
PLE with no memory pressure looks like this, it ticks up by one every
second

A graph like this is normal, as some things cause memory pressure, and then
PLE comes back up again.

If you hear anyone saying a threshold for caring about PLE is
300, run the other way. Very old advice. That means your entire
buffer pool is being flushed and reread every 300 seconds. The
‘right’ PLE value is whatever is normal on your server. If it drops
below that and stays low, you have a problem.

On NUMA systems, you need to monitor each Buffer Node PLE, not the Buffer Manager
PLE (as it’s a mean). See http://www.sqlskills.com/blogs/paul/page-life-expectancy-isnt-
what-you-think/

NUMA = Non-Uniform Memory Access. Each node has some processor cores and
node-local memory. Buffer pool is split between NUMA nodes.

http://www.sqlskills.com/blogs/paul/page-life-expectancy-isnt-what-you-think/
http://www.sqlskills.com/blogs/paul/page-life-expectancy-isnt-what-you-think/
http://www.sqlskills.com/blogs/paul/page-life-expectancy-isnt-what-you-think/
http://www.sqlskills.com/blogs/paul/page-life-expectancy-isnt-what-you-think/
http://www.sqlskills.com/blogs/paul/page-life-expectancy-isnt-what-you-think/
http://www.sqlskills.com/blogs/paul/page-life-expectancy-isnt-what-you-think/
http://www.sqlskills.com/blogs/paul/page-life-expectancy-isnt-what-you-think/
http://www.sqlskills.com/blogs/paul/page-life-expectancy-isnt-what-you-think/
http://www.sqlskills.com/blogs/paul/page-life-expectancy-isnt-what-you-think/
http://www.sqlskills.com/blogs/paul/page-life-expectancy-isnt-what-you-think/
http://www.sqlskills.com/blogs/paul/page-life-expectancy-isnt-what-you-think/
http://www.sqlskills.com/blogs/paul/page-life-expectancy-isnt-what-you-think/
http://www.sqlskills.com/blogs/paul/page-life-expectancy-isnt-what-you-think/
http://www.sqlskills.com/blogs/paul/page-life-expectancy-isnt-what-you-think/

Explaining how automatic page repair may not be instant if
the redo queue on the mirror hasn’t caught up to the LSN on
the principal when the bad page was discovered.

Explaining how full logging
of an index rebuild logs
complete page images
rather than individual
inserts, as it’s more efficient
that way.

Explaining part of the deferred-drop
functionality. Before an extent can be
deallocated, an X lock is acquired on it and all 8
page locks are probed (instant acquire X lock and
release) to make sure nothing else has them
locked.

Explaining PFS and SGAM
contention in tempdb and
how adding multiple files
spreads the contention over
multiple files, thus reducing
it.

