
SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 1

25 March 2007, Orlando, Florida

SQL Server 2005: Tips and Tricks to
Tuning for High Performance

SPR302

Kimberly L. Tripp
SQLskills.com

Kimberly@SQLskills.com

Kimberly L. Tripp
• Consultant/Trainer/Speaker/Writer
• Founder, SYSolutions, Inc. (www.SQLskills.com)

● e-mail: Kimberly@SQLskills.com
● blog: http://www.SQLskills.com/blogs/Kimberly

• Microsoft Regional Director and SQL Server MVP
• Writer/Editor for SQL Magazine www.sqlmag.com
• Author of several SQL Server 2005 Whitepapers on

MSDN/TechNet – Table and Index Partitioning, Snapshot
Isolation and .NET SQLCLR for DBAs

• Author/Presenter for more than 25 online webcasts on
MSDN and TechNet

• Coauthor MSPress Title: SQL Server 2000 High
Availability

• Presenter/Technical Manager for
SQL Server 2000 High Availability DVD

• I still love this stuff… Feel free to ask questions!

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 2

25 March 2007, Orlando, Florida

Session Overview

• Methodologies
• Optimization and Data Access Patterns
• General Strategies for Tuning
• Designing for Performance
• Indexing for Performance
• Optimizing Procedural Code

MethodologiesMethodologies

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 3

25 March 2007, Orlando, Florida

What impacts performance?

• The “Process”
• The Application
• The Database
• The Software
• The Hardware

Where do Where do
you you

start?start?

Which give you Which give you
the most gains?the most gains?

How How
much much
effort?effort?

Is hardware the problem Is hardware the problem
or only a symptom of or only a symptom of

another problem?another problem?

Costs?Costs?

The “Process”

• Process improvements can yield some of the
biggest gains…can you streamline your
business needs?

• How can the process be improved?
● Can steps be eliminated

• Are you returning data within the transaction…
• Verifying data before modification

● Can steps be removed from the “online” and
transactional process

• Does an entire order need to be processed in one
transaction?

● Can you compartmentalize pieces of the transaction

NOTE: Consider SODA – Service Oriented Database Architectures

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 4

25 March 2007, Orlando, Florida

The “Process”

“Technology is nothing more than an enabler of a
business process. If your process isn’t efficiently
designed and you don’t have the data available when
you need it, what you’ve done is used technology to
drive up costs.”

Cathy Ellwood
Director of Corporate Strategy
Nationwide Insurance

The Application

• Ask a bad question…
• SELECT *

● Limit the columns selected
● Limit the rows returned

• Isolating the column to one side of the expression
● Use MonthlySalary > value/12 (seekable)
● NOT MonthlySalary * 12 > value (must scan)

• Too many round-trips
• Poorly designed transactions – waiting for user input
• Too much “expertise” in the application language –

minimal in SQL Server (misunderstanding where\what
the server should do v. the application)

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 5

25 March 2007, Orlando, Florida

The Database
Characterizing Performance Problems

• User’s complain (the known problem(s))
• Excessive Resource Utilization

● Resource Hogs = Queries that use excessive
resources in a single execution

• Reads\Writes, CPU and Duration are high
● The cumulative effect = Queries that use excessive

resources because they’re executed frequently
• Frequently executed found by aggregating TextData

• Blocked = Queries that do NOT use excessive
resources because they’re blocked by other
processes\users

• Reads\Writes and CPU are low
• Duration is high

Fixing queries that use resources excessively should also help Fixing queries that use resources excessively should also help
to minimize blocking. Blocking is often a symptom of another to minimize blocking. Blocking is often a symptom of another

problem, not necessarily the problem itself.problem, not necessarily the problem itself.

Known Problems

• Known queries/procedures – based on user
feedback

• Application usage degrades at specific times of
day

• Reproducible/problematical behavior –
individually analyzed – and tuned
● Indexing for Performance

• How to evaluate/tune individual problem queries
● Optimizing Procedural Code

• How to evaluate and tune procedural code
• But you need to know where there’s a problem

first!

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 6

25 March 2007, Orlando, Florida

Unknown Problems

• Expensive Queries
● Determined by excessive durations

• Locking problems?
• Excessive resource access?

● Use the same practices to tune these as known
problems

● Use Profiler to find them (filter on duration)
• Frequently executed queries

● Which would you tune?
SELECT * FROM Table1 WHERE Col3 = 12
or
SELECT * FROM Table6 WHERE Col4 = 19

What if you knew that Query 2 was run more than 1000 times per hour…

Profiler

• Get a feel for how Profiler works…play!
• Do not add too many events/data columns

● Too many can negatively impact performance
● Event type can also negatively impact performance

• The more “internal” the type, the more expensive
• TSQLBatchCompleted
• SP:Completed
• SP:StmtCompleted

– …
• Lock:Acquired (unless filtered – a lot of data/overhead)

• Don’t get overwhelmed by Events and Data
Columns – you don’t need most of them most of
the time!

Check out MSDN Webcast, Part 9
for details/demos on

Server-side Trace Queues

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 7

25 March 2007, Orlando, Florida

Finding Expensive Queries

• Start with Tuning template
• Most Important Events:

● Stored Procedures
• SP:Completed
• SP:StmtCompleted
• SP:Recompile

● TSQL -> SQL:StmtCompleted
• Most Important Data Columns

● TextData
● Duration/Reads/Writes/CPU
● StartTime/EndTime
● EventClass/EventSubClass

Hidden SlideHidden Slide
w/extra detailsw/extra details

Finding Frequently Executed
Queries Data Collection (1 of 3)

• Server Processes Trace Data (checkbox on
General tab IF saving output to file)
● Don’t want to miss any events
● Can cost more in overhead

• Lots of Data – not much is as important as
“textdata”

• Set Filters
● Minimizes data collected
● Easier to analyze results
● File doesn’t grow as large

Hidden SlideHidden Slide
w/extra detailsw/extra details

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 8

25 March 2007, Orlando, Florida

Finding Frequently Executed
Queries Filters (2 of 3)

• Exclude system IDs by excluding all object ids less than
100 (and new filter IsSystem = 0 for user)

• DatabaseName – only the database in which you are
interested

• And add a few more to remove other non-essential
data…do a few tests – what do you see that you don’t
need?

• May want to remove sp_% or at least sp_sqlagent_%
(you’ll learn what your server does that you don’t want to
see after a few iterations and tests)

Hidden SlideHidden Slide
w/extra detailsw/extra details

Finding Frequently Executed
Queries Analysis (3 of 3)

• Save Trace to a File (using Trace Queue)
● sp_trace_create
● sp_trace_setstatus

• Later pull results into a table
● fn_trace_gettable
● See KB 270599: How to Programmatically Load

Trace Files into Tables
• Aggregate textdata by a substring of characters

to find “query classes”

Hidden SlideHidden Slide
w/extra detailsw/extra details

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 9

25 March 2007, Orlando, Florida

Trace Queues (1 of 3)

1. Use Profiler to generate a Trace Script
● Setup all properties using Profiler
● File, Export, Script Trace Definition

(for SQL Server 2005 or SQL Server 2000)
● Script to a FILE

• You cannot script to a table ONLY a file
• Later you’ll load the data into a table

● You must specify a LOCAL path (on the server).
2. Modify the script:

● Specify filename and path (no extension)
● Remove the trace start:

EXEC EXEC sp_trace_setstatussp_trace_setstatus @@TraceIDTraceID, 1, 1

3. Create a job to start/stop the trace using
sp_trace_setstatus

Hidden SlideHidden Slide
w/extra detailsw/extra details

Trace Queues (2 of 3)
• START the Trace Queue

EXEC EXEC sp_trace_setstatussp_trace_setstatus @@TraceIDTraceID, 1, 1

• STOP the Trace Queue (but not delete the queue)
EXEC EXEC sp_trace_setstatussp_trace_setstatus @@TraceIDTraceID, 0, 0

• DELETE the Trace Queue and “dump” the last bit of
profiled information to the file

EXEC EXEC sp_trace_setstatussp_trace_setstatus @@TraceIDTraceID, 2, 2

Q822853 – Stop a Server-Side Trace in SQL Server 2000
Q283786 – How to Monitor SQL Server 2000 Traces

Hidden SlideHidden Slide
w/extra detailsw/extra details

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 10

25 March 2007, Orlando, Florida

Trace Queues (3 of 3)

• To see all of the trace queues currently setup
SELECT * SELECT *
FROM ::FROM ::fn_trace_getinfo(defaultfn_trace_getinfo(default))

• To programmatically determine the Trace ID of
the queue:

DECLARE @DECLARE @TraceIDTraceID intint
SELECT @SELECT @TraceIDTraceID = = TraceIDTraceID
FROM ::FROM ::fn_trace_getinfo(defaultfn_trace_getinfo(default))
WHERE property = 2WHERE property = 2

AND value = 'filename'AND value = 'filename'
SELECT @SELECT @TraceIDTraceID

Q283790 – INF: How to Create a SQL Server 2000 Trace

Hidden SlideHidden Slide
w/extra detailsw/extra details

Analyzing the Trace
• Import into a Trace Table (2000 or 2005)

●● SELECT * FROM SELECT * FROM dbo.fn_trace_gettabledbo.fn_trace_gettable
● Create template queries with sp_get_query_templatesp_get_query_template

• Consider using Read80Trace for SQL Server 2000
Traces
● KB: 887057

• Look for additional tools from PSS
• MSDN: Monitoring with SQL Profiler

http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/
adminsql/ad_mon_perf_86ib.asp

Hidden SlideHidden Slide
w/extra detailsw/extra details

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 11

25 March 2007, Orlando, Florida

Application Profiling

• Remember – Profiler Only helps you “Fish”
• Finding the problem is sometimes a bigger

problem!
ªª SQL Server Profiler

• Limit the scope – stay focused on problem!
• Consider automating Traces through SQL

Server Agent
● Script Trace using Trace Queue
● Automate job to use sp_trace_setstatussp_trace_setstatus to

programmatically start and stop trace
● Consider Alerts/RAISERRORRAISERROR and/or WAITFOR DELAYWAITFOR DELAY

to create patterns (when not a continuous trace)
• What about solving the problem?

OptimizationOptimization & &
Data Access PatternsData Access Patterns

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 12

25 March 2007, Orlando, Florida

Consider Data Access Strategies

• How would you process data?
● Table Scan
● Clustered Index Seek
● Non-clustered Index Seek to Data Lookup
● Understanding Covering

• How does SQL Server Know?
• How can you make sure that SQL Server has

the best information?

Table Scan in Heap v. Clustered

• Heap Structure
● Table without a Clustered Index
● Records are NOT ORDERED
● No Doubly-Linked List
● If NO Indexes exist – a full Table Scan required.

At least 4000 I/Os on the Employee Table Heap
• Clustered Table

● Table with a Clustered Index
● Records are ordereded by the clustering key
● Structured as a B-Tree with doubly-linked lists
● Exactly 4000 I/Os if 4000 pages in the data (leaf)

level

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 13

25 March 2007, Orlando, Florida

Table Scan in Heap v. Clustered

• Heap Structure

• Clustered Table

4000 Pages of Employees in No Specific Order

…
189, Jones, …

96, Thomas, …

8959, Smith, …

8, Johnson, …

…

675, Jameson, …

79893, Tanner, …

42, Alberts, …

12345, Kent, …

…

1, Griffith, …

4568, Connelly, …

957, Sanders, …

777, Zender, …

…

30234, Pickett, …

2345, Smith, …

8959, Dawson, …

7893, Uckley, …

…

456, Lange, …

16890, Edwars, …

56789, Young, …

264, Nelson, …

…

69872, Vickney, …

56907, Hawks, …

12, Folley, …

46999, Ish, …

…

File1, Page 497 File1, Page 498 File1, Page 499 File1, Page 5345 File1, Page 5346 File1, Page 5347

…
1, Griffith, …

2, Ulaska, …

3, Johnson, …

…

20, Morrisson, …

21, Ambers, …

22, Johany, …

23, Smith, …

…

40, Griffen, …

41, Shen, …

42, Alberts, …

43, Landon, …

…

60, Lynne, …

79981, Geller, …

79982, Smith, …

79983, Jones, …

…

80000, Kirkert, …

79961, Kiesow, …

79962, Simon, …

79963, Gellock, …

…

79980, Debry, …

79941, Baker, …

79942, Shehy, …

79943, Laws, …

…

79960, Miller, …

File1, Page 5982 File1, Page 5983 File1, Page 5984 File1, Page 11231 File1, Page 11232 File1, Page 11233

4000 Pages of Employees in Order by EmployeeID

The Added Cost of Forwarding PointersThe Added Cost of Forwarding Pointers

demodemo

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 14

25 March 2007, Orlando, Florida

Clustered Index to Seek

= 3 Logical Reads

…
1, Griffith, …

2, Ulaska, …

3, Johnson, …

…

20, Morrisson, …

21, Ambers, …

22, Johany, …

23, Smith, …

…

40, Griffen, …

41, Shen, …

42, Alberts, …

43, Landon, …

…

60, Lynne, …

79981, Geller, …

79982, Smith, …

79983, Jones, …

…

80000, Kirkert, …

79961, Kiesow, …

79962, Simon, …

79963, Gellock, …

…

79980, Debry, …

79941, Baker, …

79942, Shehy, …

79943, Laws, …

…

79960, Miller, …

File1, Page 5982 File1, Page 5983 File1, Page 5984 File1, Page 11231 File1, Page 11232 File1, Page 11233

…
1, 1, 5982

21, 1, 5983

41, 1, 5984

…

~16000

~64001

…

79960, 1, 11231

79980, 1, 11232

80000, 1, 11233

File1, Page 12982 File1, Page 12986

1, 1, 12982

16001, 1, 12983

32001, 1, 12984

48001, 1, 12985

64001, 1, 12986

File1, Page 12987

22, Johany, …

1, 1, 12982

21, 1, 5983

SELECT *
FROM Employee
WHERE EmployeeID = 22

Clustered Index to Seek

= 3 Logical Reads

…
1, Griffith, …

2, Ulaska, …

3, Johnson, …

…

20, Morrisson, …

21, Ambers, …

22, Johany, …

23, Smith, …

…

40, Griffen, …

41, Shen, …

42, Alberts, …

43, Landon, …

…

60, Lynne, …

79981, Geller, …

79982, Smith, …

79983, Jones, …

…

80000, Kirkert, …

79961, Kiesow, …

79962, Simon, …

79963, Gellock, …

…

79980, Debry, …

79941, Baker, …

79942, Shehy, …

79943, Laws, …

…

79960, Miller, …

File1, Page 5982 File1, Page 5983 File1, Page 5984 File1, Page 11231 File1, Page 11232 File1, Page 11233

…
1, 1, 5982

21, 1, 5983

41, 1, 5984

…

~16000

~64001

…

79960, 1, 11231

79980, 1, 11232

80000, 1, 11233

File1, Page 12982 File1, Page 12986

1, 1, 12982

16001, 1, 12983

32001, 1, 12984

48001, 1, 12985

64001, 1, 12986

File1, Page 12987

22, Johany, …

1, 1, 12982

21, 1, 5983

SELECT *
FROM Employee
WHERE EmployeeID = 22

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 15

25 March 2007, Orlando, Florida

Non-clustered Index to Data Lookup

Root, then Leaf in NC Index
on SSN to yield EmployeeID

= 2 Logical Reads
Root, intermediate, leaf in CL
to yield *

= 3 Logical Reads
Total of 5 Logical Reads

NC
B-Tree

Leaf – NC SSN

CL
B-Tree

Leaf = Data

Bookmark
Lookup

SELECT *
FROM Employee
WHERE SSN = '123-45-6789'

Query Specific Index Usage

Assumption – 12 Rows

Root, then Leaf in NC Index on
SSN to yield 12 EmployeeIDs

= 2 or 3 Logical Reads
Root, intermediate, leaf for each
row to access data in CL yields

= 3*12 Logical Reads
Total of 38/39 Logical Reads

NC
B-Tree

Leaf – NC SSN

CL
B-Tree

Leaf = Data

Bookmark
Lookup for
each row

SELECT *
FROM Employee
WHERE SSN BETWEEN ' 123-45-6789' AND ' 123-45-6800'

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 16

25 March 2007, Orlando, Florida

Query Specific Index Usage
At what Range would Bookmark
Lookup be useless?

n Rows

Table Scan = 4000 Pages
When n Rows >= 4000
Table Scan seems better!
Probably well before
4000 sequential reads are
better than ?? random reads.

NC
B-Tree

Leaf – NC SSN

CL
B-Tree

Leaf = Data

SELECT *
FROM Employee
WHERE SSN x AND y

At what percentage is a bookmark lookup
TOO expensive?

What is selective enough?
a) 60 percent
b) 30 percent
c) 20 percent
d) 10 percent
e) 5 percent
f) 1 percent
g) None of the above are selective enough?

The real answer is that it depends on the table and itThe real answer is that it depends on the table and it’’s all relative to row size. The s all relative to row size. The
““selectivityselectivity”” threshold varies table to table BUT threshold varies table to table BUT –– the closest correct answer is the closest correct answer is ..

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 17

25 March 2007, Orlando, Florida

Bookmark Lookups are too expensive at Bookmark Lookups are too expensive at
what percentagewhat percentage

demodemo

Understanding Covering
Key Points

• Only nonclustered indexes are considered “covering”
indexes. A clustered index covers everything – but is
unnecessarily wide (wrt covering)

• The leaf level of a nonclustered index contains one entry
for *every* row of the table ALL the time. Every insert
and every delete impacts every nonclustered index on
that table

• An index covers a query when the index includes all
columns referenced by the query – somewhere in the
index; column order is irrelevant (with regard to the
definition of covering)

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 18

25 March 2007, Orlando, Florida

Understanding Covering
Internal Structures

• Leaf level contains one “entry” for every row of the table
– in indexed order
● Without new INCLUDE feature

• Leaf level “entry” is the index key + bookmark lookup value (RID if
head, Clustering Key if table is clustered)

● With new INCLUDE
• Leaf level “entry” is the index key + bookmark lookup value (RID if

head, Clustering Key if table is clustered) + non-key columns
included solely to help create more covering

• The nonclustered index effectively becomes the SAME
as a clustered index but with fewer columns than the
table

• Nonclustered indexes are a mini version of the table

000-00-0001, 497

000-00-0002, 349

000-00-0003, 5643

…

000-00-0539, 12

…

…

…

…

…

…

…

…

…

…

…

…

…

…

999-99-9999, 42

…

…

…

…

…

…

…

…

…

…

File1, Page 16897 File1, Page 16898 File1, Page 16899 File1, Page 11810 File1, Page 18111 File1, Page 18112

539
entries

File1, Page 19197

539
entries

539
entries

539
entries

228
entries

149
entries

Root = 1 Page

Leaf
Level
149

Pages

Total Overhead in terms of
Disk Space

= 150 Pages
or < 4%

Nonclustered Index
Unique Key SSN

• Leaf level contains the nonclustered key(s) –
index indexed order

• Includes either the Heap’s Fixed RID or the
Table’s Clustering Key

…

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 19

25 March 2007, Orlando, Florida

000-00-0001, 497

000-00-0002, 349

000-00-0003, 5643

…

000-00-0539, 12

…

…

…

…

…

…

…

…

…

…

…

…

…

…

999-99-9999, 42

…

…

…

…

…

…

…

…

…

…

File1, Page 16897 File1, Page 16898 File1, Page 16899 File1, Page 11810 File1, Page 18111 File1, Page 18112

539
entries

File1, Page 19197

539
entries

539
entries

539
entries

228
entries

149
entries

Root = 1 Page

Leaf
Level
149

Pages

What if you didn’t know?
Unique Key SSN

• Could this structure be anything else?
• What if you created a table with JUST EmpID

and SSN and then clustered it on SSN

…

…
000-00-0001, 497

000-00-0002, 349

000-00-0003, 5643

…

000-00-0539, 12

…

…

…

…

…

…

…

…

…

…

…

…

…

…

999-99-9999, 42

…

…

…

…

…

…

…

…

…

…

File1, Page 16897 File1, Page 16898 File1, Page 16899 File1, Page 11810 File1, Page 18111 File1, Page 18112

539
entries

File1, Page 19197

539
entries

539
entries

539
entries

228
entries

149
entries

Leaf
Level
149

Pages

Nonclustered Index
Fairly Obvious Index Access

SELECT EmpID, SSN SELECT EmpID, SSN
FROM Employee FROM Employee
WHERE SSN BETWEEN WHERE SSN BETWEEN ‘‘623623--4545--67896789’’

AND AND ‘‘623623--4545--68006800’’

623-45-6789, 7983
623-45-6790, 342
623-45-6791, 81
623-45-6796, 9832
623-45-6797, 5890

623-45-6437, 348
623-45-6799, 643
623-45-6800, 4231

623-45-6437, 348
623-45-6798, 287

623-45-6798, 287

Start at the Root Page 11

Find the page where
the starting point exists

22

Start an index partial
scan until end of set

33

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 20

25 March 2007, Orlando, Florida

Similar Query – How to Process?
Less Obvious Index Access

SELECT EmpID, SSN SELECT EmpID, SSN
FROM Employee FROM Employee
WHERE EmpID < 10000WHERE EmpID < 10000

• Clustered Index on EmpID
● Seekable with Partial scan
● If the table has 80,000 rows at 20 rows per page then

the table has 4,000 pages. If 10,000 is 1/8 of 80,000
then this SEEKABLE query will cost 1/8 of the 4,000
pages.

• Nonclustered Index on SSN, EmpID
● Not seekable, must scan
● If the leaf level has 80,000 rows at 539 rows per page

then the leaf level of the nonclustered index has 149
pages. If this index is not seekable, then we must scan
all 149 pages.

= 500 I/Os= 500 I/Os

= 149 I/Os= 149 I/Os

Other Less Obvious Index Access
Patterns
• Scanning nonclustered indexes to cover the

query
• Nonclustered Index Intersection to join multiple

indexes to cover the query
• Hash aggregates to scan and build aggregates

out of order – still better to scan a covering index
rather than a clustered

• Certainly, the BEST case is when you cover
ONLY the necessary data AND it’s seekable

But you can’t cover everything…

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 21

25 March 2007, Orlando, Florida

INCLUDE to add non-Key Columns in the
Leaf Level of nonclustered Index

• Key is limited to 900 bytes or 16 columns
(whichever comes first)
● Allows the tree to be more scalable
● Used to apply to the entire tree

• Leaf-level can include non-key columns – with
NO limitations (can include LOB types – use
sparingly!)
● Allows the leaf level to cover more queries
● Can cover ANYTHING

• In SQL Server 2005 you CAN cover anything
and everything… but just because you can,
should you?

Indexed Views

• A data set, defined by the SELECT statement of
the view, that has been duplicated in the leaf
level of a clustered index (materialized view)

• Not every view can be indexed
• Not every view should be indexed
• Allows a “wider” leaf level because only the key

is limited to 900 bytes or 16 columns (whichever
comes first)
● If the Indexed View is against only a single table –

and does not include functions, computations, or
aggregations, then it’s exactly the same as INCLUDE

● But an indexed view can include all of those and
more…

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 22

25 March 2007, Orlando, Florida

Many ways to Cover Queries

• Clustered Index – always covers (only one way to seek
or partially scan, full scan is the most expensive here as
it’s the entire row/set)

• Nonclustered indexes – covers the query with narrower
rows = “just the data you need”

• Nonclustered indexes with INCLUDE – can allow you to
cover ANY query and can even include LOB types in the
leaf level of the index

• Indexed Views – can cover wide queries (as does
include) but these can include joins, aggregates,
computations, deterministic functions, etc.

• Do you need to cover EVERY query?

NO!NO!

General Strategies for TuningGeneral Strategies for Tuning

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 23

25 March 2007, Orlando, Florida

How do you fix the problem?

• Things to Try Before Adding More Indexes
• DTA for Workload Tuning
• Manually

● Rewrite Transactional Code/Queries
● Designing for Performance
● Indexing for Performance
● Optimizing Procedural Code

Things to Try BEFORE Adding More
Indexes (1 of 3)

1. Are your statistics up to date?
(use stats_date function)

● If not, then UPDATE STATISTICS tablename
and try again

● Did that help?
• Yes – then make sure that statistics are being updated

regularly
– Index rebuilds update statistics (ALTER INDEX REBUILD)
– Statistics can be updated manually (UPDATE STATISTICS)

• No – did the statistics update based on a full scan or a
sampling (use DBCC SHOW_STATISTICS to see)
– If a sampling was used, try updating with a full scan (UPDATE

STATISTICS tablename WITH FULLSCAN) and try again…
did that help?

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 24

25 March 2007, Orlando, Florida

Things to Try BEFORE Adding More
Indexes (2 of 3)

• Is this in a stored procedure?
● sp_recompile procedure to see if it changes based on

the prior index adjustments
● EXECUTE procedure param, param, param, …

WITH RECOMPILE
• If the problem goes away, might need statement (SQL Server

2005 ONLY) or procedure recompilation (see MSDN
Webcast Part 7)

● Might be recompiling too much
• Helpful KBs in this area: Q243586, Q308737

• Consider rewriting the code/query
● Temp table v. views v. derived table v. table

variable
● If written as a join, try rewriting as a subquery
● If written as a subquery, try rewriting as a join
● If includes an OR SARG, consider rewriting

with UNION or UNION ALL (more on this
coming up!)

● Using Cursors? Can you use SET algorithms
instead

Things to Try BEFORE Adding More
Indexes (3 of 3)

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 25

25 March 2007, Orlando, Florida

Finding the Right Balance
Workload Tuning with Database Tuning
Advisor
• Create a TRACE of your

Production Server (on the
server or from your pc)
Realistic Sample WorkloadRealistic Sample Workload

• Backup/Restore Production
Data to Development
Environment
Real Data/Real Statistics for DTAReal Data/Real Statistics for DTA

• Point Profiler at Development
Server in order to perform
Database Tuning Advisor
Does not Impact Production ServerDoes not Impact Production Server

ProductionProduction DevelopmentDevelopment

Your WorkstationYour Workstation

Database Tuning Advisor
Simple Workload

• Create a workload using Tuning template
● Defines the Events to monitor
● Defines the Data Columns to monitor

• Capture a realistic workload to a FILE
• Set a max file size < 1GB and do NOT enable

“rollover” as it creates a NEW file once the first
file fills and could fill your harddrive

• Set filters
● DatabaseName LIKE YourDBName
● Exclude system objects

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 26

25 March 2007, Orlando, Florida

Executing Database Tuning Advisor
Simple Route (1 of 2)

• Launch DTA from…
● Profiler: Tools, Database Tuning Advisor
● SSMS: Tools, Database Tuning Advisor
● Launch Database Tuning Advisor Application

• Select the DB to tune (DTA can tune multiple
databases and tune a workload that spans
databases)

• For the simple route, keep all of the default
values
● Default values are a great start and will likely find

some issues/problems…

Executing Database Tuning Advisor
Simple Route (2 of 2)

• Select to tune “all tables”
• Let DTA generate recommended indexes and

then use Actions, Save (or Apply)
Recommendations to create a.sql script that you
can review and modify, if necessary)
● Might want to choose different index names
● Might want to set FILLFACTOR values

• Execute the script immediately (in SSMS) or
schedule the script to run at off hours (as a SQL
Agent Job)

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 27

25 March 2007, Orlando, Florida

Are you done?

• DTA won’t solve all problems
• DTA only helps you to design and implement

more effective structures and indexes – it
doesn’t create maintenance scripts/plans

• Once indexes are in place, data and distribution
statistics can change – making indexes
fragmented and/or their statistics out of date

• Need to have solid maintenance practices in
place to ensure optimal performance over time

Designing for PerformanceDesigning for Performance
Not the primary focus for today Not the primary focus for today –– but lots of additional resources to review!but lots of additional resources to review!

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 28

25 March 2007, Orlando, Florida

The Most Common Problem

The system was not designed for what actually The system was not designed for what actually
happens happens –– either in terms of availability or either in terms of availability or
scalabilityscalability……

• Causes of problem are not properly understood
• Users end up doing things you didn’t expect

For Scalability, Reliability, Availability,…
Three Primary Focus Areas

1)1) Know your dataKnow your data
● Designing for Performance (MSDN Webcast Series)

2)2) Know your usersKnow your users
● Indexing for Performance (sessions 4/5 + this session!)
● Optimizing Procedural Code (session 7 + this session!)
● Changing Isolation where appropriate (session 6)

3)3) Users lie!Users lie!
● Profiling the user requests (session 9 + this session!)
● Profiling the server responses

The rest of the day has only one primary theme
Solving the Solving the Problem(sProblem(s)!)!

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 29

25 March 2007, Orlando, Florida

Designing for Performance
Know your Data

• Database Creation
● Placement of Data/Log (session 1)
● Minimizing internal and external file fragmentation

(session 1)
● Setting/Changing Recovery Models (session 2)

• Table Creation
● Choosing the Data Type for the job (session 3)
● Row Size – Vertical Partitioning (session 4)
● Number of rows – Horizontal Partitioning (session 8)

Indexing for Performance
Know your Users

• Transaction Processing
● LESS indexes (session 4) but requires MORE maintenance (session 5)

● Stored procedures probably play a large role (session 7) Recovery
and Availability are Critical (sessions 1-2)

• Read-only/Decision Support
● MORE indexes (session 4) but requires LESS maintenance (session 5)

● Ad Hoc queries probably play a larger role (session 9) in Read-
only/Decision Support

● Must find the right balance of indexes (session 4)

● Must design to keep objects available due to maintenance (session
5)

● Should consider looking into Snapshot Isolation (session 6)

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 30

25 March 2007, Orlando, Florida

Optimizing Procedural Code
Know your Users

• Recompiling enough?
● Plans are saved – that’s not always a good thing (session

7)

● Stored procedures with complex/condition logic may
not have an optimal plan saved (session 7)

• Recompiling too much?
● Inconsistencies in environment (session settings)

http://msdn.microsoft.com/library/en-
us/dnsql2k/html/sql_queryrecompilation.asp?frame=true

● Not using *new* statement-level recompilation options
(session 7)

Data Access Patterns and Analysis
Know your Users

• Decision Support Choices
● Complex Business Intelligence
Ö Create a separate data warehouse, build with
SSIS, use Analysis Services to Analyze/Mine

● Read-only version of exact OLTP environment
Ö Backup/Restore
Ö Database Snapshots

• Mixed Workload Choices
● Vertical Partitioning (session 3)
● Trading Consistency for Concurrency (session 6)
● Snapshot Isolation (readers won’t block writers,

writers won’t block readers) (session 6)

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 31

25 March 2007, Orlando, Florida

Profiling
Users lie!

• Targeting the Known problems
• Targeting resource problems

● Tip: Profile for high reads, writes, duration
• Targeting blocking problems

● Tip: Profile for LOW reads/writes with HIGH duration
• Correlate this with server resources and/or

middle-tier/web resources

MSDN Webcast Series
www.microsoft.com/events/series/msdnsqlserver2005.mspx

• Session 1: Interaction Between Data and Log
• Session 2: Recovery Models
• Session 3: Table Optimization Strategies
• Session 4: Optimization Through Indexes
• Today! Advanced Indexing Strategies
• Session 5: Optimization Through Maintenance
• Session 6: Isolation, Locking, and Blocking
• Session 7: Optimizing Procedural Code
• Session 8: Table and Index Partitioning
• Session 9: Profiling/Server-side Trace Queues
• Session 10: Common Roadblocks, A Series Wrapup

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 32

25 March 2007, Orlando, Florida

Indexing for PerformanceIndexing for Performance

Solving Performance Problems with
Advanced Indexing Strategies

• Appropriate Indexing Strategies
● Indexing for AND
● Indexing for OR
● Indexing for Joins
● Indexing for Aggregations
● Indexed Views

• Other Indicators for Index Changes
• Design Considerations

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 33

25 March 2007, Orlando, Florida

Prerequisite Key Points
Be sure to go back to the series for the details

• Most tables perform better with a clustered index,
especially one that meets these criteria:
● Unique, Narrow, Static = most important
● Ever-increasing (ideal when monotonically increasing)
● Examples of good clustering keys:

• Identity
• Date, Identity
• GUID (only when using newsequentialid() function)

• Heaps are great for staging data (when there are
NO indexes, not just the lack of a clustered index)
● Excellent for high performance data loading (parallel

bulk load and parallel index creation after load)
● Excellent as a partition to a partitioned view or a

partitioned table

Indexing for AND

• AND Progressively Limits the SET
• All Conditions MUST be true
• Indexing Strategies

● Evaluate columns in WHERE clause
● Index any single highly selective set
● Index a combination of columns to yield a highly selective set

• Order should be based on the most commonly combined criteria (if all
SARGs use equality)

• Order should be based on the most selective criteria (if SARGs use
varying operators such as >, < or LIKE)

● If no combination of criteria create a selective set AND it’s a high
priority query, consider covering the query

• SQL Server may use index intersection to intersect two relatively small
sets (HASH Join), this is likely to be achieved without trying

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 34

25 March 2007, Orlando, Florida

Indexing for ANDIndexing for AND

demodemo

Indexing for OR

• What is OR doing?
● Gather individual sets
● Bring together and ensure that any row that

appears in multiple places is only displayed once
● Sound familiar?

• IN is just a simplified series of OR conditions
● If an index exists to help search on each condition

and EVERY specific value is HIGHLY selective,
then it will use an index every condition

● If any condition is not selective enough to use the
index then a scan will be performed

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 35

25 March 2007, Orlando, Florida

Indexing for OR
OR is similar to UNION

• OR removes duplicate rows based on row’s
unique identifier (RID or Clustering Key)

• UNION removes duplicate rows based on the
SELECT list

• This is NOT good enough… you must add the
row’s key to the SELECT list if you choose to use
UNION. If you’re joining multiple tables, you
should consider adding EACH table’s key to the
query

• OR always removes duplicates
● What if you know there are no duplicates
● What if you don’t care if duplicates are returned

• Consider UNION ALL
Be sure to test this thoroughly as your queries are semanticallyBe sure to test this thoroughly as your queries are semantically

different when you change from OR to UNION.different when you change from OR to UNION.

Indexing for ORIndexing for OR

demodemo

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 36

25 March 2007, Orlando, Florida

Indexing for Joins

• Tables are joined two tables at a time
• Dissect your query into the individual table

requests – key components are the SARGs
and the join conditions

• Each table has a join condition
• Optionally, each table has a SARG
• Usually the join is between the Primary and

Foreign key
• Always try to give SQL Server as many

options from which to choose…

Best Options for Joins – Phase I

• One join strategy might use Table1’s SARG1 index
to Table2’s join key index (loop join)

• Another could use Table2’s SARG1 index
to Table1’s join key index (loop join)

• Another could use only the join key indexes (merge)
• What’s best – depends on the data!
• If ALL 4 Indexes exist then the optimizer has the best

choices

Table1 Table2

SARG1
Join Col PK

SARG2
Join Col FK

Do you already have
individual indexes on
each and all of these
columns?

Foreign Key???

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 37

25 March 2007, Orlando, Florida

Cover the Combination – Phase II

• Not using these indexes?
• Performance still stinks?
• Cover the Combo

● Problem Table (SARG, Join) – Priority for the
SARG

● Problem Table (Join, SARG) – Priority for the Join
• Only works when the cardinality of the join is low

Still not working?Table1 Table2

SARG1
Join Col PK

SARG2
Join Col FK

Cover the Tables’ Queries – Phase III

• Covering the query/queries
• Cover the Combo first, THEN add the additionally requested

columns – with INCLUDE
● Problem Table (SARG, Join) – Priority for the SARG
● Problem Table (Join, SARG) – Priority for the Join

Table1 Table2

SARG1
Join Col PK

SARG2
Join Col FK

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 38

25 March 2007, Orlando, Florida

Indexing for JoinsIndexing for Joins

demodemo

Indexing for Aggregations
• Two types of Aggregates:

Stream and Hash
• Try to Achieve Stream to Minimize Overhead in

temp table creation
● To achieve stream create an index whose key is the

GROUP BY clause and whose INCLUDE list is the rest
of the columns

● Using INCLUDE for the aggregates reduces the cost of
keeping this index up to date when modified

• Computation of the Aggregate Still Required
• Lots of Users, Contention and/or Minimal Cache

can Aggravate the problem

ªª Indexed ViewsIndexed Views

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 39

25 March 2007, Orlando, Florida

Indexing for AggregatesIndexing for Aggregates

demodemo

Aggregate Query

• Member has 10,000 Rows
• Charge has 1,600,000 Rows

SELECT SELECT c.member_noc.member_no AS MemberNo, AS MemberNo,
sum(c.charge_amtsum(c.charge_amt) AS TotalSales) AS TotalSales

FROM FROM dbo.chargedbo.charge AS cAS c
GROUP BY GROUP BY c.member_noc.member_no

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 40

25 March 2007, Orlando, Florida

Aggregate Query (cont’d)
Table scan + hash aggregate

• Table Scan of Charge Table
● Largest structure to evaluate
● Worst case scenario

• Worktable created to store intermediate aggregated results – OUT OF
ORDER (HASH)

• Data Returned OUT OF ORDER – unless ORDER BY added
• Additional ORDER BY causes another step

for SORT – sorting can be expensive!

SELECT SELECT c.member_noc.member_no AS MemberNo, AS MemberNo,
sum(c.charge_amtsum(c.charge_amt) AS TotalSales) AS TotalSales

FROM FROM dbo.chargedbo.charge AS cAS c
GROUP BY GROUP BY c.member_noc.member_no

Worst Case
Clustered Index Scan

(table scan)
1,600,000 rows

Hash Aggregate
yields 9,114 rows out
of order

Sort
only has to sort 9,114
rows instead of
1,600,000 rows

Return Data
Table 'charge'. Table 'charge'.

Logical reads 9335Logical reads 9335

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 41

25 March 2007, Orlando, Florida

Aggregate Query
Index scan + hash aggregate

• Out of Order Covering Index on Charge Table
● Index Exists which is narrower than base table
● Used instead of table – to cover the query

• Worktable still created to store intermediate aggregated results –
OUT OF ORDER (HASH)

• Data Returned OUT OF ORDER – unless ORDER BY added
• Additional ORDER BY causes another step for SORT – sorting can

be expensive!

SELECT SELECT c.member_noc.member_no AS MemberNo, AS MemberNo,
sum(c.charge_amtsum(c.charge_amt) AS TotalSales) AS TotalSales

FROM FROM dbo.chargedbo.charge AS cAS c
GROUP BY GROUP BY c.member_noc.member_no

Not as Bad

COVERING
Index Scan
1,600,000
narrower rows

Hash Aggregate
yields 9,114 rows
- out of order

Sort
only has to sort
9,114 rows
instead of
1,600,000 rows

Return Data

Table 'charge'. Table 'charge'.
Logical reads 3770Logical reads 3770

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 42

25 March 2007, Orlando, Florida

Aggregate Query
Index scan + stream aggregate

• Covering Index on Charge Table – In ORDER of GROUP BY Clause
● Index Exists which is narrower than base table
● Used instead of table – to cover the query
● Covers the GROUP BY so data is grouped

• Less work to aggregate results IN ORDER
• Data Returned IN ORDER – unless ORDER BY/ joins added
• Adding an ORDER BY identical to the GROUP BY does NOT cause any

additional step for sorting!

SELECT SELECT c.member_noc.member_no AS MemberNo, AS MemberNo,
sum(c.charge_amtsum(c.charge_amt) AS TotalSales) AS TotalSales

FROM FROM dbo.chargedbo.charge AS cAS c
GROUP BY GROUP BY c.member_noc.member_no

Much Better!

COVERING
Index Scan
1,600,000
narrower rows

Stream Aggregate
also yields
9,114 rows
IN ORDER

NO SORT
REQUIRED

Return Data Table 'charge'. Table 'charge'.
Logical reads 3770Logical reads 3770

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 43

25 March 2007, Orlando, Florida

See the
Difference?

Indexed View with Joins

• Query defined accesses multiple tables
Interesting observation: Result set often contains a significant
amount of duplicated data.

• Questions to ask
● What is the amount of data duplication?
● What is the rate at which that data is modified?
● Is it really better than having the right indexes to support the join?

• When do you want to use Indexed Views with Joins?
● When the overly duplicated data is relatively static (and the data set is

relatively small)
● When the volatile data is not overly duplicated
● When read performance outweighs the disk space requirements
● You’ve made sure that indexes don’t help
● The data set is relatively small (could end up wasting A LOT of cache

with duplicated information)

Hidden SlideHidden Slide
w/extra detailsw/extra details

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 44

25 March 2007, Orlando, Florida

Indexed View w/Computations

• Query defined uses functions and/or mathematical expressions for
one or more of the columns
Interesting observation: Data set often stays the same – in terms
of number of rows.

• Questions to ask
● How often are a large number of rows necessary?
● How complex is the computation?
● What is the rate at which the columns involved in the computation

change?
● Are you searching on the computed column?
● Are the computed values highly selective?
● Is an index on a computed column better?

• When do you want to use Indexed Views with Computations?
● When users need ranges based on the computed value
● When read perf outweighs the disk space requirements

Hidden SlideHidden Slide
w/extra detailsw/extra details

Indexed Views with Aggregations

• Query defined uses aggregates for one or more of the columns
Interesting observation: Data set often gets smaller

• Questions to ask
● How many people are requesting the aggregation?
● How complex is the aggregation?
● What is the rate at which the columns involved in the computation

change?
● Are you searching on the aggregated value?
● Is it highly selective?
● How small does the set become? Hot row?

• When do you want to use Indexed Views w/Aggregations?
● When users need ranges of data based on the aggregation
● When read performance outweighs the disk space requirements
● When the aggregation does not create significant

contention!

Hidden SlideHidden Slide
w/extra detailsw/extra details

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 45

25 March 2007, Orlando, Florida

Table 'charge'. Table 'charge'.
Scan count 1, Scan count 1,

logical reads 34logical reads 34

Table Table
''SumOfAllChargesSumOfAllCharges'. '.

Logical reads 35Logical reads 35

Aggregate
Query

Indexed view

Query with NO Query with NO
useful indexesuseful indexes

Query with covering Query with covering
Index in wrong orderIndex in wrong order

Query with covering Query with covering
index in correct orderindex in correct order

Query w/Indexed View Query w/Indexed View
and no computations!and no computations!

See the
Difference?

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 46

25 March 2007, Orlando, Florida

Seems Complex?

• Stay focused on purpose
• Keep Indexes on views to a minimum

unless READ ONLY database
• Consider impact to INSERT, UPDATE, DELETE

performance
• Add Indexed Views to maintenance scripts

test, test, test!

Indexed View with Aggregates

• TempDB access not necessary
• NO worktables are necessary
• Aggregated set should be small but not too small

as to create a hot ROW spot of activity (which
can create excessive blocking)
● GROUP BY member_no – probably OK
● GROUP BY state – too few rows in aggregate
● GROUP BY country – AVOID like the plague!

• Performance of data modification statements
should be tested

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 47

25 March 2007, Orlando, Florida

Can you cover EVERYTHING?
• Yes, you CAN cover virtually anything (for a table)

● Any query’s requested data can be covered against that
table

● Nonclustered indexes can include LOB types (SQL
Server 2005 only)

• Just because you can, should you?
● Use INCLUDE (and covering indexes) ONLY for queries

that excessively use resources and are high priority
● Use Indexed Views sparingly in OLTP and be sure to

test for the hot row problem caused by aggregates
• Are there any other concerns?

IndexingIndexing--related Concerns & related Concerns &
ConsiderationsConsiderations

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 48

25 March 2007, Orlando, Florida

Other Indicators for Index Changes
• Showplan Indicators of poor performance – where

indexes may help
● “Scan” – not always a bad thing but typically more

expensive than a seek
• Scan is OK if result set is large
• Scan is problematic if result set is small (especially when less

than 1%)
• Scan on an index isn’t as bad but if it’s a high priority query and

there are any limiting conditions, consider an index that’s
seekable

● “Spool” operators – indicates a temporary/worktable
● “Hash” – indicates a temporary/worktable was created

and that the best option may not have been available
These are not always bad but start by asking the DTAThese are not always bad but start by asking the DTA

Design Considerations
Index-related features may warrant design changes

• LOB columns in the leaf level of an index do NOT
allow that index to be built/rebuilt online (reason:
LOB compaction is automatic now)
● Design strategy to circumvent => Vertical Partitioning

• A partition of a partitioned table cannot be rebuilt
online (reason: row versioning – which is what an
online index operation uses behind the scenes –
is at the table level, so while the ENTIRE
partitioned table’s indexes CAN be rebuilt online a
partition can only be rebuilt offline….)
● Design strategy to circumvent => Combine horizontal

partitioning strategies

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 49

25 March 2007, Orlando, Florida

Benefits of Vertical Partitioning
Customer Table with 1,600,000 Rows

14 Columns
1000 Bytes/Row
8 Rows/Page

200,000 Pages
1.6GB Table

CustomerPersonalCustomerPersonal

18 Columns*
1600 Bytes/Row
5 Rows/Page

320,000 Pages
2.5GB Table

CustomerProfessionalCustomerProfessional

17 Columns*
2000 Bytes/Row
4 Rows/Page

400,000 Pages
3.2 GB Table

CustomerMiscCustomerMisc

47 Columns
4600 Bytes/Row
Only 1 Row/Page

3400+ Bytes Wasted
1.6 Million Pages
12.8 GB Table

CustomerCustomer

*The Primary key column must be made
redundant for these two additional tables. 47
Columns in Customer. 49 Columns total
between 3 tables.

Customer
= 12.8 GB

Partitioned Tables
= 7.3 GB

9 Savings in Overall Disk
Space (5.5 GB Saved)
9 Not reading data into
cache when not necessary
9 Locks are table specific
therefore less contention
at the row level
9 LOB data can be
isolated to support
online index operations
for more critical data

Partitioning Scenario
• If RW portion is only current month then that’s the only

place where fragmentation will occur
• If current month is June then only rebuild June (partition =

6):

Msg 155, Level 15, State 1, Line 3
'ONLINE' is not a recognized ALTER INDEX REBUILD PARTITION

option.

ALTER INDEX ChargesPTPK ON ChargesPT ALTER INDEX ChargesPTPK ON ChargesPT
REBUILD PARTITION = 6REBUILD PARTITION = 6
WITH (ONLINE = ON)WITH (ONLINE = ON)

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 50

25 March 2007, Orlando, Florida

Partitioning for Performance & Online
Index Rebuilds
• Separate your read-only into a partitioned table
• Keep read-write as standalone table or additional

partitioned table
• For simplified user access, consider using a

partitioned view over the RO partitioned table and
RW standalone table to simplify user access

• OR use application directed inserts, updates,
deletes and selects (better for availability)

• Other benefits too:
● Partitioned Tables are easier for the optimizer to

optimize
● Using separate tables allows you to index the RO data

one way (more indexes with no maintenance) and the
RW another way (fewer indexes with maintenance)

Finding the Right Balance
Index Strategies – Summary

• Create your clustered index first, choose wisely (session 4)
• Create your constraints

● Primary Key – automatically gets a unique CL index
● Unique Key – automatically gets a unique NC index

• Create (manually) NC Indexes on the columns that have
foreign key constraints

• Capture a Workload(s), use Database Tuning Advisor,
work through the suggestions (iteratively) to determine
additional indexes needed

• Add additional indexes to help improve SARGs, Joins,
Aggregations and use DTA as an advisor in “sandbox”
tuning

• Are you done? NO!NO!
Watch MSDN Webcast session 5 for details on Watch MSDN Webcast session 5 for details on

fragmentation and index maintenance best practicesfragmentation and index maintenance best practices

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 51

25 March 2007, Orlando, Florida

Plans, Plan Caching Plans, Plan Caching andand
Optimizing Procedural CodeOptimizing Procedural Code

FYI – I suspect that we’ll only be able to do Demo Madness
here… not sure if we’ll have time for all of the slides but I wanted
to add them in for completeness!
Check out MSDN Webcast, Part 7 for more details on this topic!

Statement Execution

Lookup in
Plan Cache

Generate Executable Plan

Fix Memory Grant & DoP

Execute

Found Executable
Plan

Found Compiled
Plan

Not Found

Auto-Param

Bind, Expand Views

Parse

Query Optimization

Return Plans to Cache

New Statement

Query Optimization
(Plan Generation, View

Matching, Statistics,
Costing)

Query Execution (Query
Operators, Memory
Grants, Parallelism,

Showplan)

Language Processing

(Parse/Bind, Statement/Batch Execution, Plan Cache
Management)

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 52

25 March 2007, Orlando, Florida

Statement Auto-parameterization

• Evaluates your query to determine if it's “safe”
● Needs to be a fairly straightforward plan
● Parameters do not change plan choice

• Equality for a lookup of PK value is probably safe
• Searching with an IN is not safe

• Automatically parameterizes search arguments
• Places statement in cache for subsequent

executions

How do you know?

• SQL Server 2000/2005
● Access master.dbo.syscacheobjects

• SQL Server 2005 – DMVs
● sys.dm_exec_cached_plans

• For list of sql statements in cache
● sys.dm_exec_sql_text(sql_handle)

• For the text of the sql statement executed
● sys.dm_exec_query_plan(plan_handle)

• For the execution plan of the sql statement executed
● sys.dm_exec_query_stats

• For a variety of query statistics – like number of executions,
plan creation time (first execution into cache), last execution
time, etc.

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 53

25 March 2007, Orlando, Florida

But is this really the best way?
• Plan caching is not all that optimal for reuse when:

● Different parameters cause different plans
● Ad-hoc needs to be textual match

• For better/controlled plan re-use consider writing
Optimized Procedural Code:
● Forced statement caching through sp_executesqlsp_executesql
● Stored procedures

Processing Stored Procedures

Compiled plan placed in
unified cache

Compilation

ExecutionExecution
(first time(first time

or recompile)or recompile)

Resolution*

Optimization

Parsing

Resolution
CreationCreation

A procedure's plan is NOT
saved to disk; only

metadata is saved at
procedure creation.

Use sys.procedures, sp_
procs, functions and views

to see metadata.

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 54

25 March 2007, Orlando, Florida

Resolution

• When a stored procedure is created all objects
referenced are resolved (checked to see
whether or not they exist).

• The create succeeds if the objects dne
● Procedures called that do not exist generate error
● Cannot add rows to sysdepends… The sp will still

be created.
● Benefit: Recursion is allowed!
● Tables, Views, Functions called that do not exist - do

NOT generate error (unless in 6.5 compatibility mode)
• Verify dependencies with sp_depends before

dropping an object

Compilation/Optimization

• Based on parameters supplied
• Future executions will reuse the plan
• Complete optimization of all code passed (more

on this coming up…modular code!)
• Poor coding practices can cause excessive

locking/blocking
• Excessive recompilations can cause poor

performance

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 55

25 March 2007, Orlando, Florida

Execution/Recompilation

• Upon Execution if a plan is not already in cache
then a new plan is compiled and placed into
cache

• What can cause a plan to become invalidated
and/or fall out of cache:
● Server restart
● Plan is aged out due to low use
● DBCC FREEPROCCACHE (sometime desired to

force it)
• Base Data within the tables - changes:

● Same algorithm as AutoStats, see Q195565 INF: How
SQL Server 7.0 and SQL Server 2000 Autostats Work

Understanding Procedure Performance
Plan Generation

• Plan is generated at first execution
● What first really means is that a plan is generated

when SQL Server does not find one already in cache
– why?

• Forced out through:
– Server restart
– DBCC FREEPROCCACHE, DBCC FLUSHPROCINDB

• Aged Out through non-use
• Schema of base object changes
• Statistics of base objects change

• When is plan not generated – for subsequent
executions (even when indexes are added)

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 56

25 March 2007, Orlando, Florida

Recompilation Issues

RECOMPILATION = OPTIMIZATIONRECOMPILATION = OPTIMIZATION
OPTIMIZATION = RECOMPILATIONOPTIMIZATION = RECOMPILATION

• When do you want to recompile?
• What options do you have Recompilation?
• How do you know you need to recompile?
• Do you want to recompile the entire procedure

or only part of it?
• Can you test it?

When to recompile?

• When the plan for a given statement within a procedure
is not consistent in execution plan–due to parameter
changes

• Cost of recompilation might be significantly less than the
execution cost of a bad plan!

• Why?
● Faster Execution with a better plan
● Saving plans for reuse is NOT always beneficial
● Some plans should NEVER be saved

• Do you want to do this for every procedure?
● No, but start with the highest priority/expensive procedures first!

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 57

25 March 2007, Orlando, Florida

Options for Recompilation

• CREATE … WITH RECOMPILE
• EXECUTE … WITH RECOMPILE
• sp_recompile objname
• Statement Recompilation

● The old way
• Dynamic String Execution (sometimes the only option)
• Modularized Code (still a good idea)

● The new way (excellent for complex single
statements)

• OPTION(RECOMPILE)
• OPTION(OPTIMIZE FOR

(@variable_name = literal_constant, ...))

How do you know?

• You Test!
● Test optimization plans consistency using EXECUTE

WITH RECOMPILE
● Choose what needs to be recompiled

• Whole Procedure
• Portions of the procedure

● Test final performance using strategy
• Procedure Recompilation

(CREATE with RECOMPILE)
• Statement Recompilation

(Dynamic String Execution)
• Modularized Code

(Sub procedures created with or
without WITH RECOMPILE)

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 58

25 March 2007, Orlando, Florida

EXECUTE WITH RECOMPILE

• Excellent for Testing
• Verify plans for a variety of test cases

EXEC dbo.GetMemberInfo 'Tripp' WITH RECOMPILE
EXEC dbo.GetMemberInfo 'T%' WITH RECOMPILE
EXEC dbo.GetMemberInfo '%T%' WITH RECOMPILE

• Do the execution plans match?
• Are they consistent?
• Yes then create the procedure normally
• No Determine what should be recompiled

What Should be Recompiled?

• Whole Procedure
● CREATE with RECOMPILE

• Procedure is recompiled for each execution
● EXECUTE with RECOMPILE

• Procedure is recompiled for that execution
– NOTE: Consider forcing recompilation through another

technique – you should not expect users will know when/why to
use EXECUTE … WITH RECOMPILE

• Statement(s) Recompilation
● If limited number of statements cause recompile

• Dynamic String Execution
• Modular Code
• New (SQL Server 2005 only) statement-level recompilation

options

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 59

25 March 2007, Orlando, Florida

CREATE … WITH RECOMPILE

• Use when the procedure returns drastically
different results based on input parameters.

• May not be the only – or even the best option…
• How do you know?

CREATE PROCEDURE GetMemberInfo
(@LastName varchar(30))

WITH RECOMPILE
AS
SELECT m.*

FROM dbo.Member AS m
WHERE m.LastName LIKE @LastName

go
EXEC dbo.GetMemberInfo 'Tripp' -- index+bookmark

EXEC dbo.GetMemberInfo 'T%' -- optimally, a table scan

EXEC dbo.GetMemberInfo '%T%' -- optimally, a table scan!

Statement-level Recompilation

• What if only a small number of statements need
to be recompiled?

• The SQL Statement is not likely safe (i.e. it will
not be saved/parameterized)

• Dynamic String Execution!
● Amazingly Flexible
● Permission Requirements
● Potentially Dangerous
● Advanced Examples

• Complex large strings
• Changing database context
• Output parameters

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 60

25 March 2007, Orlando, Florida

Statement-level Recompilation

• The old way: Modularizing your code
● Doesn’t hurt!
● May allow better reuse of code “snippets”
● Allows “block recompilation” in conditional logic

• The new way: “inline recompilation”
● OPTION(RECOMPILE)

• Excellent when parameters cause the execution plan to
widely vary

• Bad because EVERY execution will recompile
● OPTIMIZE FOR (@variable_name = constant, ...)

• Excellent when large majority of executions generate the
same optimization time

• You don’t care that the minority may run slower with a less
than optimal plan?

Modular Code
An Excellent Solution!

IF (expression operator expression)
SQL Statement Block1

ELSE
SQL Statement Block2

Scenario 1 – upon first execution…
• Parameters are passed such that the

ELSE condition executes – BOTH Block1 and
Block2 are optimized with the input parameters

Scenario 2 – upon first execution…
• Parameters are passed such that the IF condition executes – ONLY

Block1 is optimized. Block2 will be optimized when a parameter
which forces the ELSE condition is passed.

See ModularProcedures.sql

Solution?
Do not use a lot of

conditional SQL
Statement Blocks

Call separate stored
procedures instead!

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 61

25 March 2007, Orlando, Florida

Plan Caching Options

• Stored Procedures and sp_executesql have the
same potential for problems

• Forcing a recompile can be warranted/justified
• Always recompile the smallest amount possible!
• But can you have too many recompiles?

● Yes, but it’s not quite as bad as 2000 because only
the statement is recompiled, instead of the entire
procedure

● Yes, but following some best practices can help to
minimize that!

Recompilations

• Possibly too few
● Widely varying result sets
● Parameterization
● Conditional logic

• Could there be too many
● Understanding why – Profiling
● Stored Procedure Best Practices

• Setting Session Settings
• Interleaving DML/DDL
• Temp Tables within stored procedures
• Temp Tables v. Table Variables

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 62

25 March 2007, Orlando, Florida

Profiling SP Performance

• Create New Trace (SQLProfilerTSQL_sps)
• Replace SP:StmtStarting w/SP:StmtCompletion

● Better if you want to see a duration (starting events
don’t have a duration)

● Add Duration as a Column Value
• If short term profiling for performance:

● Add columns: Reads, Writes, Execution Plan
• Always use Filters

● Database Name (only the db you want)
● Exclude system IDs (checkbox on filter dialog)

• Resources:
● Query Recompilation in SQL Server 2000

http://msdn.microsoft.com/library/en-us/dnsql2k/html/sql_queryrecompilation.asp?frame=true

● Troubleshooting stored procedure recompilation
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q243586

Session Summary
• Indexing is the closest thing to a magic bullet but a truly

scalable system also requires design and optimizing
procedural code

• You can over index, you can under index – you need to
“find the right balance” and prioritize:
ª Know your data, know your users, know your workload

• Good maintenance procedures are what’s going to keep
your system running smoothly

• Good design practices and transactional coding practices
will give you better performance AND access to more
powerful features and capabilities!

• Test, Test, Test!
• Final words: May all your code be compiled and

optimized! ☺

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 63

25 March 2007, Orlando, Florida

MSDN Webcast Series
www.microsoft.com/events/series/msdnsqlserver2005.mspx

• Session 1: Interaction Between Data and Log
• Session 2: Recovery Models
• Session 3: Table Optimization Strategies
• Session 4: Optimization Through Indexes
• Session 5: Optimization Through Maintenance
• Session 6: Isolation, Locking, and Blocking
• Session 7: Optimizing Procedural Code
• Session 8: Table and Index Partitioning
• Session 9: Profiling/Server-side Trace Queues
• Session 10: Common Roadblocks, A Series

Wrapup

More Indexing Presentations

• Microsoft SQL Server 2005
● SQL Server Index Creation Best Practices

www.microsoft.com/emea/itsshowtime/sessionh.aspx?videoid=2
9

● SQL Server Index Defragmentation Best Practices
www.microsoft.com/emea/itsshowtime/sessionh.aspx?videoid=3
0

• Microsoft SQL Server 2000
● Indexing for Performance – Finding the Right Balance

http://msevents.microsoft.com/CUI/EventDetail.aspx?EventID=1
032254503&Culture=en-US

● Indexing for Performance – Proper Index Maintenance
http://msevents.microsoft.com/CUI/EventDetail.aspx?EventID=1
032256511&Culture=en-US

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 64

25 March 2007, Orlando, Florida

TechNet Webcast Series
http://www.microsoft.com/events/series/technetsqlserver2005.mspx

• Session 1: A Fast-paced Feature Overview and Series Introduction
• Session 2: Security, presented by Bob Beauchemin, SQLskills.com
• Session 3: Understanding Installation Options and Initial

Configuration
• Session 4: Upgrade Considerations and Migration Paths
• Session 5: Effective Use of the New Management Tools
• Session 6: New Application Design Patterns for Scalability and

Availability and the Operational Impacts of Service Broker,
presented by Bob Beauchemin, SQLskills.com

• Session 7: Technologies and Features to Improve Availability
• Session 8: Implementing Database Mirroring, Part 1 of 2,

presented by Mark Wistrom, Database Mirroring Program
Manager, Microsoft Corp.

• Session 9: Implementing Database Mirroring, Part 2 of 2
• Session 10: Recovering from Human Error
• Session 11: Best Practices and Series Wrap-up

Session Specific Resources

Microsoft SQL Server Developer Center on MSDN
http://msdn.microsoft.com/sql/

Microsoft SQL Server TechCenter on TechNet
http://www.microsoft.com/communities/usergroups/default.mspx

SQL Server VLDB Case Studies and Other Information
http://www.microsoft.com/sql/bigdata

SQL Server High Availability Technologies
http://www.microsoft.com/sql/technologies/highavailability/

SQL Server Always On Technologies
http://www.microsoft.com/sql/AlwaysOn

SQLskills Immersion Events
http://www.SQLskills.com, Events, Immersion Events

Demo Scripts, Resource Links, Additional Materials
http://www.SQLskills.com
http://www.SQLskills.com, Past Events

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 65

25 March 2007, Orlando, Florida

Resources

User Groups
http://www.microsoft.com/communities/usergroups/default.mspx

Technical Community Sites
http://www.microsoft.com/communities/default.mspx

Newsgroups
http://communities2.microsoft.com/communities/newsgroups/en-us/default.aspx

Virtual Labs
http://www.microsoft.com/technet/traincert/virtuallab/rms.mspx

MSDN & TechNet
http://microsoft.com/msdn
http://microsoft.com/technet

Microsoft Learning and Certification
http://www.microsoft.com/learning/default.mspx

Technical Chats and Webcasts
http://www.microsoft.com/communities/chats/default.mspx
http://www.microsoft.com/usa/webcasts/default.asp

Q&AQ&A

SQL Server Magazine Connections

Updated slide deck from http://www.SQLskills.com 66

25 March 2007, Orlando, Florida

email:email: Kimberly@SQLskills.comKimberly@SQLskills.com
Make sure to register for special offers Make sure to register for special offers

and other helpful information and resources!and other helpful information and resources!

wwww.SQLskills.comww.SQLskills.com

Kimberly L. TrippKimberly L. Tripp
Consultant . Trainer . Writer . SpeakerConsultant . Trainer . Writer . Speaker

Thank you!Thank you!
Please take a moment to fill out your evaluation.Please take a moment to fill out your evaluation.

