Making Considerate User Defined Types
Dan Sullivan

User defined types (a UDT) in SQL Server 2005 extend the scalar type system. They are useful because they allow us to make a new type that has its own string representation. Even though anything that is done with a UDT can be done with existing SQL Server 2005 scalar types plus a few programming conventions, UDTs are very useful. For example it might be nice to have a duration type that counted a number of days, hours, minutes, and seconds to the nearest 100 nanoseconds. After all our client side friends writing applications with .NET have a type just like that, it is called System.TimeSpan.

In SQL Server 2005 we could get the same affect by using BIGINT… it would have the appropriate range. Of course we couldn’t do this:
DECLARE @ts BIGINT
SET @ts =’5.4:3.2’

in order to set @ts to a duration of 5 days, 4 hours, 3 minutes and 2 seconds. Instead we would institute a programming convention that the value in @ts means hundreds of nanoseconds.
To help make it easier to use the conventions we could write a user defined function that converted a string to the correct BIGINT value.

CREATE FUNCTION ToDuration(@duration VARCHAR(MAX))
RETURNS BIGINT
AS
BEGIN
--lots of interesting code here
END

Then we would tell everyone to use ToDuration to convert their duration strings to BIGINT. But that is a programming convention, not really the same thing has having a scalar type like DataTime. Client side applications would need a similar function to convert the BIGINT’s they read from the database to and from convenient TimeSpan’s. If we were to implement this as a UDT the client could use the same code we use for conversion and any other functionality.
This paper will cover how to create a SQL Server 2005 UDT that is the equivalent of the .NET System.TimeSpan. We will call our UDT “TimeDuration” and it can be used in both SQL Server 2005 itself and in .NET client applications. It will cover things you should do, in general, to make life easier for client side applications programmers that use your UDT, including how an application can dynamically load the assembly for the UDT from SQL Server 2005.

UDT Construction
There are many ways to implement a UDT, but all start with a class that is marked with the SqlUserDefinedTypeAttribute. We are only going look at one way this can be done, and let Visual Studio do as much of the work as possible.
A UDT requires three things to be implemented; a string representation, a binary stream, and a null semantics. For our Duration type the string representation is easy, we want the same representation as System.TimeSpan uses. You can look up the details in MSDN, but in brief, by example, here it is:

<days>.<hours>:<minutes>:<seconds>
So “5.3:25:6” is five days, three hours, 25 minutes, and six seconds. And something like “14.” is 14 days and so on. It’s a reasonably flexible format.

The binary stream will be a little work because we want our TimeDuration type to be sortable; SQL Server 2005 has some special requirements that the stream must meet if it is to be sortable. The binary stream is the stream of bytes that SQL Server 2005 will store on disk to make the UDT durable.
To implement the null semantics we will need a little extra state to keep track of whether or not our TimeDuration is null.
Visual Studio will skeleton out a UDT for us. We will add a few things to that skeleton and make a few changes to it. Use Visual Studio to make a new “C# Database” project. Don’t make an unqualified database project, that’s something different.
[image: image1.png]
Using Visual Studio to make a C# database project
Once you click OK, Visual Studio will ask for the database you want to deploy your UDT to. This is the database you will be loading the UDT into for testing.
Look at the Solution Explorer once Visual Studio is done making your new project. If it is not visible you can find it by using the view menu.
[image: image2.png]
The Finding the Solution Explorer

Do a right click on the project name, “MyUDT” in this example, and pull down and select the “Add->User-Defined Type…” to skeleton out a class that you can use to implement a UDT.
[image: image3.png]
Making a UDT

Once this is done you should see a new class in an editing window. The beginning of the class should look like:
[image: image4.png]
Visual Studio skeleton class for UDT
We need to make some changes to this before we go any further. There are quite a few options that you can choose from here, but this paper is going to stick with the ones needed to create a UDT where we control the specifics of how the binary byte stream looks. This is called user defined formatting and will allow us to control how a TimeDuration is sorted.
[image: image5.png]
UDT that does user defined formatting
We will talk more about the choices made here as we go through the implementation.

The next thing we need to do is to decide how instances of our TimeDuration will store state. We must keep track of the value of the time duration and whether or not it is null. Since we want to look just like a System.TimeSpan, we will use that store the actual duration Because System.TimeSpan cannot, itself, represent a null value so we will add a Boolean field to keep track of this. The result is two fields added to the TimeDuration class as shown below.

[image: image6.png]
Fields that store state for TimeDuration

 There are two methods in a UDT that implement the string representation of a UDT; ToString and Parse. SQL Server 2005 calls the ToString method whenever it needs a string that represents the value of a UDT, and calls Parse when it has string it wants converted into a UDT. Since System.TimeSpan already implements most of this functionality we will delegate most of the work to it.
[image: image7.png]
Delegating string formatting to TimeSpan

ToString is a virtual method from System.Object that is being overridden here. If notNull is false we just return “null”, otherwise we let the code in System.TimeSpan figure out how to make a string that represents the value.
The other string function we must implement is Parse. Implementing a parse function is always a bit of extra work because we not only have to parse the string we also have to make sure that it is properly formatted. Luckily this is something else we can delegate to System.TimeSpan too.

[image: image8.png]
Delegating parsing to TimeSpan

Note that Parse is a static method and that it returns a TimeDuration, that is it returns the type of UDT we are creating. If a null string is passed into Parse it should return a null instance of a TimeDuration. “Null” is a static property of the TimeDuration that returns a null instance of TimeDuration. Shortly we will see how it is implemented.
If the string being passed in is not null we create a new instance of a TimeDuration and set its notNull field to be true. Then we use the static TryParse method of the TimeDuration class to do the heavy lifting of parsing the input string.

If TryParse fails then we raise an application exception. If our TimeDuration was only going to be used in SQL Server 2005 we could use the functions in the System.Data.SqlServer namespace to do a “RAISERROR’ instead, but that isn’t supported on the client side. Throwing an exception is supported on both the server and client, so that is what we use. If we wanted to make this code more complicated we could detect, at runtime, whether you were running on the client or server, but this is a much more simple solution to supporting client side code.

We have already seen the usage of the “Null” static property, here is how it is implemented.
[image: image9.png]
Implementation of Null

This is the way you implement a read only static property in C#. Making a null instance of TimeDuration to return is pretty simple. When a new instance of TimeDuration is created its notNull field is automatically set to false.

The other half of implementing null is implementing the IsNull property. Note that this is an instance property, not a static one as Null is.

[image: image10.png]
Implementation of IsNull

SQL Server 2005 will use the IsNull property whenever it needs to know if it has a null instance of a TimeDuration, for example when a SQL script uses “IS NULL” in an expression. Again the implementation is pretty straightforward; just return the complement of the state of the notNull field.
Now we get to the parts where we actually have to do some real programming. We want to control how a TimeDuration will be sorted. Of course we want longer durations to be sorted after shorter ones when the ASC order is used. SQL Server has no idea what the underlying datatype is for UDT, it is just a stream of bytes to it. When it sorts a UDT is sorts like it would a string.

Given two UDT’s it just compares their first bytes. The UDT with the larger first byte is considered the greater one. If the first bytes are the same it moves onto the next byte of each and so on. This is a lexical, or dictionary, sort., and doesn’t sort numbers the way you would want it to. This class, in order to control sorting order, must control the formatting of the bytes that SQL Server 2005 looks at when it tries to sort a UDT. That is why the formatting property of SqlUserDefinedType attribute is set to “UserDefined”.
[image: image11.png]
SqlUserDefinedType properties

There are a number of other properties of the SqlUserDefinedType attribute that are used specified when Format.UserDefined is used. MaxByteSize must be specified and indicate the largest number of bytes needed to store an instance of the UDT. It is not always obvious what the size of a UDT will be, but by using the System.Runtime.Interoperabilty.Marshal.SizeOf static method you can always find out what it is. Here is a code fragment that outputs the size of the System.TimeSpan class.
[image: image12.png]
Finding size of a type

The IsFixedLength property is false by default. Setting it to true is an optimization hint to SQL Server 2005. Assuming the size of a UDT is always the same, setting this property to true lets SQL Server 2005 use your UDT in a more efficient manner.
By default SQL Server 2005 will assume that your UDT cannot be sorted. If you want SQL Server 2005 to sort your UDT you must set the IsByteOrdered property to true. Note that the name of the property does not directly say that the UDT is sortable, it says that it is ok to sort it lexically. It will be up the implementation of the UDT to make sure that this is in fact true.

When the SqlUserDefinedType attribute specifies Format.UserDefined the class must also implement the IBinarySerialize interface. It is though this interface that the UDT controls the formatting of the binary stream SQL Server 2005 uses to save instances of a UDT.

[image: image13.png]
UserDefined requires IBinarySerialize

The IBinarySerialze interface requires two methods to be implemented; Read and Write. When SQL Server 2005 needs to save an instance of a UDT to a byte stream, it will call the Write method and pass in a byte stream it expects to be filled with the appropriate bytes. If the Write method tries to write more bytes than specified in MaxByteSize there will be runtime error.
A TimeSpan is basically a wrapper around a System.Int64 datatype. In fact it contains a method, called Ticks, that returns an Int64 that is the number of 100 nanoseconds in the time span. It is really easy to save an Int64 to a stream, but unfortunately the format used is not one that can be lexically sorted the way SQL Server 2005 does sorting.
Below is the implementation of the Write method.
[image: image14.png]
Implementation of Write

The first thing the Write method does check to see if the TimeDuration is null. If it is, it just writes all zeros into the stream.

If it is not null there is some work do to. First it gets ticks from the timeSpan field. This is a signed integer. What the arithmetic calculations are doing is to normalize ticks variable from a signed integer to an unsigned integer, uticks, but shift everything so the most negative value that ticks can contain is a 0 in uticks.

The result of converting the signed ticks to an offset, unsigned uticks, is that uticks can serialized a byte at a time, starting with the high order byte, and end up with a stream that SQL Server 2005 will sort in the way you would expect a number to be sorted.
The Read method has to undo what the Write method did.

[image: image15.png]
Implementation o f Read

The first byte in the stream tells s whether or not the TimeDuration is null. If it is null there is nothing else to do. If it is not null then we read the UInt64 out of the stream a byte at a time, reconstructing it, high byte first. Then we have to undo the normalization that Write did, and calculate the signed ticks value;

Note that it is possible to make sortable TimeDuration sort properly without using Format.UserDefined, but it would be about the same amount of work. In any case if you are going to be a “good guy” for client applications that use your UDT, you should always implement IBinarySerialize, even if there is no need to for SQL Server 2005. Later we will see why this is.
Once all the code for your UDT is completed you can use Visual Studio to deploy the code to a database. The database it will be deployed to will be the one you selected when you created the project. If you want to deploy it to a different database then you must open the projects properties and change the database tab.
[image: image16.png]
Changing deploy database

Once you have the deploy database you want selected, use the build->deploy menu to deploy the UDT.
[image: image17.png]
Deploying UDT

Now we can try out TimeDuration in SQL Server 2005. As far as SQL Server is concerned TimeDuration is just another scalar type. For example you can use SQL Server Management Studio to create a table with a TimeDuration column in it.
[image: image18.png]
Script that tries out TimeDuration

As you can see TimeDuration is used in the same way as any other type, like BIGINT would be used. Notice that TimeDuration can be inserted as a plain ol’ string. The SELECT is doing something strange though, it is casting the duration column to a string. Shortly we will see why, but these are the results the script produces.

[image: image19.png]
Result of sorted select

As you can see the durations do come out in time order, as we wanted them to. But why were we required to CAST the duration column to a string? It is because SQL Server Management Studio is just a client program and to be able to present a TimeDuration as a string it needs to access the assembly that contains the class definition for TimeDuration. You can load the TimeDuration assembly into SQL Server Management Studio in a couple of different ways, but in later betas this will not be possible. Allowing SQL Server Management Studio to load assemblies from an unknown source could easily compromise the security of SQL Server 2005 itself.
So you will be able to pass in strings as inputs to UDTs in SQL Server Management Studio, but in the future you will have to use this CAST technique to get them back. You might ask “How does that CAST work anyhow?” It works because it is being run on SQL Server 2005, and the server itself does have access to the assembly that contains the TimeDuration class.

Client applications can make use of UDT’s in a number of ways, even if they do not have access to the TimeDuration assembly. Client applications can create text based SQL command just like the kind you might use in SQL Server Management Studio.
UDTs are supported on the client side through ADO.NET, if the client application has access to the assembly for the UDT at development time and runtime. When the client application is deployed the UDT assembly can be deployed with it or, as we will see shortly, it can be dynamically downloaded from SQL Server 2005 when it is needed.

There are a number of other things you should add to your UDT to make things easier for client side code. One is to add implicit casts between your UDT type and any System type for which this makes sense. For example our TimeDuration class is just a thin wrapper around a System.TimeSpan class. It would be very useful to client code to be able to implicitly cast these between these types. Writing these casts is fairly straightforward.
[image: image20.png]
Implicit cast implementations

Implicit cast are implemented as public static methods that start with “implicit operation” followed by the type they will cast to. They take a single input parameter which is the type they will cast from.

Casting from a TimeSpan to a TimeDuration takes a few lines of code, but not very many. Going the other way is even easier because TimeDuration was implemented as a struct, that is a value type, so returning it also clones it. If TimeDuration was implemented as a reference type you might want to clone it before returning it. However this paper isn’t going to cover the tradeoffs between implementing a UDT as a class or struct.
Adding these casts to TimeDuration makes the client side code a lot easier. Here are some examples.

[image: image21.png]
Client casts

The built in implicit casts make moving to and from System type a lot easier. Below is the output of the code fragment above.

[image: image22.png]
Client casts output

The implicit casts let the client leverage all the code in the underlying type. If you didn’t provide the casts either the client would have to write its own conversion code, or you would have had to provide equivalent functionality in your UDT.

Another thing a client can do with a UDT, is to use the results in their program as though it were an object of type TimeDuration. Below is an example of client code using a Sql DataReader to select a column that contains a TimeDuration.
[image: image23.png]
Client accesses column as TimeDuration

Now the client has the best of two worlds from its viewpoint, it can use SQL to get data, but process it as though what was returned is an object and a familiar programming construct. There is a hidden cost/complexity here. It has to do with how memory for instances of types are managed in .NET and with the fact that the data coming back from SQL Server in a DataReader is always read only.

The problem is that the TimeDuration inside the while loop has to be created for each pass through the while loop. In some cases this can put a lot of unwarranted extra work on the heap manager in .NET, but sometimes not. The devil is in the details.

TimeDuration, in this example, is implemented as a value type. Value types are not allocated on the heap, they are allocated in place. So the code fragment above does not produce and extra work for the heap manager.

You might think that a best practice for UDTs would be to implement them as a struct, or value type, because of this. That is not the case, value types have semantics that sometimes are useful and sometimes are not. You should spend some time reading about the comparison of value types and reference types in MSDN before deciding which to use for your application. There is no simple answer as to whether a UDT should be implemented as value type or a reference type. Reference types are always allocated on the heap and are a “class” in C#.
If TimeDimension had been implemented as a reference type, or class, the code fragment above would put extra load on the heap manager over which the client application developer would have no control. Each time through the while loop would produce another object on the heap, which as some point would have to be cleaned up by the heap manager. If your UDT implements IBinarySerialize you will be giving client developer tool to control allocation of memory for your UDT. The code fragment below shows how heap allocation can be controlled and limited to one instance on the heap for the entire duration of the while loop.
[image: image24.png]
One TimeDuration used for entire while loop
IBinarySerialize can be used on the client side as easily as it can be used by SQL Server 2005. In this example an instance of a TimeDuration is made before the start of the while loop. This single instance is filled each time the DataReader returns a row, instead of making a new instance each time. At the end of the loop there is only a single TimeDuration object for the heap to free, if TimeDuration was a class.
There is one last thing we want to look at. In order for the client application to do the things we have just looked at, the assembly that holds the TimeDuration type must be available at runtime to the applications. There are a number of standard ways to make this happen. Some of them include installing the assembly in the global application cache and another it to just deploy the assembly in the same directory as the application. But the assembly itself is always stored in the contents column of the sys.assembly_files view in SQL Server 2005.

Can that assembly that is in sys.assembly_files be used by an application? Yes, it can. There a number of issues you might want to consider when deploying assemblies in this fashion. They are basically the same questions you must answer when you let any application access anything in your database. But assuming the answer to all those questions is “OK” here are the mechanics to make this happen.
First of all the client is going to have to be able to access the sys.assembly_files view. In general you would never give a client access to this table, but would create a stored procedure or function that would access the able on the clients’ behalf. Below is a T-SQL user defined function that will access the assembly.
[image: image25.png]
Function that returns assembly

The bytes that make up the assembly are in sys.assembly_file but the index is an id, not the name of the assembly. The name of the assembly is in the sys.assemblies table. To get the assembly by name the sys.assemblies view has to be joined with the sys.assmbly_files view on the assembly_id.
A quick glance at the sys.assembly_files table will show you that there is often more than one file for a given assembly_id. The file_id of the assembly itself is always “1”. The other files are supplemental information such are source code and debug files. So the SQL query has to be further by requiring the file_id to be “1”.
With the GetTimeDurationAssembly function a client can issue a SQL command and get back the bytes that make up the assembly. The bytes for an assembly can be loaded into an application using the Assembly.Load method. Load is a static method of the Assembly class.

But there still is an issue. When .NET needs an assembly and cannot find it, it does not just give up, it fires an event in the AppDomain which needs the assembly. The name of the event is AssemblyResolve. But this event requires that an event handler be added to it before the main code is running. You can do this in a static constructor for a class. Below is the code that dynamically loads an assembly from SQL Server 2005 when it .NET requires it.
[image: image26.png]
Assembly dynamically loaded at runtime

Program is a static constructor for a class called Program. It does one thing; it finds the current AppDomain and sets up a handler that will be called anytime .NET cannot find an assembly that it needs.
If .NET cannot find an assembly that it needs it will call the ResolveDuration method. If it gets back a null it will try other methods waiting for the AssemblyResolve event, if there are any. If it gets back a non-null, it uses that assembly.

The first thing that ResolveDuration does is look to see if the assembly that .NET is looking for is the Duration assembly. This is the assembly that contains the TimeDuration type. If that is the assembly it is looking for then it issues a SQL command that executes the GetTimeDurationAssembly function and loads the bytes that come back into an assembly. Then it returns that assembly.
This just shows the mechanics of loading an assembly from SQL Server 2005. In a real application it would not be a good idea to hard code connection strings and commands into the application, but doing it this way makes the code a bit easier to follow.
Summary – Making things easier for the client side

Using a UDT makes your data easier to use on the client side, rather than using built-in types along with custom T-SQL code. You and the client applications that use your data can use the same code. You clients can easily stick to a familiar programming techniques; objects. Any functionality you add to your UDT is available to client code.
You will probably have to do some extra work to make your UDT sort the way you want, but if you do so using IBinarySerialize you clients can use that interface to reduce the amount of work handed of the heap manger.

And lastly, where possible, implement any functionality you’re your UDT in the UDT itself, not in T-SQL. That way client side code that uses your data will not have to duplicate code you have already written. Providing implicit casts to System types where possible is an example of this
Example Code
The Visual Studio (Beta 2) solution accompanying this paper has three projects in it. The Duration project has the implementation of TimeDuration in it. When you first open this project you should change the location of the test database, it’s unlikely you will have access to CANOPUS5 (. This project also contains a simple test SQL script.

The DurationClient is an ADO.NET based application that uses TimeDuration from a DataReader.

The TimeSpanTest project has some test code, such as the code that figures out the size of a TimeSpan.

[image: image27.png]
Copyright Danal Technology Inc 2005

