

Efficient Storage of Heterogenous
Data

+ Problem: how to design an efficient schema that

allows an extremely large number of data fields?
+ Supporting an application that allows user-defined

properties on multiple entity types, such as product
catalog or document store

Think of Sharepoint Server — storing tens of
thousands of document types, each with hundreds or
thousands of distinct attributes

Given that SQL Server only supports up to 1024
columns in versions up to and including SQL Server
2005, what are the schema choices?

©sQLskills.com
Designing for Performance and Availability

Conceptually, this is what your data looks like... but, no
one does this! (right?)

DocName DocType DocSize

abcx 1 1,234

defy 1 54

ghiz 480

jklb 340

mnoa

pqgrz

stuy

VWXX

yzau 56

bedt 237

efgs 593

hijr 457

kimg 135

nopp 75

qrso 1,345

tuvn 576,457

WXym 24

zabl 65

cdek 23,523

fghj 56

ijki 24

Imnh

op9g 23

rstf 757

n uvwe 234,234
©SQLskills.com

Designing for Performance and Availability

Why don’t we have a single “flat”
table today?

+ The rows will be really wide
All fixed-width columns take that fixed amount of
space regardless of whether or not they are NULL

Row size of 7.0/2000 was limited to a maximum of
8060 bytes (2005 does NOT have this limitation)

The maximum number of columns that SQL Server
7.0/2000/2005 supports is 1024
¢+ Performance will be compromised
+ The maximum number of indexes that SQL Server
7.0/2000/2005 supports is 250 (generally you don’t
even want dozens, actually)
+ Performance is abysmal (even just for the metadata)

¢ [t just looks wrong... ©

©sQLskills.com
Designing for Performance and Availability

Flexible Schema Choices

+ Name/Value pairs table

+ Normalized tables

+ Properties as an XML structure
+ Properties as a BLOB structure

+ No flexibility...
¢ Easy...
+ Not very flexible... ©

Name/Value Pairs

Core attributes in one table

Attributes specific to each type —
probably described in a metadata table
Table gets very large, very quickly

Rows x attributes
+ Rows without a value do not need
to be stored at all (crossed out rows)

Hard to index (especially the CL key)
+ Add an ever-incrementing key?
+ Nonclustered are almost as large as the table
.» fragmented and complex to administer
“Value” column is of what type —sgl_variant?
+ Comparison operators can be complex on this type —
without conversions — these are costly as well...
+ See “Using sgl_variant” in the BOL for a discussion on sqgl_variant issues

including those around the data type hierarchy
¢ charvalue ‘123’ <int value 111 (yes, ‘123’ is less than 111)

©sQLskills.com
Designing for Performance and Availability

Normalized Tables

Each “type” requires a new table — with only the
attributes specific to that type

Metadata for which table to join to needs to be

included so the code is directed to correct table

Lots of joins and/or

dynamic string execution

Hard to administer

+ Lots of tables to manage

+ Lots of indexes to manage
But, probably the easiest for

many to understand...

©sQLskills.com
Designing for Performance and Availability

<P1>5</P1>
<P2>6</P2>
<P3>8</P3>
</properties collection>
properties collection>
<P1>8</P1>
<P2>3</P2>

[[]
m ALL Values in a XML structure
<properties collection>
1

Core attributes in normal columns ool

properties collection>
<P1>3</P1>

All attributes targeting a specific type coroeres oecion:

are put into an XML structure - £

<P6>'r'</P6>

XML structure can be strongly typed //
+ XML schema by type — reference in your B e clction

<properties collection>

metadata layer or separate column pas't’ <pa>

<P5>'r'</P5>
(something like XMLSchemalD) R ke e
<P7>'n’ </P7>

Structure can be indexed: 8oe/ps

<P10>4</P10>
<P11>’e’</P11>

+ Primary Index is EXPENSIVE </propertis collection>
+ See: XML Indexes in SQL Server, Bob Beauchemin, SQLskills.com
http://msdn.microsoft.com/en-us/library/ms345121.aspx#txmlindexes topic2

+ Primary Index requires that PK be clustered...
+ Secondary indexes can be very beneficial (however, you MUST create
a PRIMARY index before you can create any secondary indexes)

©sQLskills.com
Designing for Performance and Availability

Quote from referenced article

Although having the primary XML index is a vast improvement over
creating it afresh during each query, the size of the node table is usually
around three times that of the XML data type in the base table. The actual
size depends upon the XML instances in the XML column—if they contain
many tags and small values, more rows are created in the primary XML
index and the index size is relatively larger; if there are few tags and large
values, then few rows are created in the primary XML index and the index
size is closer to the data size. Take this into consideration when planning
disk space. This is because the node table contains explicit representations
of information (such as the path and node number) that is a different
representation of information inherent in the structure of the XML
document itself.

©sQLskills.com
Designing for Performance and Availability

Properties in BLOB

Core attributes in normal columns

All attributes for each type are stored

in a customized format (varbinary(max))

BLOB manipulation is likely to be done with SQLCLR
Structure CANNOT be indexed with relational indexes

Finding specific properties require finding the property within
an offset table or you need an offset array — which can get
overly complicated (hence SQLCLR)

ustomizable format...

©sQLskills.com
Designing for Performance and Availability

So, here’s what | want you to have!
(wait, | thought this was bad?)

DocName DocType DocSize

abcx 1 1,234

defy 1 54

ghiz 480

jklb 340

mnoa

pqgrz

stuy

VWXX

yzau 56

bedt 237

efgs 593

hijr 457

kimg 135

nopp 75

qrso 1,345

tuvn 576,457

WXym 24

zabl 65

cdek 23,523

fghj 56

ijki 24

Imnh

op9g 23

rstf 757

n uvwe 234,234
©SQLskills.com

Designing for Performance and Availability

Why is this OK now?

+ The rows will NOT be really wide
+ Columns of type sparse take *0* bytes if the value is
NULL
+ The maximum number of columns in SQL Server 2008
supports is 30,000
+ Performance will NOT be compromised
+ The maximum number of indexes in SQL Server 2008
supports is 1,000 (in fact, you might want even more
— if you’re using sparse columns) but these indexes
are true relational indexes and very lean
+ Performance (with the right design - using an XML
column set) can be excellent
+ |t still looks wrong but sparse columns (and

filtered indexes) solve all of the old problems...

©sQLskills.com
Designing for Performance and Availability

Sparse Columns: What are they?

SPARSE is a new column attribute in SQL Server
2008

NULL values in a column defined as sparse require
zero bytes of storage

+ Compared to at least 1-bit in SQL Server 2005 (and

probably more depending on the column type and
nullability)

Trade-offs:

+ Access non-null SPARSE columns is more costly

+ Storing non-null SPARSE columns takes 4 extra bytes
per value

+ Sparse columns can be grouped together into a
column set for faster access (returned as XML)
+ (Can be efficiently accessed using filtered indexes

©sQLskills.com
Designing for Performance and Availability

Sparse Column: When To Use?

When you need a flexible schema (the ability
to add new “attributes”)

When the large majority of attributes have
NULL values for the large majority of rows

(remember the picture — doesn’t have to be so mutually exclusive but make
sure to run the numbers)

Recommendation is to use when net space
savings can be 20-40%

Books Online has a table showing how much
data would have to be null for a particular type

to achieve 40% saving
¢+ See ‘Sparse columns’ in Books Online index

©sQLskills.com
Designing for Performance and Availability

Sparse Columns: Column Sets

A way to return ALL of the sparse columns as a unit to
the application (*much™* faster)
Added as a non-persisted computed column to the

table and returned as an XML column

(Note: this column does not limit ONLINE operations for the clustered
index as a traditional LOB column will. This LOB column is a virtual column.)

Only one can exist per table — and it must be created
before any sparse columns are added or at the time of
table creation (you cannot add this later)

In this release, the column set for a table ALWAYS
operates over all sparse columns in the table and new
sparse columns are automatically added into the
column set

©sQLskills.com
Designing for Performance and Availability

Sparse Columns: Column Sets

Selecting the column set returns an XML value
containing all non-null sparse column values
for that row

Inserts and updates to multiple sparse columns
can be done using either the XML format, or by
specifying a regular column list

Check which tables have column sets with:
SELECT OBJECTPROPERTY
(OBJECT ID ("TableName®),
"TableHasColumnSet*®)

©sQLskills.com
Designing for Performance and Availability

Sparse Columns: Storage Internals

+ Row with no sparse columns has no storage for

them

+ No entry in the NULL bitmap or fixed length
portion

+ Row with sparse values
+ Adds 6 bytes to the row size + 4 bytes per non-
null column + the values

+ Compared to other column types:

+ Fixed-width columns are always complete storage

(plus 1 bit in the NULL block):
+ INT =4 bytes (plus 1 bit)
+ CHAR(10) = 10 bytes (plus 1 bit)

©sQLskills.com
Designing for Performance and Availability

Sparse Columns: Storage Internals

+ Non-NULL variable-width columns are actual
length + 2 bytes (plus 1 bit in the NULL block)
NOTE: NULL variable-width columns may take O bytes
but only in very special cases. This can happen when
the NULL values are at the end of the variable block
array; then it does not need to be full populated.

+ See these posts on storage internals:

+ http://www.sqlskills.com/BLOGS/KIMBERLY/post/Col
umn-order-doesnt-matter-generally-but-IT-
DEPENDS!.aspx
http://www.sqlskills.com/BLOGS/PAUL/category/On-
Disk-Structures.aspx
Search Engine Q&A #27: How does the storage
engine find variable-length columns?

©sQLskills.com
Designing for Performance and Availability

Sparse Columns: Limitations

+ These types cannot be SPARSE:
+ Auto-populated columns:

ROWGUIDCOL columns

IDENTITY columns

Timestamp

Columns with DEFAULT values

Computed columns (although they can contain sparse
columns)

+ Special types:

PN

PN
PN
PN

©SQLskills.com

Spatial data types (maybe in a future release?)

UDTs (maybe in a future release?)

varbinary(max) FILESTREAM (not internal anyway)
Legacy LOB (n/text, image) (eventually to be removed)

Designing for Performance and Availability

Sparse Columns: Other Limitations

+ A sparse column cannot be:
+ Part of a clustered index key
+ Part of a primary key constraint
+ Part of a unique constraint
(however, you can create a unigue index on one)
+ The partition key of a table (w/clustered index or heap)

+ Table/Row Conversions

+ What you really need to know:
+ |If you want an EXISTING table to have sparse columns DO NOT
ADD THEM without some planning!
+ Why?
+ You cannot add an XML column set to an existing table that
already has sparse columns

+ You might create some massive fragmentation and some weird
results with the row structure conversion

+ A better approach, create a new table —and INSERT/SELECT

©sQLskills.com
Designing for Performance and Availability

Sparse Columns & Other Features

¢+ Data Compression
+ Data compression cannot be used with sparse
columns
+ Replication
+ Transactional replication supports sparse columns
but not column sets
+ Merge replication does not support sparse columns
at all
+ Change Tracking
+ Supports both sparse columns and column sets
+ Does not track which columns were updated for
column sets
+ Change Data Capture
+ Supports sparse columns but not column sets

©sQLskills.com
Designing for Performance and Availability

What about searching?

+ Name/Value Pairs
+ Quickly becomes a very large table/index — requires a lot
of maintenance and becomes very fragmented
+ Normalized Tables

+ Indexes for each table must be created
+ Application needs to know which tables to search

¢+ Properties in XML
+ (Can add indexes but XML indexes are very expensive
¢+ Properties in BLOB

+ No way to index these properties using SQL Server
indexes — can be very slow to search/analyze

©sQLskills.com
Designing for Performance and Availability

Searching Sparse Columns

+ Using nonclustered indexes!
+ Won’t there be a lot of wasted space in an index

or can index columns be sparse as well?
+ [ndex columns do support the SPARSE attribute...
+ NULL values in a SPARSE column that’s indexed — are
“materialized” in the index...

+ SQL Server 2008 allows filters on index definitions
* WHERE SparseColumn IS NOT NULL

+ Will we be able to index every property?
+ NO, but SQL Server increased the nonclustered index
limit from 249 (SQL 2005) to 999 (SQL 2008)
+ This still may not be enough but... it gives you
hundreds of “properties” which you can VERY
efficiently index

©sQLskills.com
Designing for Performance and Availability

Indexing Sparse Columns
Background: Understanding nonclustered indexes

+ Traditionally, a nonclustered index stores (in
the leaf level) something for every row of the

base table
+ |f the table has 10,000 rows then EVERY
nonclustered index (leaf-level) has 10,000 “rows”

+ There are many benefits (i.e. covering) to this
approach but for a column with a significant
number of NULLs and where we’re creating a
“lookup” index — we just don’t want the NULL
values to be represented... enter, filtered
indexes

©sQLskills.com
Designing for Performance and Availability

Resources

+ Miicrosoft Clinic 10259: SQL Server 2008: Database

Infrastructure and Scalability
(module Management Implications of New Features Part 1)

+ http://www.sqlskills.com/BLOGS/KIMBERLY/post/Microsoft-
elLearning-Resources-Clinic-10259-(SQL-2008-DBIS).aspx
MCM Training Videos (sessions Sparse Columns and then Sparse
Column Demos)
+ http://www.sqlskills.com/T _MCMVideos.asp
Paul’s blog category: Sparse Columns
http://www.sglskills.com/BLOGS/PAUL/category/Sparse-

Columns.aspx for these posts:
+ SQL Server 2008: Sparse Columns
+ SQL Server 2008: Sparse columns and XML COLUMN_SET
+ Sparse columns: misleading info in Books Online

©SsQLskills.com
Designing for Performance and Availability

