
4
© SQLskills, All rights reserved.

http://www.SQLskills.com

Anatomy of a Data Modification

 User/application sends an UPDATE query
 The update is highly selective (only 5 rows)

 Indexes exist to aid in finding these rows efficiently
 The update is a SINGLE statement batch therefore this is an IMPLICIT 

transaction
 Transactions can be ‘explicit’ or ‘implicit’
 Explicit transactions are controlled by the user

 Started with BEGIN TRAN
 Ended with COMMIT TRAN or ROLLBACK TRAN

 Implicit transactions are created internally by SQL Server and committed 
automatically when the operations complete
 And obviously rolled-back if something goes wrong



5
© SQLskills, All rights reserved.

http://www.SQLskills.com

Anatomy of a Data Modification

 Server receives the request and locates the data in cache OR reads the 
data from disk into cache
 Since this is highly selective only the necessary pages are read into cache 

(maybe a few extra but that’s not important here)
 Let’s use an example where the 5 rows being modified are located on 3 

different data pages



6
© SQLskills, All rights reserved.

http://www.SQLskills.com

What it looks like: Data Reading From Disk

UPDATE… Server…

Buffer pool

Log

Data



7
© SQLskills, All rights reserved.

http://www.SQLskills.com

Anatomy of a Data Modification

 SQL Server proceeds to lock the necessary data
 Locks are necessary to give a consistent point FOR ALL rows from which to 

start
 If any other transaction(s) have ANY of these rows locked we will wait until 

ALL locks have been acquired before we can proceed
 Locks are initially taken to stabilize the rows and then upgraded to exclusive locks

 In the case of this update (because it’s highly selective and because indexes 
exist to make this possible) SQL Server will use row level locking



8
© SQLskills, All rights reserved.

http://www.SQLskills.com

What It Looks Like: Acquiring Locks

Buffer pool

Page

Page

Page

Row

Row

Row

Row

Row

Update lock

Update lock

Update lock

Update lock

Update lock

IX

IX

IX

IX

Table



9
© SQLskills, All rights reserved.

http://www.SQLskills.com

Anatomy of a Data Modification

 The rows are locked but there are also ‘intent’ locks at higher levels to 
make sure other larger locks (like other potentially conflicting page or 
table level locks) are not attempted and then fail
 This transaction holds the following locks:

 5 update row-level locks
 3 intent-exclusive page-level locks
 1 intent-exclusive table-level lock

 The connection also holds a shared database-level lock

 And if indexes are accessed/used then there might be additional locks 
required – to read the data – they are not significant here



10
© SQLskills, All rights reserved.

http://www.SQLskills.com

Update lock

Update lock

Update lock

Update lock

Update lock

Exclusive lock

Exclusive lock

Exclusive lock

Exclusive lock

Exclusive lock

What It Looks Like: Modifications

x
x

x
x

xx

x
x

x

xBuffer pool

Page

Page

Page

Row

Row

Row

Row

Row

IX

IX

IX

Table

IX

L



11
© SQLskills, All rights reserved.

http://www.SQLskills.com

Anatomy of a Data Modification

 SQL Server can now begin to make the modifications
 For EVERY row the process will include:

 Change to a stricter lock (eXclusive lock) 
 An update lock helps to allow better concurrency by being compatible with other 

shared locks (readers). Readers can read the pre-modified data as it is 
transactionally consistent

 The eXclusive lock is required to make the change because once modified no 
other reads should be able to see this un-committed change

 Make the modification (in cache)
 Log the modification to the transaction log pages (also in cache)



12
© SQLskills, All rights reserved.

http://www.SQLskills.com

Anatomy of a Data Modification

 Finally, the transaction is complete
 This is the MOST critical part (the key to Durability)

 All rows have been modified
 There are no other statements in this batch (because it’s an implicit 

transaction)

 Steps are:
 Write all log records for the transaction to the transaction log ON DISK 

(forced write-through to disk) = durable 
 This forces all of the transaction log up to the point of the COMMIT TRAN log 

record to be written to disk, regardless of which transaction it is for

 Release all locks held by the transaction
 Acknowledge the commit to the user/application:
 (5 Rows Affected) 



13
© SQLskills, All rights reserved.

http://www.SQLskills.com

What It Looks Like: Committing

Server

Buffer pool
Sequential writes

Change

Change

Change

Change

…

Log

‘5 rows affected.’

After the log 

entries are made 

and the locks are 

released…

~~~~

~~~~

~~~~

~~~~

~~~~

Log

Data L



14
© SQLskills, All rights reserved.

http://www.SQLskills.com

So Now What?

 The transaction log ON DISK contains a record of the changes made to 
the database by the transaction

 The data pages in the buffer pool reflect the changes made to the 
database by the transaction

 When do the up-to-date data pages get written from buffer pool into 
the data files on disk?

Checkpoint



15
© SQLskills, All rights reserved.

http://www.SQLskills.com

Anatomy of a Data Modification: Where Are We At?

 Optimization
 Data is very random
 Log is sequential

 Locks
 Granularity
 Duration
 Escalation

 Transactions
 Can make a mess of things if you don’t know what you’re doing…

 NOTE: Paul will be talking more about logging, recovery, log records 
and checkpoints in Module 5




