SQL Server 2005: Table and Index Partitioning
Microsoft Hands-on Labs

Page 8 of 22

SQL Server 2005: Table and Index Partitioning
Microsoft Hands-on Labs

Page 9 of 22

Table of Contents

2SQL Server 2005: Table and Index Partitioning Exercises

2Objectives

2Prerequisites

2Estimated Time

3Classroom/VPC Configuration and Setup

4Exercise Table and Index Partitioning

9Understanding Partitioned Tables Using a Date Range

9Understanding the concepts – Range Partition Function

11Understanding the concepts – Partition Scheme

12Understanding the concepts – Partitioned Table

17Understanding the concepts – The Sliding Window Scenario

23Additional Partitioning Resources

SQL Server 2005: Table and Index Partitioning Exercises

	Objectives

These exercises are based on the SQL Server 2005 High Availability VPC image created specifically for Microsoft Tech*Ed and TechReady. The DVD includes a VPC that has all of the needed instances already installed and configured. However, the needed lab scripts have not been installed. In the root directory of the DVD is a copy of these files to be copied over for the lab exercises.

The goal of these hands-on lab materials is to get an understanding of when to use one of the more advanced new features of SQL Server 2005: Table and Index Partitioning.
The intent of these labs is to provide you with a general feel for some of the more important tools and settings in the next release of SQL Server. As with all software development projects, the final version may differ from beta builds in both features and user interface. For the latest details on SQL Server 2005, please visit http://www.microsoft.com/sql/2005/.
	After completing these self-paced labs, you will be able to:

· Understand appropriate uses for Partitioning

· Create, setup and manage partitioned tables

· Read execution plans to see when a partitioned object is being accessed as well as understand which partitions are being used

· Create indexes on partitioned tables

· Understand when constraints are required within partitioned tables

· Effectively switch data in and out of the partitioned table scenario

· Use the SQL Server Management Studio (SSMS) to manage solutions and projects

· Use SQL Server Management Studio to modify and execute SQLCMD mode scripts

· Use SQL Server Management Studio to execute queries and review their plan of execution

	Prerequisites
	· Experience with Administration and Optimization tasks in SQL Server 2000

· Experience with the SQL Server 2005 Tools is very helpful

· Familiarity with the Transact-SQL language

· Desire to sink your teeth into SQL Server 2005!

	Estimated Time
	75 minutes

Classroom/VPC Configuration and Setup

The classroom instances, versions and default installation directories are detailed in the following table:

	SQL Server Service Name
	SQL Server Version
Edition
	Installation Directory

	mssqlserver
	SQL Server 2000, sp3
Developer Edition
	C:\Program Files\Microsoft SQL Server\mssql

	mssql$sqldev01
	SQL Server 2005 build 9.00.1200.00 (IDW15 + Hotfix 1200, June CTP+)
Developer Edition
	C:\Program Files\Microsoft SQL Server\mssql.1

	mssql$sqldev02
	SQL Server 2005 build 9.00.1200.00 (IDW15 + Hotfix 1200, June CTP+)
Developer Edition
	C:\Program Files\Microsoft SQL Server\mssql.2

	mssql$sqlexpress
	SQL Server 2005 build 9.00.1200.00 (IDW15 + Hotfix 1200, June CTP+)
Express Edition
	C:\Program Files\Microsoft SQL Server\mssql.3

The accounts and passwords used in the following exercises are shown in the following table:

	Account Name
	Account Password
	Account Usage

	Administrator
	Pass@word1
	Login account for VPC

	SQLService
	SQL!Service@05
	Startup account for all SQL Server services

	sa
	SQL!Service@05
	SQL Server System Administrator

Exercise
Table and Index Partitioning
Background

The concept of partitioning is not new to SQL Server 2005. In fact, forms of partitioning have been possible in every release. However, without features to aid in creating your partitioning scheme, partitioning it is often extremely cumbersome and underutilized as the design is misunderstood by users and developers unfamiliar with the design. Beginning in SQL Server 7.0, Microsoft has been significantly improving the features related to partitioning and SQL Server 2005’s release has made the largest advances.
In this release, SQL Server has simplified partitions – for both developer and user – in mind. Some of the performance and manageability benefits relate to managing the sliding window scenario. More specifically, some of the major benefits are:

· load data into a new partition of existing partitioned table with minimal disruption in data access in the remaining partitions

· load data into a new partition of existing partitioned table with performance equal to loading the same data into a new empty table

· delete portion of a partitioned table minimally impacting access to the rest of the table

· perform various maintenance operations on per partition basis by rolling partitions in and out of the partitioned table

· simplify design of large tables that need to be partitioned for performance purposes

· improve performance over all previous releases for partitions

For more information, please read the SQL Server 2005 Partitioned Tables and Indexes whitepaper on MSDN, written by Kimberly L. Tripp. This whitepaper can be found at the following link as well as from a link on your TechReady DVD: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql90/html/sql2k5partition.asp.

Objectives
After completing this lab, you will be able to:

· Understand the scenarios for which you would use partitioning:

· Understand the requirements of partitioning

· Partition Functions – Define the partition boundaries.

· Partition Schemes – Map the partitions to physical filegroups within the database. A Partition Scheme always references a Partition Function.

· Understand Range Partitioned Scenarios, specifically managing the sliding window scenario
Scenario

There are many exciting new features related to partitioning, this lab exposes many of them. Expected time to complete the entire lab – while reading documentation, so that you can grasp all of the concepts fully – is 75 minutes. If you continue the lab with reading the whitepaper and executing the 6 scripts associated with the whitepaper – 5 hours.

Primary Use: Data Archiving and Mixed OLTP/Decision Support Scenarios
Biggest Benefit to SQL Server 2005 Partitioning: The ability to “switch out” old data and “switch in” new data – extremely quickly. Range partitions are best when data access is typically decision support over large ranges of data. In this case, you care specifically where the data is located so that only the appropriate partitions accessed when necessary. Additionally, as transactional data becomes available you will want to add that data in – easily and quickly.

Lab Scenario: For this scenario you will define partitions based on calendar quarters (first quarter is January through March, second quarter is April through June, etc.) using a range partition. This is most appropriate for decision support scenarios where data access is focused to specific time periods or mixed environments where data pattern usage varies. It is not a requirement of partitioning that the boundaries be equally spaced, nor do they have to follow a specific pattern, such as months or quarters. However, for this lab and for simplicity, this is the pattern that will be used.
Lab Scenario

You are the database administrator for the AdventureWorks database. You manage an Orders table and the performance has suffered over time. Managing the correct range of data for decision support has become difficult as the table has become larger. You want users to have access to one year of order information yet deleting the old data, inserting the new data and rebuilding indexes slows overall access to the table for more than 3 hours. You decide to use range partitioning to improve the management of data and performance.
In the first part of the exercise, you decide to partition the table for decision support operations based on specific date-based quarters to improve manageability (moving data in and out of the table) and performance. For this lab scenario, the one year’s worth of data will cover the four calendar quarters starting with third quarter of 2003 (OrderDate >= Jul 01, 2003) through end of 2nd Quarter 2004 (OrderDate < Jul 01, 2004). In the first part of the exercise, you will define and configure your Partitioned Table scenario and in the second part of the exercise, you will begin to understand Range Partition Management. In the second half, you will see how partitions are managed when data needs to be removed (the older data – third quarter of 2003) and new data needs to be added (the new data – third quarter of 2004). Regardless of the amount of data moving in and out of your partitioned tables; you can management these changes effectively.
	Tasks
	Detailed Steps

	Open the Partitioning Scripts solution – which contains all 10 scripts needed to work through this lab as well as the whitepaper exercises.

	1. From the Windows task bar, select Start | All Programs | Microsoft SQL Server 2005 CTP | SQL Server Management Studio.

2. When SQL Server Management Studio opens, you are prompted to connect. In the Connect to Server dialog, enter the following connection properties and then click Connect:

Server type: Database Engine

SQL Server: SQLLAUNCHVPC\SQLDEV01

Windows Authentication
3. Select the File | Open | Project/Solution menu item. Navigate to the C:\MSLabs\SQL Server 2005 High Availability\Lab Projects\Partitioning Lab\Partitioning Scripts directory. Select PartitioningScripts.ssmssln and click Open.

4. Once open in SQL Server Management Studio, navigate to the Solution Explorer window. If this window is not, select Solution Explorer from the View drop-down menu.

5. In the Solution Explorer window, notice that there are two projects in one solution. The solution is titled: PartitioningScripts and the two projects are titled: Lab Scripts and Whitepaper Scripts. For these exercises, you will focus on the project titled: Lab Scripts.
6. Under the Queries section of the Lab Scripts project, double-click on the file titled: Script1 – Add Filegroups.sql to open this into a query window.

	Create filegroups and files on which the future partitioned table will reside

	Note: the files will be placed in the AdventureWorks subdirectory on drive C:\. In most production environments, these files would be on separate hard drives. For this exercise and for simplicity, all files will be placed in this directory. However, this directory does not exist. In the first part of this script, you will execute the section labeled: Lab Setup: Step One to create this directory. To successfully execute this command, you must be in SQLCMD Mode.
1. Change to allow SQLCMD mode, if not already set. Select SQLCMD Mode from the Query menu or select the SQLCMD Mode button on the toolbar. Notice how some lines appear highlighted in gray. This signifies a SQLCMD command.

2. Highlight and execute the complete !!mkdir line in SQLCMD mode.

!!mkdir C:\AdventureWorks
.
.
.
Once the directory is created you can create the files and filegroups. For this lab, the filegroups are named based on the data they will hold. However, in many “rolling range” scenarios you will want to reuse the same files and filegroups and just cycle through them – always keeping the same files/filegroups but changing what data resides in them. If that’s the case, you will want to use generic naming conventions for the filegroups and files. To better see what data resides where and to show management with new files and filegroups (for each quarter), specific date-related names will be used for both the files and the filegroups.
3. Create four filegroups that will later hold the partitions of your partitioned table. Execute the next section of the script to create four filegroups:

ALTER DATABASE AdventureWorks

ADD FILEGROUP [2003Q3]

GO

ALTER DATABASE AdventureWorks

ADD FILEGROUP [2003Q4]

GO

ALTER DATABASE AdventureWorks

ADD FILEGROUP [2004Q1]

GO

ALTER DATABASE AdventureWorks

ADD FILEGROUP [2004Q2]

GO
A filegroup is only a name to a location within a database. The physical location of the data within a filegroup is based on the files that are within a filegroup. A file can only be in one filegroup but a filegroup can have many files. When a filegroup has many files, space is allocated to objects by using a “round-robin” algorithm and essentially these files will be proportionally filled over time – yielding better resource utilization for larger objects – especially when not partitioned. When using a partitioned table strategy, it is more likely that each partition reside in one file as no single partition will warrant multiple files.
4. Create one file in each of the four filegroups. Execute the final section of the script to create these files:

ALTER DATABASE AdventureWorks

ADD FILE

 (NAME = N'RPFile1',

 FILENAME = N'C:\AdventureWorks\RPFile1.ndf',

 SIZE = 5MB,

 MAXSIZE = 100MB,

 FILEGROWTH = 5MB)

TO FILEGROUP [2003Q3]

GO

ALTER DATABASE AdventureWorks

ADD FILE

 (NAME = N'RPFile2',

 FILENAME = N'C:\AdventureWorks\RPFile2.ndf',

 SIZE = 5MB,

 MAXSIZE = 100MB,

 FILEGROWTH = 5MB)

TO FILEGROUP [2003Q4]

GO

ALTER DATABASE AdventureWorks

ADD FILE

 (NAME = N'RPFile3',

 FILENAME = N'C:\AdventureWorks\RPFile3.ndf',

 SIZE = 5MB,

 MAXSIZE = 100MB,

 FILEGROWTH = 5MB)

TO FILEGROUP [2004Q1]

GO

ALTER DATABASE AdventureWorks

ADD FILE

 (NAME = N'RPFile4',

 FILENAME = N'C:\AdventureWorks\RPFile4.ndf',

 SIZE = 5MB,

 MAXSIZE = 100MB,

 FILEGROWTH = 5MB)

TO FILEGROUP [2004Q2]

GO

Verify that your AdventureWorks database has these new filegroups and files and that they’re all of the appropriate size.

5. Execute the final batch to review the file and filegroup properties:

USE AdventureWorks

go

sp_helpfile
go
6. Close the file: Script1 - Add Filegroups.sql.

	Add a new Orders table – for testing and comparisons between partitioned and non-partitioned structures
	In order to compare plans and differences between partitioned and non-partitioned tables, a copy of a subset of data will be created in a simple non-partitioned table. There is nothing new to SQL Server 2005 about this script – it is solely to create a copy of data and make some interesting modifications for later examples.
1. Under the Queries section of the Lab Scripts project, double-click on the file titled: Script2 – CreateOrders.sql to open this into a query window.

2. Review and then execute this script. You should have 2748 rows in the new Orders table.
3. Close the file: Script2 - CreateOrders.sql.

Understanding Partitioned Tables Using a Date Range

In this exercise, you will create a range partition function, a partition scheme, and a partitioned table. Once created, you will load data into the table, add a clustered index and get a feel for how the query plans differ between partitioned and non-partitioned tables.

Understanding the concepts – Range Partition Function
The first step in partitioning a table is to specify the function that you will use to designate how the rows will be directed to the partitions. A range partition always covers the complete range of possible data values – from negative infinity to positive infinity. Because of this, when you specify n boundaries, your partitioned object will have n+ 1 partitions.
In a partition function, you need to define the boundary points. In this scenario, four filegroups have been created. Each filegroup will store one calendar quarter of the Orders data. If four boundaries are used, then five partitions will be created (more on this coming up).

In the range partitioning syntax, there are two ways to partition data – LEFT or RIGHT. Specifying LEFT or RIGHT determines whether or not the boundary condition is an upper boundary or a lower boundary – in the first or second partition. In other words if the first value (or boundary condition) of a partition function is 20031001 then the values within that partition will be:

For LEFT

1st partition is all data < = 20031001

2nd partition is all data > 20031001

For RIGHT

1st partition is all data < 20031001

2nd partition is all data => 20031001
If you are using a datetime data type remember that a date with no time implies a 0 time of 12:00am. If LEFT is used with this type of data then you’ll end up with Oct 1 12:00am data in the 1st partition and the rest of Oct in the 2nd partition. Logically, it is best to use beginning values (of the second partition set) with RIGHT and ending values (of the first partition set) with LEFT. The three following clauses create identical partitioning structures – for data:

RANGE LEFT FOR VALUES ('20030930 23:59:59.997',

'20031231 23:59:59.997',

'20040331 23:59:59.997',

'20040630 23:59:59.997')

RANGE RIGHT FOR VALUES ('20030701 00:00:00.000',

'20031001 00:00:00.000',

'20040101 00:00:00.000',

'20040401 00:00:00.000')

OR

RANGE RIGHT FOR VALUES ('20030701',

'20031001',

'20040101',

'20040401')

The datetime data type adds a bit of complexity here but we need to make sure we setup the correct boundary case. Notice the simplicity with RIGHT – this is easier as the default time is 12:00:00.000am. For LEFT there is added complexity due to the datatime datatype. The reason that 23:59:59.997 MUST be chosen is that datetime data does not guarantee precision to the millisecond. Instead datetime data is precise to the nearest timetick (3.33ms). In the case of 23:59:59.999 this exact timetick is not available and instead the value gets rounded to the nearest timetick which is 12:00:00.000am of the following day. With this rounding the boundaries will not be defined properly. For datetime data you must use caution with millisecond values.

Also notice the partition is based on the OrderDate column yet the partition function does not specify the name of the column, only the data type. The range partition function will be named OrderDateRangePFN and will be defined using RIGHT. Because of the simplicity in defining RIGHT-based partition functions, RIGHT is preferred.

USE AdventureWorks

GO

CREATE PARTITION FUNCTION OrderDateRangePFN(datetime)

AS

RANGE RIGHT FOR VALUES ('20030701',

'20031001',

'20040101',

'20040401')

GO

As you work through the split and merge exercises the reasons for these best practices will be called out explicitly, but for now – understand these best practices:

· Always create the same number of boundaries as you want partitions

· When creating a RIGHT PARTITION FUNCTION always use the lower boundaries of your data partitions

· When creating a LEFT PARTITION FUNCTION always use the upper boundaries of your data partitions.
	Tasks
	Detailed Steps

	Create the Partition Function – that will later be used by the Orders table
	1. Under the Queries section of the Lab Scripts project, double-click on the file titled: Script3 – RangePartitionedTable.sql to open this into a query window.

2. Review and then execute the first part of this script – just to create the partition function:

CREATE PARTITION FUNCTION OrderDateRangePFN(datetime)

AS

RANGE RIGHT FOR VALUES

(

'20030701',

'20031001',

'20040101',

'20040401')
GO

NOTE: Make sure you change database context to AdventureWorks first!

Understanding the concepts – Partition Scheme
A partition function only defines logical boundary points, not the specific location on which the partitions should reside. A partition scheme maps the partitions to physical locations – specifically filegroups – of your database. If you created a partition function with four boundary points then you will have a portioned object with five partitions. Remember, a partition function must cover the entire range from negative infinity to positive infinity.

Because of the best practices used above, your partition function will not cause record relocation when data is moved in or out of your partitioned object. As a further best practice, one of your partitions will remain empty. If efficient data management in the sliding window scenario is desired, then a LEFT-based partition function will end up with an empty partition on the far right and a RIGHT-based partition function will end up with an empty partition on the far LEFT. This will ensure that no rows move.

There is no need for a special location for the filegroup that will remain empty. For the empty partition, you can use the Primary filegroup.

	Tasks
	Detailed Steps

	Create the Partition Scheme – that will later be used by the Orders table
	Also in script3, review and execute the second part of this script – just to create the partition scheme:

CREATE PARTITION SCHEME OrderDatePScheme

AS

PARTITION OrderDateRangePFN

TO ([PRIMARY], [2003Q3], [2003Q4],
 [2004Q1], [2004Q2])
GO

Understanding the concepts – Partitioned Table
Once the partitioning function has defined the datasets, and the partitioning scheme has defined which datasets target which filegroups, you can create the partitioned table. To create a partitioned table the table must include a column with the data type used in the creation of the partition function. The ON clause defines which partitioning scheme this table uses (OrderDatePScheme) and the column of the table that dictates row to partition (a.k.a. scheme) location.

Because partitioned objects rely on the first (in RIGHT-based partitioned objects) or last (in LEFT-based partitioned objects) to be empty, it’s also a good practice to restrict your data to enforce this property. Constraints on the based table are not required for partitioned tables to work; however, they can ensure both data integrity as well as better management if the data is restricted properly. The “current” version of the table will store data from 2003 Q3 to 2004 Q2. To enforce this, a check constraint will be added to the OrderDate column.

	Tasks
	Detailed Steps

	Create the Partitioned Table, load the data and verify the row locations using new partition functions
	1. Also in script3, review and execute the next section of this script – just to create the partitioned object - OrdersRange:

CREATE TABLE AdventureWorks.[dbo].[OrdersRange]
(

[OrderID] [int] NOT NULL,

[EmployeeID] [int] NULL,

[VendorID] [int] NULL,

[TaxAmt] [money] NULL,

[Freight] [money] NULL,

[SubTotal] [money] NULL,

[Status] [tinyint] NOT NULL ,

[RevisionNumber] [tinyint] NULL,

[ModifiedDate] [datetime] NULL,

[ShipMethodID]
tinyint NULL,

[ShipDate] [datetime] NOT NULL,

[OrderDate] [datetime] NOT NULL

 CONSTRAINT OrdersRangeYear

 CHECK ([OrderDate] >= '20030701'

 AND [OrderDate] < '20040701'),

[TotalDue] [money] NULL

)
ON OrderDatePScheme (OrderDate)
GO
2. Execute the next section of this script to load data into the OrdersRange table by using INSERT…SELECT from the previously created Orders table:
INSERT INTO OrdersRange

SELECT o.[OrderID]

, o.[EmployeeID]

, o.[VendorID]

, o.[TaxAmt]

, o.[Freight]

, o.[SubTotal]

, o.[Status]

, o.[RevisionNumber]

, o.[ModifiedDate]

, o.[ShipMethodID]

, o.[ShipDate]

, o.[OrderDate]

, o.[TotalDue]

FROM dbo.Orders AS o

GO
To aid in determining where data resides, a new function was created. The breakdown of this function is that you add $partition. to the partition function name function(value) and then you pass in a value. The value is executed against the partition function and the result is the partition number.

3. The data has been loaded into the partitions. Execute the next section of this script to show each OrderDate and the partition number on which the row resides.
SELECT OrderDate,

$partition.OrderDateRangePFN(OrderDate)

AS 'Partition Number'

FROM OrdersRange

ORDER BY OrderDate

GO
4. In addition to seeing the partition for each individual row, the next section of this script will show the row count in each range as well as the min and max OrderDate for each partition.
 SELECT $partition.OrderDateRangePFN(OrderDate)

AS 'Partition Number'

, min(OrderDate) AS 'Min Order Date'

, max(OrderDate) AS 'Max Order Date'

, count(*) AS 'Rows In Partition'

FROM OrdersRange

GROUP BY $partition.OrderDateRangePFN(OrderDate)

ORDER BY 1

GO

	Get an understanding of how to read showplan for partitioned and non-partitioned tables.
	When accessing a partitioned object you will see an additional “join” step which brings together a “constant scan” with some form of table access against the partitioned table. This is not an expensive join but instead the join of which partitions should be displayed along with the table access. If you want to determine which – and how many – partitions are going to be returned, use the properties window.
1. Turn on the Include Actual Showplan option in the Query menu. This will add an additional tab labeled Execution Plan. In the Execution Plan tab, you will see information regarding both the logical and physical operations performed to gather the data requested. This can give you great insight into how SQL Server is performing when multiple statements are executed as well as where much of the relative cost is in performing certain operations. However, for these next few steps we’re concerned mostly with how to read that a partitioned object – and how many partitions – was accessed.
2. Execute BOTH of the next queries in the script to read the entire Orders and OrdersRange partitioned tables. Albeit, not very exciting queries and certainly not optimized queries however, in a scan all data – and all partitions – must be accessed.
SELECT * FROM Orders

SELECT * FROM OrdersRange

GO
3. Review the Execution Plan tab and make sure that the Properties window is showing. If the Properties window does not appear, select Properties Window from the View drop-down menu or press F4.

[image: image1.png]'SQLLAUNCHVPC\...onedTable.sql | Summary |

ORDER BY 1

Compare the guery plans on the two tables
before indexes are added.

Turn on "Include Actual Execution Plan” from Query
- arop-cown menu OR use Toolbar icon.

SELECT * FROM Orders
SELECT * FROM OrdersRange
co

[Resus | /3 Messages 5 Execution pian |

=] | rable scan B
2018
8 Misc
Actual Number of Rows 2748
Actua Rebinds o
Actua Rewinds o
Defned vabes [Adventuretiors]
Desarpton Scan rows fiom
Estmated CPUCost 00010305
M| Estmated /0 cost 0.0083102

Estiated Number of Rons |87
Estmated Operator Cost _|0.0282026 (58%)

Query 1: Query cost (relative to the batch): 358

SELECT + FROM Orders

- Table Sean
[Advensureiorks] . [dbo] . [Orders]
Caze: 100 %

szect
Cosz: 0 %

Query 2: Query cost (relative to the batch): 658

Estiated Rebinds 3
Estimated Rewinds o
Estimated Row Size. 78
Estimated Subtree Cost _|0.0262025

2l Forced ndex Faise
Logical Operation Table Scan
Node ID s
NoBxpandint Faise
Object [Adventuretorks]
Ordered Fase
Output ist [Adventuretorks]
Paralil Faise
Partiion ID Pinlds1004
Physical Operation Table Scan

Skizer + Faoi orderstange
i

Nested Loops
(Tnner Join)
Cose: 42 %

Cosz: 0 %

‘Actual Number of Rows

‘Actual number of rows output by this operator.
For rows of type PLAN_ROWS only.

(@ SOLANCVPOSaL0w0T BORT [SOLLANCHVP st 69 et 00033 | | Sorpertes oo btoer

	Get an understanding of how to read showplan for partitioned and non-partitioned tables.
	4. In the execution plan, what’s interesting to note is that the Properties window gives more details than just “mousing” over the various icons – but try both options. Place your cursor over the Clustered Index Scan clause as well as click on it to populate the properties window. In the Properties window notice the Partition ID entry of PtnIds1004 – this relates to the constant scan that participates in the “join” with the Clustered Index Scan.
5. Use your mouse to hover over the constant scan and then click on it to produce the properties for the Constant Scan operation. You’ll see three primary items of interest:
· Actual Number of Rows = 4

· Output List = PtnIds1004

· Values = (2), (3), (4), (5)
These items show that information regarding 4 partitions (partition numbers 2 through 5 – remember, that the first partition is empty) are going to be returned as output to be intersected with the table.

[image: image2.png]'SQLLAUNCHVPC\...onedTable.sql | Summary |

ORDER BY 1
co

- Compare the guery plans on the two tables
—- before indexes are added.

—- Turn on "Include Actual Execution Plan" from Query
- drop-down menu OR use Toolbar icon.

SELECT * FROM Orders
SELECT * FROM OrdersRange
co

[Resus | /3 Messages 5 Execution pian |

=]

B

Query 1: Query cost (relative to the batch): 358
SELECT + FROM Orders
Table Sean
[Advensureiorks] . [dbo] . [Orders]
Caze: 100 %
Query 2: Query cost (relative to the batch): 658

SELECT + FROM OrdersRange

fol

Nested Loops
(Tnner Join)
Cose: 42 %

Table sean
[Rdvenvureniorks) - [4bo] . [0
Cosz: e &

=

(@ [SQLLAUNCHVRC\SQLDev01 ORTH)

)

Values
(@), (G, (@), ()
Output List
Prnlds1004

Misc
‘Actual Number of Rov 4

ActualRebinds 0

ActualRewinds 0

Desarpton Scan an nternal tabe of ¢
Estimated CPU Cost_|.0000042
Estmated 10 Cost |0

Estiated Number of |4

Estmated Operator C 0.0000042 (0%)
EstimatedRebinds |0

EstimatedRewinds |0

EstmatedRow Sze |18

Estimated Subtree Co|0.0000042

Logical Operation | Constant Scan
Node ID 1
Output ist Pinlds1004
Parall Faise
Physical Operation | Constant Scan
Valves. (@), (@), (@), ()
Scan
Constant Scan
‘Constant Scan
]
o
00000082
0.0000042 (0%)
00000082
]
BT

itby this operator.

betorer

	Create Clustered Indexes on both tables to determine the changes and impact to the execution plan.
	In general, a table is typically more optimized when the table is clustered. Many of the best clustered indexes are those that help to improve query performance, minimize fragmentation and offer benefits to certain types of table access. In a range partitioned table scenario (which is date-based), you typically have an ideal clustered index by clustering on your partitioning key. If you cluster by partition key alone then there are some negative side effects. Internally the clustering key must be unique – if you were to create an already unique clustering key then this would eliminate some overhead on INSERT/UPDATE and disk space. An ideal clustering key would be on the OrderDate and PurchaseOrderID columns. Since the clustered index will define how the data is stored, it must be created on the partition scheme.
6. Create a clustered index on your partitioned table:

CREATE CLUSTERED INDEX OrdersRangeCLInd

ON OrdersRange(OrderDate, OrderID)

ON OrderDatePScheme(OrderDate)
GO
7. For comparisons, create a similar index on the non-partitioned Orders table:

CREATE CLUSTERED INDEX OrdersCLInd

ON Orders(OrderDate, OrderID)
ON [PRIMARY]
8. Execute the two queries again and examine the query plan.
SELECT * FROM Orders

SELECT * FROM OrdersRange

GO

[image: image3.png]~SQLLAUNCHVPC\...onedTable.sql |~ Summary

Compare the guery plans on the two tables
after the index

SELECT * FROM Orders
SELECT * FROM OrdersRange
co

‘

[Resus | /3 Messages 5 Execution pian |

2] | ctustered ndex scan g
Pal=]
B Misc
ActualNumber of Rows 2748
Actual Rebinds o
Actual Rewinds. o
Defined Values [AdventureWorks]. [dba].
Desaripton Scanning a dustered nde
Estimated CPU Cost 0.0010305
Estmated 1/0 Cost 0.0083102

Estimated Number of Rows | 657
Estmated Operator Cost | 0.0282026 (56%)

Query 1: Query cost (relative to the batch): 358
SELECT + FROM Orders

= >
. S

[2vensureiiorks] . [dbo] . [Ozders] . [Or..
Caze: 200 %

Cosz: 0 %

Estiated Rebinds 3
Estimated Rewinds o

S | | EstmatedRon see 78
Estimated Subtres Cost | 0.0282025
Forced Index Faise
Logical Operation Clustered Index Scan
Node ID s
NoBxpandint Faise

Object [AdventureWorks]. [cba].
Ordered Faise

Output st [AdventureWoris]. [dbo].
Paralil Faise

Partiion ID Prnlds1004

Query 2: Query cost (relative to the batch): 658
SELECT + FROM OrdersRange

Physical Operation Clustered Inex Scan

=3 i
Pl Nestea Losps

. (Tnner Join)
oz 0% Cose: 42 %

‘Actual Number of Rows

‘Actual number of rows output by this operator. For roms
o type PLAN_ROWS only.

@ Query-. [SOLLAUNCHVPC\SQLD=vD1 B0 RTH)

| SReroperties [Elsoluton Explorer

As you may have expected, there is no difference in the plans generated on this execution versus the execution where the tables did not have clustered indexes. Everything about these two executions (number of partitions, relative costs, etc.) should be the same as it was before the clustered indexes were created (relative to the batch) and their results are the same. The only difference is that the clustered index defines the order of the data so instead of seeing “table scan” you will now see Clustered Index scan.

However, this example does show an important point about the creation of an index over a partitioned table – its simplicity. Once a table has been partitioned, you interact with it just as you would a regular table (in terms of indexes). Instead of having to create 4 indexes (one for each partition) the partitioned table dictates the data which in turn dictates multiple partitions. The OrderDatePScheme does not need to be specified because the clustered index IS the data and therefore needs to follow the same scheme as the table unless you want to change it. If you were to specify a different partition scheme or a non-partitioned filegroup destination for the clustered index, you would effectively be either changing the partition scheme or creating a non-partitioned table.

	
	9. Close the file: Script3 - RangePartitionedTable.sql.

Understanding the concepts – The Sliding Window Scenario
Each month, when new data becomes available – you need to bring it into your large table. When this is a single table, the process of updating indexes during the load creates poor performance and significant fragmentation. To optimize the load process, you will work with a separate table instead. This “table” – really a partition in disguise – will be loaded and manipulated independently of the partitioned table, effectively preparing it to become a partition of the existing partitioned table. Once ready, you will “roll” the scenario of dropping the old data (Q3 of 2003) from the partitioned table (a.k.a. – the data to be archived) and then add the new partition in (Q3 of 2004).

Currently, the range partitioned table has data from Q3 2003 through Q2 2004. For this example, we will process the new quarter’s data (Q3 2004) and then simply switch the “work” table into the partitioned table as a partition. When switching partitions you will find it’s a fast process as only metadata is changed – row location and table location is not changed!
	Tasks
	Detailed Steps

	Build a location for the new data to move into – effectively a staging “in” location – without disrupting the current (and active) OrdersRange table.
	1. Under the Queries section of the Lab Scripts project, double-click on the file titled: Script4 – RangePartitionedTable.sql to open this into a query window.

2. First, create a filegroup into which this data will be loaded and where the data will reside.

ALTER DATABASE AdventureWorks

ADD FILEGROUP [2004Q3]

GO

Important Concerns: Depending on filegroup size and the impact you want to your current data set, you have a few options for how you proceed with the switch in and out of data. You could get rid of the old data first and then reuse the existing filegroup for the new data coming it (but then you’d want to have used more generic file and filegroup names) or you can create a new location without reusing the existing file and filegroup. The pro to the latter approach is that we don’t need to wait for file creation time. The con to the this approach is that we’d need to remove the quarter before we load the new quarter which means that there would be a window (possible a quite large one) where the “window” of data includes only 3 quarters and not four. Because of new features in SQL Server 2005 – including fast file initialization – the “wait” time for creating files – even large files – should not be significant. However, your SQL Server must be configured to support it as fast file initialization is not enabled by default.

3. Add a file to the filegroup – following the same pattern you used earlier:

ALTER DATABASE AdventureWorks

ADD FILE

 (NAME = N'2004Q3',

 FILENAME = N'C:\AdventureWorks\2004Q3.ndf',

 SIZE = 5MB,

 MAXSIZE = 100MB,

 FILEGROWTH = 5MB)

TO FILEGROUP [2004Q3]

GO

Important Concerns: Different quarters with more or less data must be sized appropriately and you should always pre-allocate the space so that time is not wasted through autogrowth. Additionally, you will want these files to be on different hard drives. However, for the purposes of this lab – and for simplicity – drive c:\ is going to be used.
4. Next, you will create a separate non-partitioned table in which to hold the data that will later become the new partition to the partitioned table. This table must have the exact structure and clustered index of the table it will become a partition. Additionally, to ensure a fast “switch” constraints are required in order to restrict this table’s data to only the range which will be used within the partition. For optimal performance we will create the table, populate it with data, and then create the clustered index.

CREATE TABLE AdventureWorks.[dbo].[Orders2004Q3]

(

[OrderID] [int] NOT NULL,

[EmployeeID] [int] NULL,

[VendorID] [int] NULL,

[TaxAmt] [money] NULL,

[Freight] [money] NULL,

[SubTotal] [money] NULL,

[Status] [tinyint] NOT NULL ,

[RevisionNumber] [tinyint] NULL,

[ModifiedDate] [datetime] NULL,

[ShipMethodID]
tinyint NULL,

[ShipDate] [datetime] NOT NULL,

[OrderDate] [datetime] NOT NULL

CONSTRAINT Orders2004Q3MinDate

CHECK (OrderDate >= '20040701'),

[TotalDue] [money] NULL

) ON [2004Q3]

GO

ALTER TABLE AdventureWorks.[dbo].[Orders2004Q3]

ADD CONSTRAINT Orders2004Q3MaxDate

CHECK (OrderDate < '20041001')

go

-- Populate new table with Q3 2004 data.

INSERT INTO AdventureWorks.[dbo].Orders2004Q3

SELECT o.[PurchaseOrderID]

, o.[EmployeeID]

, o.[VendorID]

, o.[TaxAmt]

, o.[Freight]

, o.[SubTotal]

, o.[Status]

, o.[RevisionNumber]

, o.[ModifiedDate]

, o.[ShipMethodID]

, o.[ShipDate]

, o.[OrderDate]

, o.[TotalDue]

FROM AdventureWorks.Purchasing.PurchaseOrderHeader AS o

WHERE o.OrderDate >= '20040701'

AND o.OrderDate < '20041001'

GO

-- The table *must* have the same clustered

-- index definition!

CREATE CLUSTERED INDEX Orders2004Q3CLInd

ON Orders2004Q3(OrderDate, OrderID)

ON [2004Q3]

5. GO
Important Concerns: Depending on how many rows may or may not meet the constraint requirements (this depends a lot on the validity of the data source), you might want to load the data, clean it up, then add the constraint and then create the clustered index.

Also, at this point the new data is ready to be “switched” in. However, if you want to minimize the time between switching the old data out and the new data in (in order to always maintain as close to one year of data as possible), you might want to prepare to “switch” out the old data first.

	Build a location for the old data to move to – effectively a staging “out” location.
	For switching partitions out you MUST have a table with the EXACT same definition and clustered index created on the same filegroup of the partition you are switching out of the partitioned table. In this case we’re going to switch out Q3 2003 – which is on filegroup 2003Q3.

1. Create the staging table on the appropriate filegroup:

CREATE TABLE AdventureWorks.[dbo].[Orders2003Q3]

(

[OrderID] [int] NOT NULL,

[EmployeeID] [int] NULL,

[VendorID] [int] NULL,

[TaxAmt] [money] NULL,

[Freight] [money] NULL,

[SubTotal] [money] NULL,

[Status] [tinyint] NOT NULL ,

[RevisionNumber] [tinyint] NULL,

[ModifiedDate] [datetime] NULL,

[ShipMethodID]
tinyint NULL,

[ShipDate] [datetime] NOT NULL,

[OrderDate] [datetime] NOT NULL,

[TotalDue] [money] NULL

) ON [2003Q3]

GO

-- The table must have the same clustered
-- index definition!

CREATE CLUSTERED INDEX Orders2003Q3CLInd

ON Orders2003Q3(OrderDate, OrderID)

ON [2003Q3]

GO

Note: No constraint is necessary for switching data out; the table’s data will be coming from the partition’s data – which is already restricted. The ONLY constraints that are required in the partitioned table scenario are those on the table that will be switched in.
2. In order to switch out a partition you must state the partitioned table’s name and the partition number which is being “removed.” The partition is only being removed from the partitioned table – the data is NOT deleted. However, the data will NOT be seen via the OrdersRange table any longer. The only access to this data is via the Orders2003Q3 table- into which the partition’s data was “switched.”

ALTER TABLE OrdersRange

SWITCH PARTITION 2

TO Orders2003Q3

GO
NOTE: It might seem challenging to require knowledge of the partition by number but in the rolling range partition scenario the partition being removed will always be 2. Additionally, with a variety of catalog view queries – you can also determine the location of the partition programmatically. There are examples of this in the SQL Server 2005 Partitioned Tables whitepaper.
Now you could remove the table with a drop table and completely remove possibly thousands of rows without logging them individually. This provides a very fast mechanism for moving data in and out of ranges. Additionally, a second benefit of having this data isolated in it's own filegroup, is that you effectively get table level restore into a new location if desired. Using partial database restores you can restore just the primary and a subset of filegroups while stilling access the data. Then you can move data into another database. However, you cannot restore this filegroup directly into another database.

	Verify that the data within the partitioned table no longer includes that which was switched out.
	To confirm that we deleted all of the data from partition 2, you can use this special function to see which rows are in which partitions. The partition function exists in the $partition namespace and you may include it in your query in the format $partition.<function>(<table>.<column>):
SELECT $partition.OrderDateRangePFN(OrderDate)

AS 'Parition Number'

, min(OrderDate) AS 'Min Order Date'

, max(OrderDate) AS 'Max Order Date'

, count(*) AS 'Rows In Partition'

FROM OrdersRange

GROUP BY $partition.OrderDateRangePFN(OrderDate)

ORDER BY 1
GO
Verify Data exists in partitions 3, 4 and 5 ONLY

	Remove the boundary which is no longer represented by this table and then re-verify the data.
	The previous query should show that you have data ONLY in partitions 3, 4 and 5. So how does the left most partition become 2 again – so that later switches are always switching partition 2 out?

You need to remove the boundary point.

1. Remove the third quarter of 2003 from the OrdersRange partitioned table:

 ALTER PARTITION FUNCTION OrderDateRangePFN()
 MERGE RANGE ('20030701')
 GO
2. Now your partitioned table will have only 3 active – and 1 empty – partition. To verify, use the same query above. Notice the partition numbers are now 2, 3, and 4.
SELECT $partition.OrderDateRangePFN(OrderDate)

AS 'Parition Number'

, min(OrderDate) AS 'Min Order Date'

, max(OrderDate) AS 'Max Order Date'

, count(*) AS 'Rows In Partition'

FROM OrdersRange

GROUP BY $partition.OrderDateRangePFN(OrderDate)

ORDER BY 1
GO
3. Data was in partitions 2, 3, 4 but the merge operation removed partition 1. SQL Server therefore renumbers the existing partitions but it does NOT move any data. Only partition numbers have changed. At this point, the filegroups used by this database are unchanged. To see all of the filegroups for this database use the following query:
SELECT * FROM sys.filegroups
4. However, the filegroup [2003Q3] previously associated with partition 2, is no longer associated with this partitioned table. To see ALL of the filegroups associated with the OrdersRange table (even those with no data), use the following query:
SELECT ps.name AS PSName,

 dds.destination_id AS PartitionNumber,

 dds.data_space_id AS FileGroup,

 fg.name AS FileGroupName

FROM (((sys.tables AS t

 INNER JOIN sys.indexes AS i

ON (t.object_id = i.object_id))

 INNER JOIN sys.partition_schemes AS ps

ON (i.data_space_id = ps.data_space_id))

 INNER JOIN sys.destination_data_spaces AS dds

ON (ps.data_space_id =
 dds.partition_scheme_id))

 INNER JOIN sys.filegroups AS fg

ON dds.data_space_id = fg.data_space_id

WHERE (t.name = 'OrdersRange')

AND (i.index_id IN (0,1))

	Add the new filegroup to the partition scheme.
	In all of the above, you are reviewing the current state of the partitioned table. In order to add a new partition (by splitting one of the existing partitions), you will have to have a place for this new partition to reside. This next step ensures that the next split will use a very specific location for the partition. Again, in order to switch in or or out data effectively, you need to have the staging table ready – on the correct filegroup. In this case, the next filegroup to use is 2004Q3 – which is where our data already resides. All this step really does, is add this filegroup to the partition scheme so that it can be used.

ALTER PARTITION SCHEME OrderDatePScheme
NEXT USED [2004Q3]
GO

	Alter the table constraints to support the new range of data and switch in our new partition.
	Unlike Partitioned Views which rely heavily on constraints to determine what data resides in each table, Partitioned Tables do not require constraints (with the exception of the table that’s being switched in). However, for data integrity purposed you might want to constrain your data to a smaller set than what’s required by partitioning (which is negative infinity to positive infinity). To do this you need to add constraints on the base table – which are in place. However, the existing constraints restrict the data to only allow 2003Q3 through 2004Q2. Before we can switch in the new data, we need to allow the correct range.
1. Change the base table constraints to allow 3rd quarter of 2004 as well as not allow 3rd quarter of 2003:

ALTER TABLE OrdersRange

ADD CONSTRAINT OrdersRangeMax

CHECK ([OrderDate] < '20041001')

go

ALTER TABLE OrdersRange

ADD CONSTRAINT OrdersRangeMin

CHECK ([OrderDate] >= '20031001')

go

ALTER TABLE OrdersRange

DROP CONSTRAINT OrdersRangeYear

go

2. Next, we can allow a new partition to be added to the table:
ALTER PARTITION FUNCTION OrderDateRangePFN()

SPLIT RANGE ('20040701')

GO
3. Now, you can switch in the new partition:
ALTER TABLE Orders2004Q3

SWITCH TO OrdersRange PARTITION 5

GO

4. As a final step, verify the data:

SELECT $partition.OrderDateRangePFN(OrderDate)

AS 'Parition Number'

, min(OrderDate) AS 'Min Order Date'

, max(OrderDate) AS 'Max Order Date'

, count(*) AS 'Rows In Partition'

FROM OrdersRange

GROUP BY $partition.OrderDateRangePFN(OrderDate)

ORDER BY 1
GO
5. Close the file: Script4 - RollingRangeScenario.sql.

Finally, if further partitioning exercises are desired consider walking through the scripts in the Whitepaper Scripts project, also located within this solution. These scripts are updated versions of those provided with the whitepaper and in each script’s descriptive header – seen when you open the file – you can see information regarding the changes that were made. There are two scenarios covered by these scripts:
Scenario 1
This covers a more complex Range Partitioned Scenario that includes multiple tables as well as details about joins between two portioned tables that are aligned. For this scenario, you need to use the following scripts in this order:

1) RangeCaseStudyScript1-Filegroups.sql
2) RangeCaseStudyScript2-PartitionedTable.sql
3) RangeCaseStudyScript3-JoiningAlignedTables.sql
4) RangeCaseStudyScript4-SlidingWindow.sql

Scenario 2
This covers a Range Partitioned Scenario that simulates List-based Partitioning using Regions. For this scenario, you need to use the following scripts in this order:

Setup: Backup2000Restore2005.sql should be executed in SQLCMD mode in order to backup and restore the northwind database from the default instance of SQL Server 2000 to the named instance (SQLDev01) of SQL Server 2005. Northwind is used in one of the examples.

1) RegionalRangeCaseStudyScript1-Filegroups.sql
2) RegionalRangeCaseStudyScript2-PartitionedTable.sql
Additional Partitioning Resources
MSDN Whitepaper: Using Partitions in a Microsoft SQL Server 2000 Data Warehouse
http://msdn.microsoft.com/library/default.asp?URL=/library/techart/PartitionsInDW.htm
TechNet Whitepaper: SQL Server 2000 Incremental Bulk Load Case Study
http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/incbulkload.mspx
MSDN Whitepaper: SQL Server 2005 Partitioned Tables and Indexes
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql90/html/sql2k5partition.asp
TechNet Whitepaper: Strategies for Partitioning Relational Data Warehouses in Microsoft SQL Server
http://www.microsoft.com/technet/prodtechnol/sql/2005/spdw.mspx

