
 (February 13
th

, 2017)

If you know someone who would benefit from being an

Insider, feel free to forward this PDF to them so they can

sign up here.

Quick Tips for our Insider friends!

Hey Insiders,

This newsletter is coming to you from Redmond, where “Common-Sense Boy” (me) was

attacked and beaten by bamboo last week. We had a major snowfall (for Western WA) and I was

shaking snow off some bamboo when I managed to stab myself in the eye with a stick, resulting

in a corneal abrasion. Wow – does that hurt! I was on Percocet the rest of the week and you can

read the various episodes of “Percocet Paul” on my Facebook page. Although apparently

entertaining, Kimberly’s especially glad that I’m done with pain killers!

The latest Pluralsight course we’ve published is Erin’s SQL Server: Introduction to Query Store,

which you can read about here.

We’re looking forward to seeing a bunch of you this year in our classes in Chicago in April/May,

our classes in Bellevue in July/August, and our Spring SQLintersection conference in Orlando in

May. See here for the class schedule and here for SQLintersection details. Note that IEPTO1 in

Chicago is already sold out and IE0 only has three seats remaining. I’m particularly pleased that

we have a three-day class on using PowerShell to administer SQL Server, taught by industry-

expert, MCM, and MVP, Ben Miller.

Even though we’re not teaching any Immersion Events in Europe this year, Kimberly and I will

both be presenting at SQLSaturday #620 in Dublin in June.

And even if you can’t join us in person, we’re still taking requests for remote sessions for this

year. We have 50 scheduled so far; if you’d like one of us to present for your user group, check

out my blog post here.

The latest book I’ve finished is Alison Weir’s The Life of Elizabeth I. I actually listened to most

of it during the week using Amazon’s Audible service, where if you sign up you get two free

books and can cancel at any time. I might keep it on for use on long flights and when doing

things like soldering. Anyway, the book is excellent, as are all of Weir’s Tudor-era histories. It

covers Elizabeth’s life and reign from when she becomes queen in 1558 to her death in 1603, and

provided a good balance to Weir’s Mary, Queen of Scots, and the Murder of Lord Darnley,

which I read back in 2007. It’s very readable and provides a wealth of detail without becoming

dry and dull. Highly recommended!

Note: you can get all the prior Insider newsletters here.

http://www.sqlskills.com/Insider
https://www.facebook.com/PaulRandal
http://www.sqlskills.com/blogs/paul/new-course-introduction-to-query-store/
http://www.sqlskills.com/sql-server-training/immersion-events-schedule/
http://www.sqlintersection.com/
http://www.sqlskills.com/blogs/paul/new-class-immersion-event-on-powershell-for-sql-server-dbas/
http://www.sqlskills.com/blogs/paul/presenting-at-sqlsaturday-dublin-in-june/
http://www.sqlskills.com/blogs/paul/calling-all-user-group-leaders-we-want-to-present-for-you-in-2017/
https://www.amazon.com/Life-Elizabeth-I-Alison-Weir/dp/0345425502/ref=as_li_ss_tl?ie=UTF8&linkCode=ll1&tag=sqlscom-20&linkId=a175b0cabcfcb0e4aa4a58a19c67ff03
https://www.amazon.com/Mary-Queen-Scots-Murder-Darnley/dp/0812971515/ref=as_li_ss_tl?ie=UTF8&linkCode=ll1&tag=sqlscom-20&linkId=53917f6a8db76102843ad66491d50dd0
http://www.sqlskills.com/past-insider-newsletters/

The Curious Case of…

This section of the newsletter explains problems we’ve found on client systems; they might be

something you’re experiencing too.

I had another random email last week via my waits library from someone investigating the

ACCESS_METHODS_DATASET_PARENT latch on their system.

This latch wait occurs when threads in a parallel scan need to request the next range to scan and

access a coordinating object to do so. In this case, the person was also seeing CXPACKET waits

(perfectly normal and expected to see with that latch) and was perplexed because their instance

‘max degree of parallelism’ configuration option was set to 1.

They wanted to know under what circumstances a query could still result in these two symptoms

when parallelism was turned off.

The answer is that instance MAXDOP can be overridden by anyone with any privilege level,

using the query syntax like OPTION (MAXDOP 8).

There are two ways to stop *anyone* from running in parallel:

 Set the instance ‘cost threshold for parallelism’ value to be as high as it can go, so no

queries will ever qualify as too expensive for serial execution

 Run all queries with a Resource Governor workload group that has its MAX_DOP set to 1

(as this cannot be overridden)

Bottom line: if you’re experiencing symptoms of parallelism when you don’t expect it, check for

code that’s overriding the instance setting. I’ll do a blog post this week that shows a way to do

that using Extended Events.

Paul's Ponderings

(As I was off work all last week, I didn’t get a chance to write an editorial for the newsletter, and

I’m still trying not to stare at a screen over the weekend. I was going to write about tempdb

contention and temp tables, so instead I’m re-running an editorial from 2011 on the same subject

with comments. Enjoy!)

Over the last year we’ve helped a few clients track down tempdb space hogs with automated

monitoring built around the sys.dm_db_task_space_usage DMV to identify procedures and ad

hoc code that are misusing temp tables and generating query plans that cause memory spills to

tempdb from, for example, large sorts and joins where table indexing is incorrect.

https://www.sqlskills.com/help/waits/
https://www.sqlskills.com/help/latches/access_methods_dataset_parent/
https://www.sqlskills.com/help/waits/cxpacket/

(2017: This is a perennial problem, and if anything it’s even more prevalent nowadays and

causes tempdb allocation bitmap contention as more processors are vying for access to the

allocation bitmaps in memory for temp table page allocation changes.)

In this newsletter I’d like to describe some of the misuses of temp tables that I’ve seen while

investigating some of the tempdb space hogs. Don’t get me wrong though – temp tables are great

– when they’re used efficiently.

There are three main problems we see:

 Over-population of temp tables

 Incorrect indexing (or none where there should be one/some) on temp tables

 Using a temp table where none is required

The first problem involves creating a temp table using a SELECT … INTO #temptable construct

and pulling in far more data into the temp table than is necessary.

The most common thing we see is pulling lots of user table columns into the temp table, where

some of the columns are not used ever again in subsequent code. This is a HUGE waste of I/O

and CPU resources (extracting the columns from the user table in the first place) and a horrible

waste of tempdb space (storing the columns in the temp table). I’ve seen code pulling in large

varchar columns (without reason) and with million-plus row datasets…

(2017: This is mitigated somewhat in later versions as bulk operations in tempdb won’t actually

hit the disk (as usually happens from ‘eager writing’ during bulk operations) so there’s less of an

I/O load.)

The other facet of over-population of temp tables is pulling in too many rows. For instance, if

your code is interested in what happened over the last 12 months, you don’t need to pull in all the

data from the last ten years. Not only will it be bloating the temp table, it will also drastically

slow down the query operations.

(2017: One of the first clients I worked for, back in 2010, had a process that was calculating

school grades for the previous month, but pulling in all grade and class data for the previous

15 years into the temp tables… unsurprisingly, they were running out of tempdb space!)

The key to better performance is making sure your selection/projection is as focused as possible.

To limit your selection, use an effective WHERE clause. To limit your projection, list only the

necessary columns in your select list.

The second problem involves either creating indexes before populating the table (so that no

statistics are generated) or creating a bunch of inappropriate indexes that are not used. The most

common example we see is creating a single-column nonclustered index for each temp table

column that is subsequently used in a multi-table join. Those are just taking up space for no use

whatsoever. Temp tables *DO* need indexes (preferably after load) but as with any form of

query tuning – only the RIGHT indexes. Consider creating permanent tables that mimic what’s

going on in your temporary objects and then using DTA to see if it has recommendations. While

DTA’s not perfect, it’s often WAY better than guessing.

(2017: Another problem can be creating temp tables without any indexes at all; often you’re

missing a wonderful opportunity – if done correctly!)

The final problem is when a temp table is used when it is not needed. The SQL Server query

optimizer is a fabulous beast and is very good at figuring out the most efficient way to execute

most queries. If you choose to take some of the query operation and pre-calculate it into a temp

table, sometimes you’re causing more harm than good. Any time you populate a temp table

you’re forcing SQL Server to materialize the complete set of results of whatever query you ran.

This can really limit SQL Server’s ability to produce a pipeline of data flowing efficiently

through a query plan and making use of parallelism and collapsing data flows when possible.

While it’s true that you might be able to do better than the optimizer sometimes, don’t expect

that it’s the case all the time. Don’t just go straight to using temp tables, give the optimizer a

chance – and, make sure to retest your code/expectations around service packs and hot fixes as

these may have eliminated the need for temp tables as well.

In one recent example I struggled to figure out why a temp table was even being used. It

contributed up to 50GB of tempdb space for a query that was run many times per day. Taking the

temp table creation code and embedding it as a derived table in the main query completely

removed the tempdb usage and took the query from 17 minutes down to a few seconds. Derived

tables are a great form of query hint – and always something to try before moving to temp tables.

Summary: if possible, limit the amount of data that temp tables hold, create appropriate indexes

after the temp table is populated (so that the statistics are correct/up-to-date), and make sure that

using a temp table is actually more efficient than just letting SQL Server process the whole query

in one go.

(2017: Another thing to consider from SQL Server 2014 onwards is to try moving the temp table

to be an In-Memory OLTP table…)

Call to action: take a look at your temp table usage. You may be surprised to find a lot of

tempdb space and CPU resources being consumed by inappropriate temp table usage and

incorrect temp table indexing. Or if you don’t have time and you’re suffering from horrible

tempdb problems, give us a call to help you. (2017: no change here)

Video Demo

This video is taken from Erin’s latest Pluralsight course, SQL Server: Introduction to Query

Store, and shows how you can use the Query Store to test query plan changes when moving to

the new cardinality estimator.

The video is about 5.5 minutes long and you can get it in MOV format here, with the demo code

here.

Enjoy!

SQLskills Offerings

The classes for both Spring and Summer 2017 are available for registration!

To help your boss understand the importance of focused, technical training, we’ve also added a

few items to help you justify spending your training dollars with us:

 Letter to your boss explaining why SQLskills training is worthwhile

 Community blog posts about our classes

 Immersion Event FAQ

Upcoming Immersion Events

Chicago, IL, April/May 2017

 IE0: Immersion Event for Junior/Accidental DBAs

o April 24-26 **3 SEATS REMAINING**

 IEPTO1: Immersion Event on Performance Tuning and Optimization – Part 1

o April 24-28 **SOLD OUT**

 IESSIS1: Immersion Event on Learning SQL Server Integration Services

o April 24-28

 IEBI: Immersion Event on Business Intelligence

o May 1-5

 IEPTO2: Immersion Event on Performance Tuning and Optimization – Part 2

o May 1-5

 IEPS: Immersion Event on Powershell

o May 8-10 **NEW** class

 IEPDS: Immersion Event on Practical Data Science

o May 8-12

http://www.sqlskills.com/blogs/paul/new-course-introduction-to-query-store/
http://www.sqlskills.com/blogs/paul/new-course-introduction-to-query-store/
http://www.sqlskills.com/InsiderContent/201702/February2017InsiderTipPS.mov
http://www.sqlskills.com/InsiderContent/201702/Insider201702DemoCode.zip
http://www.sqlskills.com/Why-SQLskills-Immersion-Events-Are-Worthwhile.pdf
http://www.sqlskills.com/sql-server-training/community-blog-posts-about-our-classes/
http://www.sqlskills.com/sql-server-training/immersion-events-faq/

 IEHADR: Immersion Event on High Availability and Disaster Recovery

o May 8-12

Bellevue, WA, July/August 2017

 IEPTO1: Immersion Event on Performance Tuning and Optimization – Part 1

o July 31-August 4

 IEPTO2: Immersion Event on Performance Tuning and Optimization – Part 2

o August 7-11

Click here for the main Immersion Event Calendar page that allows you to drill through to each

class for more details and registration links.

Summary

We hope you've enjoyed this issue - we really enjoy putting these together.

If there is anything else you're interested in, we'd love to hear from you - drop us a line.

Thanks,

Paul and Kimberly

Paul@SQLskills.com and Kimberly@SQLskills.com

http://www.sqlskills.com/sql-server-training/immersion-events-schedule/
mailto:paul@sqlskills.com?subject=Hi%20SQLskills%21
mailto:Paul@SQLskills.com
mailto:Kimberly@SQLskills.com

