
Queries Gone Wrong:
Statistics, Cardinality, Solutions

Kimberly L. Tripp
kimberly@SQLskills.com

Whiteboard drawings during

class AND drawings from other

workshops that I thought you

might benefit from…

Things I talked about briefly…

scalar functions – BEWARE (see scalar function script in “other” project)

inline table-valued function – are usually OK

look like view

act like view

multi-statement table-valued function - rarely

look like sps but not as optimizable

try the TF

if still a problem -> sp

Consider changing to use the new trace flag 2453 - be sure to read this article

http://sqlperformance.com/2014/06/t-sql-queries/table-variable-perf-fix

http://sqlperformance.com/2014/06/t-sql-queries/table-variable-perf-fix

Notes I wrote up in SSMS (2)

 SARGs with a column called msal

 What most people would write would be:

 where msal * 12 <= @annualsalary
 Non-seekable expression

 Doesn’t allow SQL Server to “seek” for the rows – must process every
value (requiring a scan)

 where msal <= @annualsalary / 12
 Isolate the column to one side of the expression and SQL can evaluate

once

 This CAN use an index – but, only if it’s selective enough to warrant it

We were discussing the way that SQL Server

will access the data for “sales by customer”

when the nonclustered index is only on

CustomerKey and the query needs additional

information (like the SalesAmount). This NC

index does not cover the query. As a result, SQL

Server has to do bookmark lookups for every

row – which can be very costly. At some point,

SQL Server’s NOT going to do this… that’s the

tipping point.

Having statistics without indexes

can still be beneficial for other

optimization techniques – for

example joins. When a loop join is

performed SQL Server wants to

position the smaller set as the driver

(or the first table) and then iterate

into the second table. So, if we

know the selectivity (even without

indexes) then SQL Server might

change the position of the tables in

a join…

This is why statistics – even without

indexes – can be really helpful!

Slide 27: Indirect Index Usage (Set Selectivity)

This image describes the two options that SQL Server has to access the data for

WHERE firstname LIKE ‘Kim%’

SQL Server always had an option of doing a table scan…

But, if the number of rows where firstname is like Kim is very selective then the

cost of using the nonclustered (even though we need to scan) is still cheaper –

even with the needed bookmark lookups to get the rest of the data (the index

does not cover the query)

Recurring theme – dealing with VLTs

There’s more on this at the end of this whiteboard file…

Simply put, a single, very-large-table (even if partitioned) will have

“issues” related to performance, management, etc.

However, breaking that large table down – into more manageable

chunks (e.g. separate tables) offers a tremendous number of

options/solutions.

Statistics are table-level (just one of the many problems with VLTs)

Statistics are table-level even when the table is partitioned.

Unfortunately, you just can’t accurately describe the data (especially when

heavily skewed) in only 200 (or 201) steps.

Columnstore indexes

Separate data into columnar storage – allowing for much better

compression (because the data is often similar).

Furthermore, SQL Server breaks those columnstore structures into

segments and can do better parallelism AND segment elimination… which

helps to improve colmstore performance.

The New CE in SQL Server 2014 and higher uses different calculations for

estimations…

If you want to get some insight into the specific calculations you should check

out Joe Sack’s whitepaper: Optimizing Your Query Plans with the SQL Server

2014 Cardinality Estimator (https://msdn.microsoft.com/en-us/library/dn673537.aspx)

Is the new CE “better”… in many cases, yes but it’s not a guarantee. It’s really just

different. Some queries might benefit. Some queries might not… but, now you

have TWO CEs from which to choose, test, and use in your queries – THAT’s

what’s cool!

https://msdn.microsoft.com/en-us/library/dn673537.aspx

DEMO: Minimum

date where we have

not shipped

See the next two

drawings

Index on OrderDate

Index on ShippedDate

DEMO: Minimum

date where we have

not shipped

DEMO

This was the demo on uneven distribution.

A table scan is always an option.

With narrow indexes, SQL Server does not

understand the correlation between these

columns. As a result, their estimates are going to

assume even distribution.

DEMO

This was the suggested index from the

green hint in showplan and while it

does make this query faster (and with

fewer I/Os) it’s not the best index that’s

possible.

Key point, the missing index DMVs

(which is where the green hint gets its

information from) – gives you good

suggestions but not always the best

suggestion.

Furthermore, this is the same index

that’s recommended by DTA. So…

sometimes it does take *manually*

defining/choosing the index.

DEMO

This was the index that I suggested (putting OrderDateKey in

the key) as a combination of:

ShipDateKey, OrderDateKey

The first record on the first page will be the minimum

OrderDateKey where ShipDateKey IS NULL.

Queries Gone Wrong:
Statistics, Cardinality, Solutions

Kimberly L. Tripp
kimberly@SQLskills.com

These are the additional

whiteboard pages.

Data selectivity and “need” for additional columns in the key - from left-based density
subsets…
If the distribution of the data is unique at the combination of the first and second columns
then the third, forth, etc. do not provide any use in terms of seeking (JUST in terms of
seeking). However, they might provide use for sorting.
But, it MIGHT be possible to consolidate another index with this one IF you really don’t
need those extra columns in the key. Something to consider!
Multiple – all density * rows and if unique (= 1 or very close to one) then you can consider
consolidation with other similar indexes!

Column-level distribution from left-based density subsets…

This relates to the query on slide 10 and the idea that I was trying to show here is that even

though the left-based density shows that last names are horribly NOT unique and the combination

of last name & first name IS almost unique – that doesn’t imply anything about first names alone. I

could have created a data set of firstnames of Kima, Kimb, Kimc and then multiplied that with last

names (Tripp, Randal, Smith) and I would have had similar statistics for last name alone and for the

combination of last name, first name. SQL Server does NOT gamble on this – SQL Server creates

column level statistics on first name.

SQL 7.0/2000’s rowmodctr

This is a diagram showing the pros/cons of the methods for statistics invalidation. SQL Server 7.0

and 2000 used a rowmodctr (sysindexes.rowmodctr) to do invalidation. Even though SQL Server

doesn’t use this anymore – you can (through sys.dm_db_stats_properties). Internally, in 2005+ they

moved to a colmodctr:

• The pro is that you don’t invalidate too soon (when you have a highly volatile column)

• The con is that you might not invalidate soon enough if your modifications are reasonably

distributed.

We are NOT invalidating soon enough with the column modification counter?

This shows how relatively distributed modifications effect each column with a small percentage of

the modifications but when they add up to 20% ALL columns become invalidated (this was the PRE-

2005 way of doing it):

• The pro was that each column had a reasonable (but lower) percentage of rows modified and the

stats were invalidated

• The con is that a single overly volatile column would cause ALL statistics to be invalidated (which

was overkill).

Overly volatile columns (or rows) could cause invalidation too

soon (across the table):

The problem prior to 2005 was that a single overly volatile column

would cause ALL statistics to be invalidated.

This was around our discussion about the limitation of SQL Server’s knowledge of the

data with gaps in the step values.

If the step describes the range from 101 to 200 (not including those values)

• There are 250K rows over that range

• There are 5 distinct values

The average will show 50K and EVERY value supplied between 101 and 200 will get an

estimate of 50K. There’s no way for SQL Server to know WHICH values actually exist.

Filtered Statistics

Filtered statistics can be created for specific values but depending on your data distribution – you might want to

divide the data into buckets and then create a [filtered] statistic for each of those buckets.

The example was 31 million sales over ~18K customers. By creating a statistic for each 1K customers you have

statistics that are effectively 19x more detailed. Even adding only 10 filtered stats gives you 10 times more detail.

However, it still might not be detailed enough. You’ll need to test it and check the histogram. Because of potential

interval subsumption* issues– some have asked if it would be beneficial to create additional stats at different

intervals… you could but it would really depend on the queries. Having said that – the bigger the range that the

query is interested the more the averages just average out. So, really, this issue is to significantly help queries that

are more targeted (where the stats just weren’t good).

* The optimizer can detect whether interval conditions in a filtered index cover, or "subsume" interval conditions

of a query.

Creating Filtered Stats

The idea is to just have better statistics than what you have currently. To do this you can

divide the range into 10-20 buckets. This will give you 10 times (or 20 times) better

information in terms of statistics.

You WILL need to regularly/automatically review the values/ranges and add more

or divide them up again to ensure that the statistics are good (and stay good)!

Simple vs. Forced Parameterization

The general process is that SQL Server analyzes a query to determine if it’s safe or not (the

majority of them will NOT be safe). If it’s safe then it can get parameterized and reused. If it’s

unsafe then it goes into memory as an individual query (and it’s harder to determine the

cumulative effect of these queries). Check out the query_hash and query_plan_hash.

Filtered Stats and Forced Param

The bad news… there’s always bad news.

Forced parameterization: even when SQL Server would NOT have parameterized the statement

(because it had deemed the statement’s plan as “unsafe” to re-use), forced param will force it. In

systems where plans are very stable (but A LOT of adhoc) then this could be great. However, the

example of status = 1 (in your query) is converted to status = @1 so the filtered index/filtered

stat cannot be used.

Filtered indexes and filtered stats – Auto update

The bad news… there’s always bad news.

For Updates:

statistics for a filtered index OR a filtered stat – do NOT get updated until that column’s

statistics get updated (which is when the colmodctr) is reached

Database option: FORCED parameterization

Because of how forced parameterization changes each variable to a parameter – the value of

that parameter is unknown. As a result, a filtered index (for example, WHERE status = 1) cannot

be used when a query has been parameterized to status = @1. There’s no guarantee that the

value their searching on is 1.

End result. You will NOT have good results with filtered indexes IF you use FORCED

parameterization. The good news: This is NOT on by default and not likely to be on in most

environments.

Index on OrderDate

Index on ShippedDate

FactInternetSales2

DEMO

This was the demo on uneven distribution.

A table scan is always an option.

With narrow indexes, SQL Server does not

understand the correlation between these

columns. As a result, their estimates are going to

assume even distribution.

DEMO

This was the suggested index from the

green hint in showplan and while it

does make this query faster (and with

fewer I/Os) it’s not the best index that’s

possible.

Key point, the missing index DMVs

(which is where the green hint gets its

information from) – gives you good

suggestions but not always the best

suggestion.

Furthermore, this is the same index

that’s recommended by DTA. So…

sometimes it does take *manually*

defining/choosing the index.

DEMO

This was the index that I suggested (putting OrderDateKey in

the key) as a combination of:

ShipDateKey, OrderDateKey

The first record on the first page will be the minimum

OrderDateKey where ShipDateKey IS NULL.

Poor Man’s Datawarehousing

Setting a database to RO (read-only) can be a

good idea when you plan to use it solely for

reads. However, how does SQL Server update

statistics or add statistics?

Really, it can’t.

So, the main point… if you’re going to move a

backup to another server for read-only access

–you should automate some basic

optimizations before setting it to RO.

SQLskills
VLDB Design Strategies / Techniques

Discussions / drawings around VLDB

and “partitioning” large data sets (VLTs)

Kimberly L. Tripp

Kimberly@SQLskills.com

Partitioning: PVs vs. PTs

• Any edition

• Lots of tables to administer

– Must create/drop indexes on all base tables

• Can have different indexes

• Harder for the optimizer to optimize with

so many indexes

– Must verify business logic so that there are no

gaps or overlapping values

– Each table has [potentially] better statistics as

the tables are smaller

• Can rebuild any of the tables ONLINE (if

using EE)

• Can support multiple constraints on one or

more columns

• Enterprise Edition only

• Only 1 table to administer

– Only 1 table to create/drop indexes

• All partitions have same indexes (which is easier

for the optimizer to optimize)

• Can create different indexes with filtered

indexes

– No possibility of errors (or gaps or overlapping

values)

– Table-level statistics can be less accurate for very

large tables when there’s a lot of skew to the data

• Partition-level rebuilds are offline but can

rebuild the ENTIRE table online (not desirable)

• Can only support partitioning over a single

column

Partitioned views Partitioned tables

Functionally Partitioning Data

Service-oriented Database Architectures

Partitioning in our module was all within a single database. However, we had a side/note about

sharding and scale-out design. The most important thing that I can highlight is that scaling out is

most ideal through middle-tier DDR (data-driven routing) where the applications are directed to

the appropriate server. If every user randomly goes to any of these instances and all requests go

through [distributed partitioned] views then performance will likely be worse!

Check out the whitepapers on SODA (service-oriented database architectures).

Scalable Shared

Databases

Partitioning in our module

was all within a single

database. However, SQL

Server does support

Scalable Shared

Databases. These are RO

databases that are

attached to multiple

servers and then balanced

through WLBS.

Scalable Shared Databases

http://msdn.microsoft.com/en-us/library/ms345392.aspx

Architecting a “layered” approach to your table design

A better option is to separate the RW from the RO and put the RW in separate

tables. Then, you can do online rebuilds at the table level. How do you deal with

queries – put a partitioned view over them!

Optimizing the VLT (Very Large Table)

A very large table has many “problems”… to reduce those – don’t have just ONE VLT – have smaller

tables that are unioned (using UNION ALL) into a view. If you also have restrictive constraints

(CHECK constraints) across all of the base tables this combination is called Partitioned Views. You

get numerous benefits with this architecture including: better control / manageability, better

statistics on each table, online operations, and the reduction of some operations all together (on the

historical data).

Filtering v.

Partitioning

One of the frustrating

things about a large

table is that – even

when partitioned, the

statistics cover the

entire table (leading to

inefficiencies).

If you create a filtered

index over just a single

partition you get

better statistics and an

isolated index (just for

the queries that need

it) but then you lose

the ability to do fast

switching.

Filtering v.

Partitioning

You might think that

using JUST a filtered

index approach would

be better but then

there’s the interval

subsumption problem.

Architecting the RIGHT

solution and breaking

down a VLT into

smaller tables can be

ideal. Partitioned

Views (PVs) do NOT

have interval

subsumption

problems. And, PVs

have better statistics…

Partitioned Views and business logic

Be careful with partitioned views… there’s nothing that’s going to test your

business logic. As a result, if you miss a day (for example Feb 29, 2008)

then inserts into the view will fail because there’s no view that can store

that date.

Alternatively, using partitioned tables – there’s no way to have a gap or

overlapping ranges.

But, there’s a lot more to PVs and PTs (this isn’t enough to choose one

over the other) so this is just a bit more info to add to the list!

Application Directed Inserts (DSE)

Even with updateable partitioned views, I usually use application directed inserts. If

you’re concerned about dynamic string execution check out the Little Bobby Tables

blog post: http://www.sqlskills.com/BLOGS/KIMBERLY/post/Little-Bobby-Tables-

SQL-Injection-and-EXECUTE-AS.aspx

http://www.sqlskills.com/BLOGS/KIMBERLY/post/Little-Bobby-Tables-SQL-Injection-and-EXECUTE-AS.aspx

Partition Elimination

Constraints are validated during optimization. SQL Server is able – when querying through a

view – to generate the query tree and then “prune” the tree. This partition elimination

removes any of the redundant tables from access. All of this is as long as the constraint is

trusted (or, should I say as long as it’s NOT untrusted. )

Expand Views

Another way to look at this is that there are multiple phases of query processing. The

second phase (standardization, normalization, algebrization) is where views are expanded to

their base tables (known as EXPANDVIEWS). This might sounds familiar because of the hint

NOEXPAND – which is used to force SQL Server to use indexes on views (if for some reason

SQL Server isn’t using the IV).

Partitioning on integers (rather than date)

Another example of a partitioned table with 3 boundary points: 2million, 4 million and 6

million. It’s a RIGHT-based partition function so the rows that match the boundary point will

be to the RIGHT side. Specifically this translates into:
In partition 1: all rows less than 2 million

In partition 2: all rows equal to or greater than 2 million and less than 4 million

In partition 3: all rows equal to or greater than 4 million and less than 6 million

In partition 4: all rows equal to or greater than 6 million

Aligned Indexes

Indexes can be aligned to the same partition scheme:

• Either by creating them ON SCHEME(col) or

• Accepting the default behavior during creation. Nonclustered indexes default to being created on the

same scheme as the clustered index – unless they are an UNIQUE index. If the index is unique then the

partitioning column must [explicitly] be part of the key.

Indexes can be unaligned

• The index has all of the nonclustered index data for the table in one leaf structure

• Fast-switching is NOT allowed if unaligned indexes exist

Un-aligned indexes and fast switching

For fast switching to be allowed – you must have ONLY aligned

indexes. For an index to be aligned – there are rules. If the index is going to be unique (and aligned) then it MUST

include the partitioning key. Indexes will default to being created on the same scheme as the table (they will

default to being aligned – and therefore have all of these requirements).

However, if you’re not interested in fast switching – then you can have un-aligned indexes. In this case you

create these indexes on a specific filegroup (or on a different scheme). These un-aligned indexes can be unique

and do NOT have to include the partitioning column.

Staging Data

Why do you need a staging area?

(1) So that you don’t need to

overallocate space within

destination filegroups

(2) So that you don’t have to shrink

(see s54)

(3) So that you can optimize the

process…

Always load into a staging area first.

Then, transform/cleanse

Then, build the CL index ON the

destination filegroup!

Merging the right boundary

If the MERGE process is slow –

you may have merged a boundary

point that was NOT empty.

The most common case of this is

when you start with a non-empty

first partition using RIGHT-based

partitioning. With RIGHT-based

partitioning you should not

MERGE until you have TWO

empty partitions that surround

the emptied boundary. Then, you

can MERGE (top diagram).

Rebuilding the active partition – OFFLINE 

With PTs – it’s likely that your last partition (often, the current data) will be active.

This is also where it’s most likely that you’ll have fragmentation. If you want to

rebuild ONLY that last partition – you’ll need take it offline to do it.

S49 – The Sliding Window Scenario

See the next slide for full details

The prior slide showed the sliding window scenario – but we went through it slowly:

(1) Preparing the table into which we’ll switch OUT our old partition

Review all of the slides for the requirements here but the key point is that this “staging”

table MUST be on the same filegroup as the partition you are going to switch out.

(2) Preparing the table for our data load and what will become our new partition to

switch IN

Again, be sure to review all of the slides for the requirements here but one thing you need

to make sure of is that there’s a TRUSTED constraint on this table before you switch in.

(3) Change the partitioned table to support the new filegroup and data range

Always set the NEXT USED filegroup with ALTER SCHEME

Once you have the correct filegroup specified then ALTER FUNCTION…SPLIT

- Now, you’re ready

(4) and (5) can be in any order. SWITCH IN the new partition and SWITCH OUT the old.

(6) Clean up

Merge the boundary point but ONLY if it’s empty (the next picture will remind you of

what happens when you don’t MERGE an empty boundary point)

Backup the filegroup where the partition resides that you just switched out. OR, drop

the table.

S49 – The Sliding Window Scenario

With PTs - If you want to create

indexed views, you must create

them as partition-aligned (for

fast switching). This is available

in SQL Server 2008+.

With PVs - If

you want to

create

indexed

views, you

must create

them

individually

per table (for

the tables

that

underpin the

PV). If you’re

not on EE

then you’ll

also need to

create a

specific view

to access

them with

the (WITH

Moving/partitioning the CL index

When you rebuild the CL index on a scheme the clustered index (the table) will be partitioned on the new scheme. However,

nonclustered indexes will NOT be partitioned. Nonclustered indexes must be built separately/individually. And, they might need to

be changed. All unique nonclustered indexes must having the partitioning column defined as part of the key.

If the CL table that you want to partition is clustered by date/id (and is the PK) then rebuilding that on the scheme is fairly easy. But,

if it’s not the PK and the PK is instead on SalesID then you’ll change this PK to have the partitioning key as part of the PK. And, this

means all FKs will need to change, etc. This can make the process of converting to a partitioned table become an offline process.

Columnstore Indexes

This was a drawing showing the possible compression of 3 columnstore-based indexes.

Then, each columnstore index is broken down into segments. This is the base of batch-

mode processing (another core part to the performance gains that can be recognized with

columnstore indexes).

Since columnstore indexes make the

table on which they’re created read-

only then you might want to use PVs to

separate read-write and read-only

data.

Having said that, one limitation of the

current implementation of

nonclustered columnstore indexes is

that they do not support batch mode

processing across views that include

UNION ALL. The workaround is to use

CTEs.

Check out the discussion: Perform

UNION ALL and Still Get the Benefit

of Batch Processing on the

columnstore wiki here:

http://social.technet.microsoft.com/wik

i/contents/articles/perform-union-all-

and-still-get-the-benefit-of-batch-

processing.aspx

Might want to

have CS indexes

only on RO

tables

http://social.technet.microsoft.com/wiki/contents/articles/perform-union-all-and-still-get-the-benefit-of-batch-processing.aspx

Splitting a partition that already has data:
There isn’t a slide to which this applies. This was a side discussion about splitting a partition after

it already has data.

If you forget to split for October and November and the last split was for Sept 1 – then, instead

of splitting for October (which has to move BOTH October and November data) and then

splitting for November (which has to move November’s data again) – you should always split the

last set (November) and then the earlier (October). Then, November’s data only moves once and

October’s only once as well

However, if you’re going to make significant changes to a partitioning scheme (like 4 partitions

to 8) then instead of splitting 4 times – just create a new function and new scheme and then

rebuild (possibly online) the object on the new scheme.

