partition by number but in
the rolling range partition scenario the partition being removed will always be 2.
Additionally, with a variety of catalog view queries – you can also determine the location
of the partition programmatically. There are examples of this in the SQL Server 2005
Partitioned Tables whitepaper.

Now you could remove the table with a drop table and completely remove possibly
thousands of rows without logging them individually. This provides a very fast mechanism
for moving data in and out of ranges. Additionally, a second benefit of having this data
isolated in it's own filegroup, is that you effectively get table level restore into a new
location if desired. Using partial database restores you can restore just the primary and a
subset of filegroups while stilling access the data. Then you can move data into another

SQL Server 2008: Table and Index Partitioning
Microsoft Hands-on Labs

Page 21 of 24

Tasks Detailed Steps
database. However, you cannot restore this filegroup directly into another database.

Verify that the data
within the partitioned
table no longer
includes that which
was switched out.

1. To confirm that we deleted all of the data from partition 2, you can use this special
function to see which rows are in which partitions. The partition function exists in the
$partition namespace and you may include it in your query in the format
$partition.<function>(<table>.<column>):

SELECT $partition.OrderDateRangePFN(OrderDate)
 AS 'Parition Number'
 , min(OrderDate) AS 'Min Order Date'
 , max(OrderDate) AS 'Max Order Date'
 , count(*) AS 'Rows In Partition'
FROM OrdersRange
GROUP BY $partition.OrderDateRangePFN(OrderDate)
ORDER BY 1
GO

2. Verify Data exists in partitions 3, 4 and 5 ONLY

Remove the boundary
which is no longer
represented by this
table and then re-
verify the data.

The previous query should show that you have data ONLY in partitions 3, 4 and 5. So how
does the left most partition become 2 again – so that later switches are always switching
partition 2 out?

You need to remove the boundary point.

1. Remove the third quarter of 2003 from the OrdersRange partitioned table:

 ALTER PARTITION FUNCTION OrderDateRangePFN()
 MERGE RANGE ('20030701')
 GO

2. Now your partitioned table will have only 3 active – and 1 empty – partition. To

verify, use the same query above. Notice the partition numbers are now 2, 3, and 4.

SELECT $partition.OrderDateRangePFN(OrderDate)
 AS 'Parition Number'
 , min(OrderDate) AS 'Min Order Date'
 , max(OrderDate) AS 'Max Order Date'
 , count(*) AS 'Rows In Partition'
FROM OrdersRange
GROUP BY $partition.OrderDateRangePFN(OrderDate)
ORDER BY 1
GO

3. Data was in partitions 2, 3, 4 but the merge operation removed partition 1. SQL Server
therefore renumbers the existing partitions but it does NOT move any data. Only
partition numbers have changed. At this point, the filegroups used by this database are
unchanged. To see all of the filegroups for this database use the following query:

SELECT * FROM sys.filegroups

4. However, the filegroup 2003Q3 previously associated with partition 2, is no longer
associated with this partitioned table. To see ALL of the filegroups associated with the
OrdersRange table (even those with no data), use the following query:

SELECT ps.name AS PSName,
 dds.destination_id AS PartitionNumber,

SQL Server 2008: Table and Index Partitioning
Microsoft Hands-on Labs
Page 22 of 24

Tasks Detailed Steps
 dds.data_space_id AS FileGroup,
 fg.name AS FileGroupName
FROM (((sys.tables AS t
 INNER JOIN sys.indexes AS i
 ON (t.object_id = i.object_id))
 INNER JOIN sys.partition_schemes AS ps
 ON (i.data_space_id = ps.data_space_id))
 INNER JOIN sys.destination_data_spaces AS dds
 ON (ps.data_space_id =
 dds.partition_scheme_id))
 INNER JOIN sys.filegroups AS fg
 ON dds.data_space_id = fg.data_space_id
WHERE (t.name = 'OrdersRange')
 AND (i.index_id IN (0,1))

Add the new filegroup
to the partition
scheme.

In all of the above, you are reviewing the current state of the partitioned table. In order to
add a new partition (by splitting one of the existing partitions), you will have to have a
place for this new partition to reside. This next step ensures that the next split will use a
very specific location for the partition. Again, in order to switch data in or out effectively,
you need to have the staging table ready – on the correct filegroup. In this case, the next
filegroup to use is 2004Q3 – which is where our data already resides. This step just adds
this filegroup to the partition scheme so that it can be used.

ALTER PARTITION SCHEME OrderDatePScheme
NEXT USED [2004Q3]
GO

Alter the table
constraints to support
the new range of data
and switch in our new
partition.

Unlike Partitioned Views which rely heavily on constraints to determine what data resides
in each table, Partitioned Tables do not require constraints (with the exception of the table
that’s being switched in). However, for data integrity purposes you might want to constrain
your data to a smaller set than what’s required by partitioning (which is negative infinity to
positive infinity). To do this you need to add constraints on the base table – which are in
place. However, the existing constraints restrict the data to only allow 2003Q3 through
2004Q2. Before we can switch in the new data, we need to allow the correct range.

1. Change the base table constraints to allow 3rd quarter of 2004 as well as not allow 3rd
quarter of 2003:

ALTER TABLE OrdersRange
ADD CONSTRAINT OrdersRangeMax
 CHECK ([OrderDate] < '20041001')
go

ALTER TABLE OrdersRange
ADD CONSTRAINT OrdersRangeMin
 CHECK ([OrderDate] >= '20031001')
go

ALTER TABLE OrdersRange
DROP CONSTRAINT OrdersRangeYear
go

2. Next, we can allow a new partition to be added to the table:

ALTER PARTITION FUNCTION OrderDateRangePFN()
SPLIT RANGE ('20040701')
GO

3. Now, you can switch in the new partition:

SQL Server 2008: Table and Index Partitioning
Microsoft Hands-on Labs

Page 23 of 24

Tasks Detailed Steps
ALTER TABLE Orders2004Q3
SWITCH TO OrdersRange PARTITION 5
GO

4. As a final step, verify the data:
SELECT $partition.OrderDateRangePFN(OrderDate)
 AS 'Parition Number'
 , min(OrderDate) AS 'Min Order Date'
 , max(OrderDate) AS 'Max Order Date'
 , count(*) AS 'Rows In Partition'
FROM OrdersRange
GROUP BY $partition.OrderDateRangePFN(OrderDate)
ORDER BY 1
GO

5.
6. Close the file: Script4 - RollingRangeScenario.sql.

Finally, if further partitioning exercises are desired consider walking through the scripts in the Whitepaper Scripts
project, also located within this solution. These scripts are updated versions of those provided with the whitepaper
and in each script’s descriptive header – seen when you open the file – you can see information regarding the
changes that were made. There are two scenarios covered by these scripts:

Scenario 1

This covers a more complex Range Partitioned Scenario that includes multiple tables as well as details about joins
between two partitioned tables that are aligned. For this scenario, you need to use the following scripts in this order:

1) RangeCaseStudyScript1-Filegroups.sql

2) RangeCaseStudyScript2-PartitionedTable.sql

3) RangeCaseStudyScript3-JoiningAlignedTables.sql

4) RangeCaseStudyScript4-SlidingWindow.sql

Scenario 2

This covers a Range Partitioned Scenario that simulates List-based Partitioning using Regions. For this scenario, you
need to use the following scripts in this order:

1) RegionalRangeCaseStudyScript1-Filegroups.sql

2) RegionalRangeCaseStudyScript2-PartitionedTable.sql

SQL Server 2008: Table and Index Partitioning
Microsoft Hands-on Labs
Page 24 of 24

Additional Partitioning Resources
 TechNet Whitepaper: Strategies for Partitioning Relational Data Warehouses in Microsoft

SQL Server
http://www.microsoft.com/technet/prodtechnol/sql/2005/spdw.mspx

 TechNet Whitepaper: SQL Server 2000 Incremental Bulk Load Case Study
http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/incbulkload.mspx

 MSDN Whitepaper: SQL Server 2005 Partitioned Tables and Indexes
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnsql90/html/sql2k5partition.asp

