SQLintersection

Post-Conference Session: Friday, June 14

Zero To Hero: Faster SQL Query Performance

Jonathan Kehayias
Jonathan@SQLskills.com

o ®
SQLSKkills
o

ry) SQL

(ntersection

Jonathan Kehayias
Principal Consultant, SQLskills

Jonathan@SQLskills.com E] @SQLPoolBoy

bm www.sqlskills.com/blogs/jonathan

Trainer/Speaker

In addition to consulting, | teach content for
our IEO: Accidental DBA course, IECAG:
Clustering and Availability Groups course,
and our I[EPTO2: Performance Tuning and
Optimization course

Data Platform MVP

| have been thankfully recognized as an MVP
by Microsoft since 2008

Author
Microsoft SQL Server 2012 Internals

Professional SQL Server 2008 Internals and
Troubleshooting

Troubleshooting SQL Server: A Guide for the
Accidental DBA

Reminder: Intersect with Speakers and Attendees

= Tweet tips and tricks that you learn and follow tweets posted by your

peers!
o Follow: #SQLintersection and/or #DEVintersection
= Join us — Wednesday Evening — for SQLafterDark I-aruer
o Doors open at 7:00 pm
o Trivia game starts at 7:30 pm
Winning team receives something fun! D arH

o Raffle at the end of the night
Lots of great items to win including a seat in a SQLskills Immersion Event!

o The first round of drinks is sponsored by SentryOne and SQLskills

o []
sQL SQLSkiUS: SentryOne.

U in terseCtlon e http://www.SQLintersection.com

Overview

= How SQL Server Processes Queries
= Normalization and Datatypes

= Reading Execution Plans

= Designing Set Based Solutions

= Scalability and Testing

= New Features vs Old Tricks

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

How SQL Server Processes Queries

Row Mode Batch Mode
Efficient for OLTP workloads = Efficient for data warehouse
Typical for row store format and scanning large amounts of
tables data
Execution tree operators read = Typical for columnstore format
each required row across all tables
columns = Processes multiple rows as a

batch and eliminates the need
for an exchange operator
during parallel processing

SELECT Statements

= Define the result set format and columns of data to return in the column
list

= Define the tables that contain the source data in the FROM and JOIN
clauses

= Defines how the tables logically are related to one another in the ON
clause following a JOIN or the WHERE clause

= Defines the filtering conditions for the output rows in the WHERE or
HAVING clause of a GROUP BY

= Does not define how SQL Server will execute the request unless specific
hints are used (non-procedural)

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Query Execution Plans

= Parsing
o Syntaxis checked to determine if the query is written properly
o Produces a parse tree that is handed off
= Binding
o Algebrizer analyzes the parse tree for name resolution
o Do the tables exist, are columns in the where clause in the tables, permissions
o Produces a query processor tree that is then handed to the optimizer
= Optimization
o The optimizer attempts to determine the most efficient method of executing the request
based on costs
o Produces an execution plan that is used by the execution engine to process the request

o The goal of query optimization is not to find BEST execution plan, but to find a good
enough execution plan fast

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Operator Precedence

1 ~ (Bitwise NOT)

2 * (Multiplication), / (Division), % (Modulus)

3 + (Positive), - (Negative), + (Addition), + (Concatenation), - (Subtraction), & (Bitwise
AND), * (Bitwise Exclusive OR), | (Bitwise OR)

4 =, >, <, >=, <=, <>, |5, 1> 1< (Comparison operators)l

5 NOT

6 AND

7 ALL, ANY, BETWEEN, IN, LIKE, OR, SOME

8 = (Assignment)

l l © SQlintersection. All rights reserved.

in terseCtion http://www.SQLintersection.com

Normalization

= Process of organizing data in a database into tables with relationships to
other tables

O

O

O

O

Better flexibility — design changes

Reduce redundancy — wasted disk/memory space

Enforce data integrity — reduce where data changes must occur
Remove inconsistent dependencies — group data into related subjects

= Rules define a standard of database normalization

O

First Normal Form

o Second Normal Form

o Third Normal Form —typical for OLTP

) SQL

© SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

First Normal Form (1NF)

= Eliminate repeating groups in individual tables

o Does not store multiple values within a single column

o Defines each value as atomic — cannot be broken to smaller pieces
= Create a separate table for each set of related data

o Does not use multiple columns in a table to store similar data
o E.g. Phone Numbers, vendor codes

= |dentify each set of related data with a primary key
o 1NF requires a unique constraint on the table - no exact duplicate rows exist

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

First Normal Form (1NF)
[Name |Address |Phonel __|Phone2 | PostalCode | Country _

Jonathan Kehayias 123 Disney Hwy, Orlando, FL. 407-528-1124 727-485-3325 34582 USA
34582

Paul Randal 36 BAOSHAN JIUCUN, 251-112-2425 927-555-1212,855- 201900 CHINA
BAOSHAN DISTRICT 243-8514

D Name — address — [phone

1 Jonathan Kehayias = 123 Disney Hwy 407-528-1124

2 Jonathan Kehayias = 123 Disney Hwy 727-485-3325

3 Paul Randal 4432 Nowhere Lane 251-112-2425

4 Paul Randal 4432 Nowhere Lane 927-555-1212

5 Paul Randal 4432 Nowhere Lane 855-243-8514

l l © SQlintersection. All rights reserved.

in terseCtion http://www.SQLintersection.com

Second Normal Form (2NF)

= Must first meet the requirements of 1NF

= Create separate tables for sets of values that apply to multiple records
o Records should only depend on another tables primary key

o E.g. Addresses stored in an address table and referenced by AddressKey in
Customer, Orders, Shipping, etc tables

= Define relationships between tables with a foreign key
o Enforce data integrity and prevent orphaned data

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Second Normal Form (2NF)

II_ PostalCode

Jonathan Kehayias 123 Disney Hwy 34582
2 Paul Randal 36 BAOSHAN JIUCUN, BAOSHAN DISTRICT 201900 China

PhonelD PhoneNumber

407-528-1124
727-485-3325
251-112-2425
927-555-1212
855-243-8514

uT W N
N DN N = =

l l © SQlintersection. All rights reserved.

in terseCtion http://www.SQLintersection.com

Third Normal Form (3NF)

= |deal for OLTP applications
o Reduces duplication of data
o Typically free of INSERT/UPDATE/DELETE anamolies
= Must first meet the requirements of 2NF
= Eliminates columns that do not depend on the key
o E.g. Cities, states, zip codes
o May not always be followed for every table (see above examples for addresses)

o Should be applied for frequently changing data that affects multiple
relationships or records — only update parent table field

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Third Normal Form (3NF)

Jonathan Kehayias 123 Disney Hwy
2 Paul Randal 36 BAOSHAN JIUCUN

PhonelD PhoneNumber PostalCodelD | PostalCode

407-528-1124
727-485-3325 2
251-112-2425
927-555-1212
855-243-8514

ur s W N
N N N =

) SQL

intersection

34582
201900

China

Orlando

BAOSHAN Shanghai
DISTRICT

© SQlintersection. All rights reserved.
http://www.SQLintersection.com

Use Appropriate Data Types

= Understand the storage costs and implications of data types during
schema design — especially for keys

Data type Range Storage

bigint -9,223,372,036,854,775,808 to 8 Bytes
9,223,372,036,854,775,807

int -2,147,483,648 to 2,147,483,647 4 Bytes

smallint -32,768to 32,767 2 Bytes

tinyint 0 to 255 1 Byte

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Use Appropriate Data Types (2)

= Consider precision requirements for dates and times

o DATETIME2 =6, 7, or 8 bytes with nanosecond precision
o 6 bytes for precisions less than 3
o 7 bytes for precisions 3 and 4
o All other precisions require 8 bytes
o DATETIME = 8 bytes with fractions of second precision
o Fraction of seconds rounded to .000, .003, or .007 seconds
o SMALLDATETIME = 4 bytes with minute precision
o DATE = 3 bytes

= Don’t store dates or times as CHAR, VARCHAR, NCHAR, or NVARCHAR

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Where Do You Start with a Execution Plan?

0.0 % 13.5% 43.9%
e ﬂ-é nat
SELECT Parzlielism Hash Match Bitmap Paralleism Clustersd Index Scan
(Gather Sweams) (Inner Joi) | (Bitmap Creste) (Reparotion Streams) [Transactiontistory].

Paralielism
(Gather Sreams)

SQL

intersection

[PK_TransactionHistory_Tran...

T3%

01% 0.1% 114% li.i‘%
Lp38 58 e
e 3 -
Compute Scalar Compute Scalar Paralielism Chustered Index Scan
(Repartition Stresms) [SalesOrderDeill.
[PK_SalesOrderDetail_SalesO.
20.8 % 205 % 216 %
¢ 0,519 &
63 j 463 d‘é - | 3
SELECT Compute Scalar Hash Match Hash Mal:d|
(Aogregatz) {Inner Join)
w_|<fu 60% 03% 14 38%
' M ¢ 30088 —ie 0,913 50,919
] e %; y % y
Compute Scaler Seream Aggregass Paralidism Stresm Aggragete raligism Hash Mzm:h =
(Aggragate) (Regartition Szreams) (Aggragsss) (Repam'uun Sweams) (Inner Join) (Biamap areame)

3%

Paralielism
(Repartition Streams)

R NE Y
¢

Hash Match
[tnner Join)

10.8 %

Ind=x Scan
[SalesOrderDetail].
[[¥_Sale=OrderDersil_|

3806 B‘ Er

Paraligism
(Reparition Stresms)

L3z ,_|w

[SA\HDrdErBEta\\]‘
[IX_SalesOrderDetail_Produc...

Index Scan
[SalesPerson].
[AK_SzlesPerson_rowguid]

Clustered Index Scan
[SalesOrderbeader]
[PK_SelesOrdertiesder_SalesO...

Produc...

Y o 5 iy

Vs Mach Paralleism Index Sean
(tnnes Join) [B’mnapc:eme) (Disribute Sreams) [Salesperson].
[AK_SalesPerson_rowguid]
0.1% 245%
o],
prEr) &
Comput= Scalsr Chustered Index Scan

[SdlesCrdertieader].
[PK_SslesOrderHesder_SalesO..

© SQlintersection. All rights reserved.
http://www.SQLintersection.com

iy

Reading Plans

An operator reads rows from a leaf-level data source OR from child
operators and return rows to the parent

Control flow starts at the root (left-to-right)
Data flow starts at the leaf level (right-to-left)

Query 1: Query cost (relative to the batch): 100%
SELECT p.FirstName, p.LastName, e.Emailfddress FROM Person.Per

= ic] #

Nested Loops Index Seek (NonClustered)
SELECT _
(Inner Join) [Ferson] . [IX Person LastName _.
Cost: 0O % — — —

Cost: 0 % Cost: 41 %

[J:J i
Clustered Index Seek (Cluster..
[Emailhddress] . [PK_EmailRAddre..
Cost: 58 %

Control flow

S QL « Data

- ! flow
(ntersection

© SQlintersection. All rights reserved.
http://www.SQLintersection.com

Operators

= Operators are the building blocks for an execution plan

o Each operator has a specific functionality — access data (scan, see), perform
aggregations or join data sets

o One-to-many mapping of logical to physical operations
o E.g.an INNER JOIN could be implemented as a Loop, Hash, or Merge join

= No specific operator is “good” or “bad” for performance
o Certain operators have more overhead and consume more resources
o Some are more appropriate in given contexts

= SQL Server 2017 has 100+ operators
= Operators may also be referred to as iterators

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Table and Index Scans

= Table Scan: indicating a retrieval of ALL rows from a table | u_ \
o Indicates a heap table

o Isitared flag?
o Probably for larger tables (I/0)

= Clustered Index Scan: indicating a retrieval of all rows “ ;

o Isitaredflag?
o Ifit’s a large table or you expect a seek operation

= What about nonclustered index scan of leaf level?
o Depends on the size; it may or may not be an issue

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

O

Index Seeks

Clustered Index Seek

4

63y

o Retrieving rows based on a SEEK predicate from clustered index

Nonclustered Index Seek
o Same, but from a nonclustered index

There is nothing in the query plan that differentiates between singleton

or range scan operations

o Can use sys.dm_db index operational stats to determine

o range_scan_count
o singleton_lookup count

SQL

intersection

© SQlintersection. All rights reserved.

http://www.SQLintersection.com

Filter E

= Predicates can be evaluated within operators that read data from
table/indexes

= Query Optimizer aims (when possible) to “push” filter down the tree
(leaf level) to reduce rows moved

= |f a predicate is high in cost or complexity a separate Filter operator may
be used

= When you see these, take note of where they are happening

o Late in the data flow can translate to higher overhead as the operators pull
data

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Predicates

= Seek Predicate

o Used in actual index seek operation
o Leveraging index keys

= Predicate (Residual Predicate)

o Search condition that isn’t SARGable — so it remains as an extra predicate
o For Merge Join: check Graphical Showplan Properties for “Residual” value
o For Hash Match: check “Probe Residual” value in plan itself (tooltip over operator)

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Join Considerations

= Beware of advice telling you that specific join types (or operators, for
that matter) are “good” or “bad”

= Join hints and/or forcing order = red flag
o Generally, “edge” cases or extreme tuning scenarios warrant their use
o Otherwise, ask questions and find out why this is happening

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Nested Loop @

= Uses each row from one input to find rows from a second input that
satisfy the join predicate
= Usually seen with smaller data sets and lookups, where the inner input is
indexed on the join predicate
= Algorithm:
o Forone row in the outer (top) table, find matching rows in the inner (bottom)
table and return them

o After no matching rows on the inner table are found, retrieve the next row
from the outer (top) table and repeat until end of outer (top) table rows

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Nested Loop Join Performance Characteristics

= Look for “smaller” table as outer (top) table
o Bad cardinality estimates can lead to this NOT being the case

= Nested Loops may be associated with inflated random 1/Os when the
row estimates end up being incorrectly estimated

= Look for under-estimates for inner table or index scans
= Memory requirements are lower comparatively

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Key Lookup I

L] [=]
u][u] ¥

= A.k.a. Bookmark Lookups
= Key Lookup = bookmark lookup on table with clustered index (always via
Nested Loop)
o If you see WITH PREFETCH then QP is using read-ahead
= |s this good or bad?

o For each row in the non-clustered index, an associated clustered index I/O is
required (random 1/0)

o Evenif all pages are cached, you can STILL have inflated overhead (compared
to a covering index) due to the increased number of random logical reads

= May be prone to deadlock conditions

) SQL

[-n tersectlon © SQlintersection. All rights reserved.

http://www.SQLintersection.com

O

RID Lookup

Simply a bookmark lookup to a heap (using the RID)

g

o Just like with Key Lookups, you’ll only see this with Nested Loop Joins

Is it good or bad?
o Same considerations as a Key Lookup

o You also may research good vs. bad because you’re going against a heap

SQL

intersection

© SQlintersection. All rights reserved.
http://www.SQLintersection.com

Merge Join ij

= Joins two inputs which are sorted on the joining columns and returns
matching rows

O

Typically benefits moderate-sized data sets

= Algorithm:

O

O

O

O

) SQL

Retrieve row from the outer input
Advance through the inner input until no more matches are found
Retrieve the next row from the outer input and repeat

Note: worktables are needed to support many-to-many merge joins (outer
input is not distinct)

© SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Merge Join Performance Characteristics

= Quter (top) / inner (bottom) requires sort on join key

= Pre-existing sorting (via index) is ideal, but sorts can be automatically
added
= |f the sortis injected into the plan by the Query Optimizer, take note of
it
o Query Optimizer injected sorts have a risk of spilling to disk (tempdb)
= Memory requirements are generally lower

o Many-to-many joins have overhead in the form of worktables
o Look for ManyToMany attribute

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

O

Hash Match Join

=

Joins two unsorted inputs and outputs the matching rows
o Often seen with large data sets
o Grouping aggregates

Algorithm:

o Build a hash table (hash buckets) via computed hash key values for each row of

the “build” input (top/outer table)

o For each probe row (bottom/inner table), compute a hash key value and evaluate

for matches in the “build” hash table (buckets)
o Output matches (or output based on logical operation)

SQL

intersection

© SQlintersection. All rights reserved.

http://www.SQLintersection.com

Hash Match Join Performance Characteristics

= Doesn’t require ordering of inner or outer inputs

= Hash table must be generated FIRST before the probe begins, and this is
a blocking operation

= Typical case is that the smaller table is the “build table”, which ideally
reduces the latency between the build and probe phases

o Red flag if you see otherwise

= Hash build or probe can spill to disk if there is insufficient memory

(higher memory requirements)

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Hash Joins: Performance Variations

= SQL Server can also do “role reversal”
o >=one spill, build/probe roles can be switched
o Not visible to us and should be rare
= Hash Warning events can be found in Extended Events (also in Trace)
and spill notifications are within the actual plan from SQL Server 2012
onwards

= Reasons for spills include cardinality estimate issues (skewed data
distributions, missing or stale statistics), inappropriate join selection or
memory pressure

o Estimates based on both cardinality and average row size

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Batch Mode Adaptive Join &5

= New operator in SQL Server 2017+: Adaptive Join
o Requires compatibility mode 140

= Indicates that the optimizer has the choice of a Hash Join or Nested Loop
o Decision is deferred until after the first input is scanned

o Threshold established by the adaptive join determines at what point a plan will
switch to a nested loop

= Planis still cached, join type is determined at run-time
= |deal for workloads with varied inputs/skewed data
= Applies to SELECT statements only

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Sort ¥
F
= As named, this operator orders rows received from an input
= Variations include:

o Distinct Sort

o Top N Sort
= Noteworthy: Sort tempdb spills
= Keep an eye on these for the following reasons:

o Sort can occur in tempdb for large data sets and memory constraints (see Sort
Warnings)

o Has resource overhead (CPU /1I/O / memory)
o May not be needed if you have supporting indexes or unnecessary ORDER BY

) SQL

[-n tersectlon © SQlintersection. All rights reserved.

http://www.SQLintersection.com

Query Memory

= Some queries require memory to store data while sorting and joining
rows, thus a memory grant is requested

o Lifetime of the grant is equivalent to the lifetime of the query
= Pay attention to heavy memory-consuming operators:
o Hash operations (JOIN and Aggregations) and Sort
= When available memory is insufficient, queries that require lots of
memory may wait to execute (RESOURCE_SEMAPHORE wait type)

o Under-estimating memory (due to cardinality estimation issues) can cause
spills to tempdb (I/0)

o Over-estimating memory can reduce concurrency!

) SQL

. . © SQlintersection. All rights reserved.
ln terseCtlon http://www.SQLintersection.com

Controlling Memory Grants

= Query OPTION min_grant_percent and max_grant_percent available in
SQL Server 2012 SP3, SQL Server 2014 SP2, and SQL Server 2016

o min_grant_percent is guaranteed to the query

o Overrides the sp_configure option (minimum memory per query (KB)) regardless of
the size

o Be very careful with this....
o max_grant_percent is the maximum limit for a query

o https://support.microsoft.com/en-us/kb/3107401

SELECT [CustomerID], [SalesOrderID], [OrderDate], [SubTotal]
FROM [Sales].[SalesOrderHeaderB]
WHERE [OrderDate] BETWEEN '2012-01-01 00:00:00.000'
AND '2013-12-31 23:59:59.997'
ORDER BY [OrderDate]

SQL OPTION (min_grant percent = 20, max_grant _percent = 50);
l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

https://support.microsoft.com/en-us/kb/3107401

Designing Set Based Solutions

= The most common bottleneck for database efficiency is loop based
development thinking

= Think of data vertically in sets rather than horizontally in rows for query
concepts
o Aggregations with GROUP BY
o Common Table Expressions and Window Functions

) SQL

[-n tersectlon © SQlintersection. All rights reserved.

http://www.SQLintersection.com

Row-By-Agonizing-Row Processing

= Certain constructs force SQL Server into RBAR (row-by-agonizing-row)
processing of results

= Well-known:
o WHILE loops
o Cursors

= Less well-known:

o Scalar user defined functions (changes in SQL Server 2019)
o Correlated subgueries

U SQL

. . © SQlintersection. All rights reserved.
ln terseCtlon http://www.SQLintersection.com

Cursors and Loops

= Characteristics
o Explicit cursor declaration
o WHILE loop
o SqlDataReader in application
= Problems
o Row based processing over Set Based
= Replace with
o Appropriate set based operation
o Move looping code into SQLCLR or Middle Tier
o Consume and dispose of SglDataReader as quickly as possible

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Correlated Sub-Queries

= Characteristics
o Refer to the outer query in the inner query in SELECT statement
o SELECT Statement used as column value in UPDATE
= Problems
o May cause row-by-row processing to occur
o Performance decreases exponentially as row count increases
= Replace with
o Table Join
o Derived Table Join
o Cross Joined Table Valued Function

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Scalar User Defined Functions

= Characteristics
o Encapsulate common code blocks/business logic in a single call.
o If columns are passed as parameters it is not inline
= Problems
o Cause row-by-row processing to occur
o Performance decreases exponentially with data access
= Replace with
o Inline expressions
o Derived Table Join
o Cross Joined Inline Table Valued Function

l l © SQlintersection. All rights reserved.

ln terseCtlon http://www.SQLintersection.com

Scaling Row Based Processing

= Application design patterns
o Multi-threaded apartment for asynchronous execution

o Retrieve initial data set from SQL Server and execute row based processes on
background or “worker” class threads in the application
o Best for situations where initial data set is not changing
o Watch for blocking conditions for long open result sets — fire hose cursor consumption of data

= SQL Server design pattern

o Service Broker queue activation allows parallel processing of messages natively within
SQL Server

o Transactional based and ensures restart of processing after failure
o Implemented entirely with TSQL as a part of the database

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Sargability Matters

= A query is sargable (Search ARGument ABLE) if an index seek can be
used to speed up the execution of the query
= Anti-patterns to sargable expressions include:
o Functions in the WHERE clause
o Implicit/Explicit data type conversions on a column
o Leading wildcard expressions with LIKE ‘%<SearchTerm>’
o Catch all queries and search procedures

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Functions on WHERE Clause Columns

= Characteristics

o Used to change the data stored to match criteria being checked
o Conversion of data to a different type
= Problems

o Causes Table/Index Scan over Seek

= Replace with

o Appropriate Table Design to support business needs
o Indexed/Persisted Computed Column
o Indexed View

o Other coding paradigm to eliminate Scan

) SQL

ln terseCtlon © SQlintersection. All rights reserved.

http://www.SQLintersection.com

Implicit/Explicit Column Conversions

= Characteristics

o Column data type is of lower precedence than filtering parameter / joining
column data type

o Common in LINQ to SQL/EF and other ORMs
= Problems

o Causes Table/Index Scan over Seek
= Replace with

o Higher precedence column data type

o Matching data type for filtering parameter

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Catch-All Search Queries

= Characteristics

o Used to search across multiple columns using parameters

o Not all parameters require input values

o WHERE clause similar to (@Param1 IS NULL OR Columnl = @Param1)
= Problems

o No optimized execution plan

o Causes Table/Index Scan over Seek
= Replace with

o Separate search procedures for different parameters passed

o Parameterized Dynamic SQL

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Replacing IN with UNION

= Characteristics

o WHERE clause similar to (Column 1 IN (12, 16))

o WHERE clause similar to (Columnl1 =12 OR Column1 = 16)
= Problems

o May causes Table/Index Scan over Seek

o May cause a range seek
= Replace with

o Separate SELECT statements with WHERE clause for each criteria using UNION
ALL to concatenate results to final output

o Dynamic SQL to build the UNION ALL query string

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Profile Your Workload During Development

= Learn to use Extended Events (2012+) or SQL Trace to profile your
workload during testing
= Know the important events to watch for during development
o Statement/Batch/RPC completed events
o SP completed/Module End events — (procedure/trigger/function executions)
o Execution warnings (sort, hash, missing join predicate)
= Profiling during development can uncover nasty RBAR issues and
performance effecting side effects of trigger executions
= Be aware of “observer overheads” but not typically a problem with
development/test workloads

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Develop and Test Against Realistic Scale

= Development databases often do not contain realistic datasets which
can hide/mask potential performance problems
o Key Lookups on small data sets may become index scans on larger data sets

o Missing index impacts may be hidden by data residing in memory for small
data sets

o RBAR problems are often hidden until data sizes scale up
= Testing a single execution in isolation is not load testing

o Testing needs to be performed at scale through load generation to measure
accumulated effects

o Only testing at scale can identify “death by 1000 cuts” problems

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

New Features vs Old Strategies

= New features in SQL Server help solve common performance problems
out of the box
o IMOLTP
o Availability Group Readable Secondaries
o Columnstore Indexes
= New features won’t scale poor design architecture
o Know the problem a feature is intended to solve

o Know the trade-offs of using new features —an old design strategy might still
be a better fit...

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

In-Memory OLTP

= Designed to eliminate PAGELATCH contention and locking contention
for high throughput workloads
= Use Cases:
o High volume data ingestion
o Caching
o Session state
o ETL
o Temporary object replacement

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

In-Memory OLTP Considerations

= Crash recovery time

o All memory optimized objects must be loaded into memory before the
database can be opened for use

o If the server does not have enough memory, the database will go suspect
= Optimizations are for write heavy workloads specifically
o Reads from Buffer Pool are already memory resident and low latency

o SELECT queries achieve marginal performance gains from IMOLTP
o Consider SQL Server 2019 Hybrid Buffer Pool on PMEM devices instead

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Designs Before IMOLTP

= Use heaps and bulk loading strategies for parallel loading

= Hash based partitioning of tables for fast ingestion of data
o Presents challenges with querying data but eliminates hot page contention

= Standard partitioning based on data values or sources
= Adding a padding column to fill page
o Reduces latch contention due to one row per page

= Sharding with federated views
o Partitions data across multiple tables/databases based on design

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Availability Group Readable Secondaries

= Allows offloading of read-only workloads to secondary replicas inside
an Availability Group

Native round-robin load balancing support of read-only connections

Distributed Availability Group configurations allow scaling beyond 8
replicas

) SQL

[-n tersectlon © SQlintersection. All rights reserved.

http://www.SQLintersection.com

Readable Secondary Considerations

= Requires FULL recovery model for the databases

= Requires synchronizing the entire database whether the data is
needed by the workload or not
o Storage requirements are the same for each replica

= |ndexes must be created on primary replica for readable workloads
= Query Store data is only generated on primary replica

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Designs Before Availability Groups

= Transactional Replication
o SIMPLE recovery model allowed
o Filtered publications can distribute/limit data set sizes
o Subscribers can have different indexes from primary keeping primary small
o Query Store available to subscriber workload for analysis and forcing plans
= Scalable Shared Database

o Leverages a SAN snapshot mounted in read-only mode to multiple SQL
Servers — updates require new snapshot

o Requires proper |/O sizing to avoid performance bottlenecks

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Clustered Columnstore Usage Scenarios

= Data warehouse fact tables
o Queries primarily perform aggregations/analytics on ranges of values
o Tables are typically partitioned with at least one million rows per partition
o Data loading typically by ETL and bulk operations

= |OT data for compression
o Unstructured LOB data stored as JSON in SQL Server
o Compression ratios as high as 25x vs. rowstore (100GB data in 4GB)

l l © SQlintersection. All rights reserved.

ln terseCtlon http://www.SQLintersection.com

Questions To Ask For Columnstore

= How large is my table/data?

= Do my queries mostly perform analytics that scan large ranges of values?
= Does my workload perform lots of updates and deletes?

= Do | have fact and dimension tables for a data warehouse?

= Dol need to perform analytics on a transactional workload?

= What version of SQL Server am | running on?

These determine whether columnstore is the right solution!

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Questions To Ask For Columnstore

= How large is my table/data?
o Compression may provide significant space and I/O savings
= Do my queries mostly perform analytics that scan large ranges of values?
o Columnstore works best for large range scans and not single row values
= Does my workload perform lots of updates and deletes?
o Columnstore works best on stable/static data, typically < 10% DELETE/UPDATE
= Dol have fact and dimension tables for a data warehouse?
o Schema design and data loading strategy affects columnstore effectiveness
= Do |l need to perform analytics on a transactional workload?
o Updatable nonclustered columnstore indexes with filter criteria on “warm” data

BLUF: You can’t blindly implement columnstore indexes!

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

Designs Before Columnstore

= Traditional data warehouse Star schema

= Table partitioning and partition switching for data loading

= Filtered indexes and statistics

* |ndexed Views for aggregations (NOEXPAND hint)

= Partitioned Views over multiple tables with check constraints

) SQL

. . © SQlintersection. All rights reserved.
ln terseCtlon http://www.SQLintersection.com

Review

= How SQL Server Processes Queries
= Normalization and Datatypes

= Reading Execution Plans

= Designing Set Based Solutions

= Scalability and Testing

= New Features vs Old Tricks

l l © SQlintersection. All rights reserved.

in terseCtlon http://www.SQLintersection.com

o L]
Questions? SQLSKMS

Don’t forget to complete an online evaluation!
Zero To Hero: Faster SQL Query Performance

Your evaluation helps organizers build better conferences
and helps speakers improve their sessions.

@ SQL Thank youl!

(ntersection

Lﬁj i%tglrslgction

www.SQLintersection.com

Save the Date

Week of November 18, 2019
We're back in Vegas baby!

._

w- o

) iy

S i
~u - ‘
Cbrererevree .y

of
L
.ﬁ— BR00008000 0000010

f"
‘IHI v“, %
r:.m A -
gaaaafo . (] E
r 1
| 2 et
EREPTEERRRETT T ey
; Ve m
‘ iR i i —m.npl b
- mm H!nummnnn-I---------..ﬂdm, %
I\;,..» R it |
| usemtcc e 7 W
e SRR R

-
i ~
g
-
o3

| IEE -‘_._ :-w-wv.v—:% X

TR

-y s £33
o AR s sss==a o
T i i
S=TCC") mmmmmAaumam - : m.ﬁ
|- | W 0 m_
o > ' r %4 X CESn L e ¥
8 o Jv..!.w.n : ...I..W“
- .
N eis L 3 2 ¥ :
e o o — 3 - -
LR - 5
TR Ttetes a1/
i B
e el |
S TR
T e e g o 8
SEON N R < Ak
W.mwa% 2T
I 'S
M.h“_an.v HE v.ﬂ < ol n
Fifteg <4y e T
; ba :
R2A2E -5 =
" o
L ———
P o Lo
e .
e -
-

