Whiteboard

annotations from SQLinte rSECtiOH
Monday, April &, 2013
PRECONG6

Understanding Statement Execution and

Optimizing Stored Procedures
(8:30 AM - 4:30 PM)

Kimberly L. Tripp
Kimberly@SQLskills.com

U" SQL

Intersection

Parameters are “sniffed”
SQL Server uses parameters to
optimize. Sniffing implies that
rP \/ SQL Server uses the histogram
l.(Lo to evaluate the data selectivity.
an WQA% Vs M\OJO For the FIRST execution
parameter sniffing is great. It’s

- the subsequent executions that
\
‘:POJ\M Lg{ can suffer from parameter
S‘{"Dfd, D@L @,‘pi velue sniffing (and therefore end up
®p2 wvaluu with PSP = parameter sniffing
— ?2 = ploaw = T problems).
— Pl/p2 = g | SB35 vedur
=2 pPlén . Variables are “unknown”
- — Vonable—ne, lpn. ' Variables are only known at
trats £ runtime as the statements
O AVERAGE execute and the variables are
’P| — VUSeg lmg{—bsram . aSSkigned. 35 a result, they are
~ unknown during optimization.
— Vouehls (UQ’ &‘Ag‘h W'd"/\ With an actual value, SQL Server

—cannot use the histogram.

N—"" /) —
(\D&F&Y\d’pj\s Con bQ ! SYW%I = h Sf-o‘;l/aw\ Instead SQL Server uses the
Javiabe Carnnot = &09\M~VQQH (dvefajﬁe ity vector for the “average”
numbers of rows that meet that
criteria.

dbo —(‘, \O{l’” -+ no delete

dbo P

dbo . \J
° ‘ LQLQ,IQ"I‘.Q ~+,

execC

e

ci‘oo .‘\‘a

Abo. P,
l 1> Exec(P< 7‘7/)
ckleta

Without Dynamic String Execution permissions flow through the ownership chain

The idea is that when the ownership chain is unbroken then direct permissions (for example,
to do a delete) are not necessary. As an owner you are giving rights to a process; this
procedure can be protected with more business rules/logic and even reduced/isolated to
specific rows. The end user does NOT need direct delete permissions to be able to execute
the procedure as long as they’ve been given execute rights on the sproc.

@ ‘ x | :
)>\/{ C)() /rj,_t) |

9#“ {J@gj

Multipurpose screens/dialog boxes that lead to multipurpose procedures
They looked/sounded good at the time?
But, they’re often VERY hard to optimize with where clauses that look like:
WHERE (Columnl = @Valuel OR @Valuel IS NULL)

AND (Column2 = @Value2 OR (@Value2 IS NULL)

AND (Column3 = @Value3 OR @Value3 IS NULL)

Check out the demo scripts in order to fully see how to better optimize this — using
Z. . sp_executesql (for combinations that are stable) and sp_executesql WITH RECOMPILE
for combinations that could generate different plans.

Demo: Combinations of Parameters Supplied

Options that better balance recompiling

\ — too much vs. not recompiling enough
W L}\) ee P LK This is from the multipurpose procedure
\‘ \& — demo. There are 3 parameters and 7

\ F t\) CNe possible combinations that can be
submitted. Instead of adding OPTION

WV\V\ (ﬂ\e S 45\/!91& (RECOMPILE) to the statement (which

\\ doesn’t always work [remember, it has a
W ZJ\) P | < very checkered past]) you can build the
. ¢ | xk statement dynamically and then
programmatically (by setting a
’v\’\”\/j > S}‘Q/IO/Lk RECOMPILE flag to 0 or 1) decide whether
— or not OPTION(RECOMPILE) should be

Mno \—% Slﬂ\ob. added to the dynamically constructed

statement. Then, you can use

\S%@ ?}t@ W sb_lexecutesg| to place ALL seven
o “statements in cache. Those without the

OPTION(RECOMPILE) clause will be
cached. Those with — will get a plan on
each execution.

Pead UnQoWLd = o lock.
Dievw RehNS
r]ZQad Comnitod (;lz!qM.Q'l'\ (P‘C
U<eS Iock,u'AQO U;;\/;S ~
U [nconst s Fent Avxal’ul Q@ / Yemoue
Von (e ,@TQLDLL
?Qfgza‘ﬁ‘alob > X o o JV.fF
er 1 2al6\ = (2ad_ CovmHed
ACID transaction requirements QhQ,PgLJ}\

o Atomicity Consistency Isolation Durability

Isolation levels (session setting shown in sys.dm_exec_sessit()_ns)
o Read uncommitted (1)
o Read committed (2)
o Repeatable reads (3)
o Serializable (4)
o Snapshot (5)
Default isolation level in every release is ANSI/ISO read committed

SQL Server implementation uses locking for all levels

/)

The prior slide showed a table vertically as a set of pages. The idea was to compare/contrast the
behaviors between:

(1) The default — READ COMMITTED (using locking)

The key things to remember from the picture is that (1) has “hiccups” along the way as they
encounter rows that are locked. They read... wait... read... wait. This is partially what slows down a
statement. However, it’s worse than this. It’s possible that AFTER a row is read, it will appear again
(if the record is relocated) and we will read it twice (non-repeatable reads). Also, it’s possible that
another transaction would modify a row that we’ve NOT yet seen (before we get there) as well as
a row that we have seen (after we’ve read it) such that the end result of our statement has rows
that aren’t really transactionally consistent (with another multi-statement transaction). This is also
a problem... The default (1) environment is prone to a few inconsistencies (aka. Inconsistent
analysis). Only way to solve — increase isolation (or [as of 2005] consider using versioning).

(2) A forced NOLOCK

The key thing to remember here is that nolock allows the reader to read quickly — not stopping for
locked rows. However, these rows may be “in-flight” and their modified data might end up getting
rolled back or even be in a mid-flight state. If you’re looking for only an estimate — this might be
fine.

(3) Versioning (and it was implied that it was statement-level)

When a versioned query runs the reader will not stop but will have to go to the version store for
any row that’s in flight. This is a tiny bit slower but guarantees consistency of the ENTIRE read to
the point in time when the statement started. This gives you better concurrency as well as a
definable point in time to which your statement reconciles. Of course, it isn’t free — the overhead
of versioning is for every writer and it occurs within tempdb.

" KRanu,o/w\l V\/I/bd@/l&

. Sqll"’wdﬂa— C |eans, (c\% “JQ\&A le\ze(L(PoUMf
/o;q FOU bacdkups me~

Ay | | | 30&
BorLk _Loecer — x—k—\
Contolled atdn Wade—~ b. 1.
I o Osers

FolL uvhl 1S Lockop Op-tothe -
CP evde —§t'vvr>k) minste
DD +L oG % boxcku'og

The prior slide showed the 3 recovery models
(1) The default — FULL Recovery Model

Until you’ve done a backup, you’re in the pseudo simple recovery model. This means that the log will
clear on checkpoint (which is what the SIMPLE recovery model does). But, the benefits of FULL when
you are doing backups is that you have the “full” set of recovery options available to you. You have:

* Up-to-the-minute recovery — this is the ability to backup the log even when the database is
inaccessible/damaged. And, if you have a good backup strategy then you should be able to recovery
without any data loss at all.

* Point-in-time recovery — this is the ability to recover to a definable point in time.

The negative is that operations must be fully logged to support these features.

(2) BULK_LOGGED Recovery Model

To allow some operations to run minimally logged (for speed) you can switch to bulk_logged without
breaking the continuity of the log chain. However, a log backup is only possible when the data portion
of the database is available. And, the log backup will be as large as if you had been running in full but

the operation runs faster and uses less active log space with minimal logging. However, only a small
number of things can be run in a minimally logged manner.

(3) SIMPLE Recovery Model

There are lots of benefits to the “simple” recovery model. The biggest of which is that your backup
strategy is simplified. You will not be required to do log backups and in fact, you can’t. The log will be
cleared on checkpoint. Your recovery options are to recover from a full (and possibly a differential) and
you have the largest amount of potential data loss. This should not be used for critical databases.

Resources
Backup Resources — Where, oh where, can they be?

TechNet Magazine: feature article on understanding logging and recovery

