Whiteboard drawings during
class AND drawings from other
workshops that I thought you

Klmberly L. Trlpp might benefit from...
kimberly@SQLskills.com

sg° Lskill
< PASS
S I S SQLSATURDAY
o immerse yourself in sql server < >
(o

Queries Gone Wrong:
Statistics, Cardinality, Solutions

Things | talked about briefly...

sscalar functions — BEWARE (see scalar function script in “other” project)

sinline table-valued function — are usually OK
Ollook like view
Clact like view

"multi-statement table-valued function - rarely
Cllook like sps but not as optimizable
Cdtry the TF
Lif still a problem -> sp

CIConsider changing to use the new trace flag 2453 - be sure to read this article
Ohttp://salperformance.com/2014/06/t-sql-queries/table-variable-perf-fix

<2

http://sqlperformance.com/2014/06/t-sql-queries/table-variable-perf-fix

Notes I wrote up in SSMS (2)

SARGs with a column called msal
What most people would write would be:
where msal * 12 <= @annualsalary

= Non-seekable expression

= Doesn’t allow SQL Server to “seek” for the rows — must process every
value (requiring a scan)

where msal <= @annualsalary / 12

= |solate the column to one side of the expression and SQL can evaluate
once

= This CAN use an index — but, only if it’s selective enough to warrant it

<2

{eble

Cackm onet S2128

Quany
Som (Salosemt)
by cuct

We were discussing the way that SQL Server
will access the data for “sales by customer”
when the nonclustered index is only on
CustomerKey and the query needs additional
information (like the SalesAmount). This NC
index does not cover the query. As a result, SQL
Server has to do bookmark lookups for every
row — which can be very costly. At some point,
SQL Server's NOT going to do this... that's the <)

tipping point.

Having statistics without indexes Tl

can still be beneficial for other
optimization techniques — for //\
example joins. When a loop join is

performed SQL Server wants to 4/_\
position the smaller set as the driver \
(or the first table) and then iterate

into the second table. So, if we

know the selectivity (even without . —_— ——

indexes) then SQL Server might
change the position of the tables in V)
ajoin...

wh hang_

This is why statistics — even without

indexes — can be really helpful! Sel .. Sel .

<D

1< \
\{ =3 | E -

CL Memby_ oy C - ?
N .

Slide 27: Indirect Index Usage (Set Selectivity)
This image describes the two options that SQL Server has to access the data for
WHERE firstname LIKE ‘Kim%'

SQL Server always had an option of doing a table scan...

But, if the number of rows where firstname is like Kim is very selective then the
cost of using the nonclustered (even though we need to scan) is still cheaper —
even with the needed bookmark lookups to get the rest of the data (the index
does not cover the query) <)

VLT UPY < S\D\U

o ovil| R e
\g ol P \5&”

\(?-0'2— 20“() (2015) (‘20!(,) A 2017 -
LA VA

(P (201'7) 20!7)

Recurring theme - dealing with VLTs '\ - Jo
There's more on this at the end of this whiteboard file... 4
DSE

Simply put, a single, very-large-table (even if partitioned) will have
“issues” related to performance, management, etc.

However, breaking that large table down — into more manageable
chunks (e.g. separate tables) offers a tremendous number of

options/solutions. <)

26%,

/\/_/\
AN S e dolg
Felo “woa T A Twar T TTom

— |
\ P r— lo * Comfvus@_
~J S 20|

Statistics are table-level (just one of the many problems with VLTs)
Statistics are table-level even when the table is partitioned.

Unfortunately, you just can’t accurately describe the data (especially when
heavily skewed) in only 200 (or 201) steps. <)

Columnstore indexes

Separate data into columnar storage — allowing for much better
compression (because the data is often similar).

Furthermore, SQL Server breaks those columnstore structures into
segments and can do better parallelism AND segment elimination... which
helps to improve colmstore performance. <)

gl'\ape_ oo

\/0.\ vouw & \/3 red
)y L
Legacv, CE = /q la /3 _{Q

\\)2&/\) Cc — ‘/HX!@ T/;
2>

The New CE in SQL Server 2014 and higher uses different calculations for
estimations...

If you want to get some insight into the specific calculations you should check
out Joe Sack’s whitepaper: Optimizing Your Query Plans with the SQL Server
2014 Cardinality Estimator (https://msdn.microsoft.com/en-us/library/dn673537.aspx)

Is the new CE “better”... in many cases, yes but it's not a guarantee. It's really just
different. Some queries might benefit. Some queries might not... but, now you

have TWO CEs from which to choose, test, and use in your queries — THAT's < >
what's cool!

https://msdn.microsoft.com/en-us/library/dn673537.aspx

’%L\tr (chfe (J

AT
DEMO: Minimum

date where we have
not shipped

/"9}

See the next two
drawings

<2

DEMO
This was the demo on uneven distribution.

DEMO: Minimum A table scan is always an option.
,rg date where we have With narrow indexes, SQL Server does not
not shipped understand the correlation between these
Index on Shlpp@d Date columns. As a result, their estimates are going to

Zv\ g(/up N 3‘#(KfU’\ assume even distributio:.

—=| Soer
— M
Index on OrderDate \ \
QC(’V\M O‘MMQ 6‘“‘! (,.)“'\QV\ b\)l\l T ‘/\,+
(b a Nul
. ' 2941 -
S UV [WO39¢ 87

<2

ﬂw
-

DEMO

This was the suggested index from the
green hint in showplan and while it
does make this query faster (and with
fewer I/0s) it's not the best index that's
possible.

Key point, the missing index DMVs
(which is where the green hint gets its
information from) — gives you good
suggestions but not always the best

DEMO

suggestion.

Furthermore, this is the same index
that's recommended by DTA. So...

This was the index that I suggestahipsitide &rekdatekayairy*

the key) as a combination ofjefining/choosing the index.
ShipDateKey, OrderDateKey

The first record on the first page will be the minimum
OrderDateKey where ShipDateKey IS NULL.

<2

These are the additional
whiteboard pages.

Kimberly L. Tripp
kimberly@SQLskills.com

sg° Lskill
< PASS
S I S SQLSATURDAY
o immerse yourself in sql server < >
(o

Queries Gone Wrong:
Statistics, Cardinality, Solutions

Data selectivity and “need” for additional columns in the key - from left-based density
subsets...

If the distribution of the data is unique at the combination of the first and second columns
then the third, forth, etc. do not provide any use in terms of seeking (JUST in terms of
seeking). However, they might provide use for sorting.

But, it MIGHT be possible to consolidate another index with this one IF you really don’t
need those extra columns in the key. Something to consider!

Multiple — all density * rows and if unique (= 1 or very close to one) then you can consider
consolidation with other similar indexes!

@

’Vpp,uP (<\;Ma£ L \
LAA
Samk ke MR

Column-level distribution from left-based density subsets...

This relates to the query on slide 10 and the idea that I was trying to show here is that even
though the left-based density shows that last names are horribly NOT unique and the combination
of last name & first name IS almost unique — that doesn’t imply anything about first names alone.
could have created a data set of firstnames of Kima, Kimb, Kimc and then multiplied that with last
names (Tripp, Randal, Smith) and I would have had similar statistics for last name alone and for the
combination of last name, first name. SQL Server does NOT gamble on this — SQL Server creates
column level statistics on first name.

Y X 209,, 2
/

~ T | |
/\\'K 20

Y @ T X

SQL 7.0/2000°s rowmodctr

This is a diagram showing the pros/cons of the methods for statistics invalidation. SQL Server 7.0
and 2000 used a rowmodctr (sysindexes.rowmodctr) to do invalidation. Even though SQL Server
doesn’t use this anymore — you can (through sys.dm_db_stats_properties). Internally, in 2005+ they
moved to a colmodctr:

» The pro is that you don't invalidate too soon (when you have a highly volatile column)

* The con is that you might not invalidate soon enough if your modifications are reasonably

distributed.
@

|}

9% S NV I W

L 1 L
T L
" ows oot N

AN INIRIA
We are NOT invalidating soon enough with the column modification counter?
This shows how relatively distributed modifications effect each column with a small percentage of
the modifications but when they add up to 20% ALL columns become invalidated (this was the PRE-
2005 way of doing it):
* The pro was that each column had a reasonable (but lower) percentage of rows modified and the
stats were invalidated

* The con is that a single overly volatile column would cause ALL statistics to be invalidated (which
was overkill).

\)<

—

<2

Col Ao | &;dﬁi’ \(\

Overly volatile columns (or rows) could cause invalidation too
soon (across the table):

The problem prior to 2005 was that a single overly volatile column
would cause ALL statistics to be invalidated.

<2

(O] _
206 228)_5/ }741;9 FL)Z&

NS 125

This was around our discussion about the limitation of SQL Server’s knowledge of the
data with gaps in the step values.

If the step describes the range from 101 to 200 (not including those values)

» There are 250K rows over that range

* There are 5 distinct values

The average will show 50K and EVERY value supplied between 101 and 200 will get an
estimate of 50K. There's no way for SQL Server to know WHICH values actually exist.

<D

—— T RYEY

(Snlc:}e
Filtered Statistics @

Filtered statistics can be created for specific values but depending on your data distribution — you might want to
divide the data into buckets and then create a [filtered] statistic for each of those buckets.

The example was 31 million sales over ~18K customers. By creating a statistic for each 1K customers you have
statistics that are effectively 19x more detailed. Even adding only 10 filtered stats gives you 10 times more detail.
However, it still might not be detailed enough. You'll need to test it and check the histogram. Because of potential
interval subsumption* issues— some have asked if it would be beneficial to create additional stats at different
intervals... you could but it would really depend on the queries. Having said that — the bigger the range that the
query is interested the more the averages just average out. So, really, this issue is to significantly help queries that
are more targeted (where the stats just weren't good).

* The optimizer can detect whether interval conditions in a filtered index cover, or "subsume" interval conditions

of a query. < >

/oy X data ZOR cosk IOK
e e —

Ll G\ 2 %/ Y

Jok. | 201 |

Creating F‘ Itered Stats

The idea is to just have bettex statisti¢s than what you have currently. To do this you can
divide the range into 10-20 buckets. This will give you 10 times (or 20 times) better
information in terms of statistics.

You WILL need to regularly/automatically review the values/ranges and add more
or divide them up again to ensure that the statistics are good (and stay good)!

<2

quan-baaln
ﬁo u/vd'D caclle 4 _
UKPMMQLM(MX T

Simple vs. Forced Parameterization
The general process is that SQL Server analyzes a query to determine if it's safe or not (the
majority of them will NOT be safe). If it's safe then it can get parameterized and reused. If it's
unsafe then it goes into memory as an individual query (and it's harder to determine the
cumulative effect of these queries). Check out the query_hash and query_plan_hash.

<2

Tablo_

(j Stafvus = | Q"Q/\'VI

B Cilbn =1

/\ Lohare Srafus = |
. Smpe_ cmdyze U linday

Filtered Stats and Forced Param §

The bad news... there's always bad news. %;/ ('cd"u S :@ 1

Forced parameterization: even when SQL r would NOT have parameterized the statement
(because it had deemed the statement’s plan as “unsafe” to re-use), forced param will force it. In

systems where plans are very stable (but A LOT of adhoc) then this could be great. However, the
example of status = 1 (in your query) is converted to status = @1 so the filtered index/filtered

stat cannot be used.

|y

| ch

N
(LVVPL‘L
not
Slod_vg — \ QU PLO"’\

Ep,cei)
Satus =@ |

Filtered indexes and filtered stats — Auto update

The bad news... there's always bad news.

For Updates:
statistics for a filtered index OR a filtered stat — do NOT get updated until that column’s
statistics get updated (which is when the colmodctr) is reached

<2

i
—

—
\

Database option: FORCED parameterization

Because of how forced parameterization changes each variable to a parameter — the value of
that parameter is unknown. As a result, a filtered index (for example, WHERE status = 1) cannot
be used when a query has been parameterized to status = @1. There's no guarantee that the
value their searching on is 1.

e s =@

\

End result. You will NOT have good results with filtered indexes IF you use FORCED
parameterization. The good news: This is NOT on by default and not likely to be on in most

environments.

DEMO
<¢ This was the demo on uneven distribution.
K , FaCtInternetsalesz A table scan is always an option.
“ With narrow indexes, SQL Server does not
5“ . understand the correlation between these
Index on Shlpped Date columns. As a result, thejr estimates are going to

assume even distributi

3941 -
0O39¢ 237

<2

ﬂw
-

DEMO

This was the suggested index from the
green hint in showplan and while it
does make this query faster (and with
fewer I/0s) it's not the best index that's
possible.

Key point, the missing index DMVs
(which is where the green hint gets its
information from) — gives you good
suggestions but not always the best

DEMO

suggestion.

Furthermore, this is the same index
that's recommended by DTA. So...

This was the index that I suggestahipsitide &rekdatekayairy*

the key) as a combination ofjefining/choosing the index.
ShipDateKey, OrderDateKey

The first record on the first page will be the minimum
OrderDateKey where ShipDateKey IS NULL.

<2

Veor Mans DL

OLTP — BR

Poor Man’s Datawarehousing

Setting a database to RO (read-only) can be a
good idea when you plan to use it solely for
reads. However, how does SQL Server update
statistics or add statistics?

Really, it can't.

So, the main point... if you're going to move a
backup to another server for read-only access
—you should automate some basic
optimizations before setting it to RO.

@UM#{ slah <
&Bu('d ll/\,d,(/gr/)

FE=100
—Lpdate—SteAs ©
S&M,Ph)\f °
(® sp_ Creote <dats

Qo Ly
OSeamn. — ?

(Pepd oLY

e ™\

<2

Kimberly L. Tripp
Kimberly@SQLskills.com

SQLskills

VLDB Design Strategies / Techniques

Discussions / drawings around VLDB
and “partitioning” large data sets (VLTs)

<D

%PASS
SQLSATURDAY

Partitioning: PVs vs. PTs

Partitioned views Partitioned tables

* Any edition * Enterprise Edition only

* Lots of tables to administer * Only 1 table to administer

— Must create/drop indexes on all base tables — Only 1 table to create/drop indexes
* Can have different indexes * All partitions have same indexes (which is easier
« Harder for the optimizer to optimize with for the optimizer to optimize)
so many indexes * Can create different indexes with filtered
indexes

— Must verify business logic so that there are no
gaps or overlapping values

— Each table has [potentially] better statistics as
the tables are smaller

« Can rebuild any of the tables ONLINE (if
using EE)

* Can support multiple constraints on one or
more columns

— No possibility of errors (or gaps or overlapping
values)
— Table-level statistics can be less accurate for very
large tables when there’s a lot of skew to the data
» Partition-level rebuilds are offline but can
rebuild the ENTIRE table online (not desirable)

* Can only support partitioning over a single
column

<2

Functionally Partitioning Data

Sales VIEW

Use UNION ALL to bring data togetherinto a
single View.

becomes current month

Sales2012 Solves many problems:
Sal Table - * Tables can be isolated (LUNs)
Sales2013Q2 \ * Tables can be on RO FGs
Sales2013Q3 Sales2013 * [Table-level] Statistics are more accurate on
r
Partitioned Table 4[/ smaller tables
=elER R at * Limitations in PTs are removed: partition-level
Sales2014 rebuilds aren’t needed (RW datais in a separate
. table(s))
Fartitioned Table * Lock escalation is reduced naturally (partition-
(RO) level was added in 2008)
ﬁﬁi
N0 T 0O N ® /
Q OO0 O 0|0 O
IIIIII|IIY 3T Sales201409 Sales201410
r
8 8 8 8 8 8 8 8 Standalone Table Standalone Table
2833 33 33 (RW) (RW) (el ke euizeied i
U(g (g 3 U“BS 3 U‘% Utg 3 L shortly after next month

<2

<
) L]

e

Service-oriented Database Architectures N

Partitioning in our module was all within a single database. However, we had a side/note about
sharding and scale-out design. The most important thing that I can highlight is that scaling out is
most ideal through middle-tier DDR (data-driven routing) where the applications are directed to
the appropriate server. If every user randomly goes to any of these instances and all requests go
through [distributed partitioned] views then performance will likely be worse!

Check out the whitepapers on SODA (service-oriented database architectures).

<2

Scalable Shared
Databases

Partitioning in our module
was all within a single
database. However, SQL
Server does support
Scalable Shared
Databases. These are RO
databases that are
attached to multiple
servers and then balanced
through WLBS.

Scalable Shared Databases

<2

http://msdn.microsoft.com/en-us/library/ms345392.aspx

Architecting a “layered” approach to your table design
A better option is to separate the RW from the RO and put the RW in separate
tables. Then, you can do online rebuilds at the table level. How do you deal with
queries — put a partitioned view over them!

.—P\/ — Se'ec

- upv Del eles\u\)da‘i‘e

Cown Q—\-‘ Co ng)_go R ‘DJ

20/& : “0'*' 'ZOlL-/ Cond Gag <
‘ M Tl Tl 5 T =)
Q Tt

[ﬂEF?[“Y@@B

Dpp ©Piv
weants

<2

P Of
1
L
CD“S\/) b i‘_ (2"\“ 0«{\ -
\V A Con<h.
-\ Inan
D3
\V4

Optimizing the VLT (Very Large Table)

A very large table has many “problems”... to reduce those — don’t have just ONE VLT — have smaller
tables that are unioned (using UNION ALL) into a view. If you also have restrictive constraints
(CHECK constraints) across all of the base tables this combination is called Partitioned Views. You
get numerous benefits with this architecture including: better control / manageability, better
statistics on each table, online operations, and the reduction of some operations all together (on the

historical data).
<D

Filtering v.
Partitioning

One of the frustrating
things about a large
table is that — even
when partitioned, the
statistics cover the
entire table (leading to
inefficiencies).

If you create a filtered
index over just a single
partition you get
better statistics and an
isolated index (just for
the queries that need
it) but then you lose
the ability to do fast
switching.

1

PN VN, ,
AR
] 7\ N)

L_—__Iél,/%;__.u

W W
| o)]
()L\)(‘>(3 jfp+
o &a o L_/‘E/\;\ s NS Shoned

ot FAST-Sw (C

<2

Filtering v. \% o, N

Partitioning Y@ W } \ 'P'l-

You might think that K — \) Nnon DF-
using JUST a filtered \p . 5 4 P
index approach would 1 & FlI H

be better but then \(‘ D e, mAR ?MD

there's the interval =~ — [z Intervod gu bsthbq
subsumption problem. % Ware dafe = dan 10

Architecting the RIGHT Whae date lbehoeen Aawml0 amd Ta 2 OK_

solution and breaking

down a VLT into Jerl ond bl No

smaller tables can be G B =~
| Q\o\l' |Ceb/"‘

ideal. Partitioned) \
Views (PVs) do NOT T e IV ot bawa | S¢ ‘wb)
have interval ludf &, ?V W) EB‘”.OJ\ Jouly

subsumption
problems. And, PVs
have better statistics...

<2

\V
e N T A
(=)e) (

W
— 28 1 — 3§

Partitioned Views and business logic

Be careful with partitioned views... there’s nothing that's going to test your
business logic. As a result, if you miss a day (for example Feb 29, 2008)
then inserts into the view will fail because there's no view that can store
that date.

Alternatively, using partitioned tables — there's no way to have a gap or
overlapping ranges.

But, there’s a lot more to PVs and PTs (this isn't enough to choose one
over the other) so this is just a bit more info to add to the list!

@

Application Directed Inserts (DSE)

Even with updateable partitioned views, I usually use application directed inserts. If
you're concerned about dynamic string execution check out the Little Bobby Tables

blog post: http://www.sglskills.com/BLOGS/KIMBERLY/post/Little-Bobby-Tables-
SQL-Injection-and-EXECUTE-AS.aspx

<2

http://www.sqlskills.com/BLOGS/KIMBERLY/post/Little-Bobby-Tables-SQL-Injection-and-EXECUTE-AS.aspx

R\,

IS D (g
\/__} \K Mwé%/- “2ono12”

Constvamt Fobs C‘
o g
Partition Elimination

Constraints are validated during optimization. SQL Server is able — when querying through a
view — to generate the query tree and then “prune” the tree. This partition elimination
removes any of the redundant tables from access. All of this is as long as the constraint is
trusted (or, should I say as long as it's NOT untrusted. ©)

<2

SAY4 Pév\d (VAT IO Noe PQM’&

Expand Views

Another way to look at this is that there are multiple phases of query processing. The
second phase (standardization, normalization, algebrization) is where views are expanded to
their base tables (known as EXPANDVIEWS). This might sounds familiar because of the hint
NOEXPAND - which is used to force SQL Server to use indexes on views (if for some reason

SQL Server isn't using the 1V).

4 mdl

/
[
- un
\

Partitioning on integers (rather than date)
Another example of a partitioned table with 3 boundary points: 2million, 4 million and 6
million. It's a RIGHT-based partition function so the rows that match the boundary point will

be to the RIGHT side. Specifically this translates into:
In partition 1: all rows less than 2 million
In partition 2: all rows equal to or greater than 2 million and less than 4 million
In partition 3: all rows equal to or greater than 4 million and less than 6 million
In partition 4: all rows equal to or greater than 6 million

<2

Aligned Indexes

Indexes can be aligned to the same partition scheme:

» Either by creating them ON SCHEME(col) or

* Accepting the default behavior during creation. Nonclustered indexes default to being created on the
same scheme as the clustered index — unless they are an UNIQUE index. If the index is unique then the
partitioning column must [explicitly] be part of the key.

Indexes can be unaligned

* The index has all of the nonclustered index data for the table in one leaf structure

» Fast-switching is NOT allowed if unaligned indexes exist

<2

D[NI

ZAN

Z> —
é C ush

ow ke

Un-aligned indexes and fast switching (U n-a ,Wd)

For fast switching to be allowed — you must have ONLY aligned

indexes. For an index to be aligned — there are rules. If the index is going to be unique (and aligned) then it MUST
include the partitioning key. Indexes will default to being created on the same scheme as the table (they will
default to being aligned — and therefore have all of these requirements).

However, if you're not interested in fast switching — then you can have un-aligned indexes. In this case you
create these indexes on a specific filegroup (or on a different scheme). These un-aligned indexes can be unique
and do NOT have to include the partitioning column.

<2

Staging Data

Why do you need a staging area?

(1) So that you don't need to
overallocate space within
destination filegroups

(2) So that you don't have to shrink

g(\ G GD) \ O@XQ(BQ/((3) (Sscf ihsa5t4))/ou can optimize the

process...

Always load into a staging area first.
Then, transform/cleanse
Then bUI|d the CL index ON the

Py ki@f) \Ocﬁr

Merging the right boundary

If the MERGE process is slow —
you may have merged a boundary
point that was NOT empty.

[The most common case of this is

when you start with a non-empty

S—br) \ @) }~ first partition using RIGHT-based
partitioning. With RIGHT-based
partitioning you should not

MERGE until you have TWO
empty partitions that surround

—_— the emptied boundary. Then, you
can MERGE (top diagram).

<2

Rebuilding the active partition — OFFLINE ®

With PTs - it's likely that your last partition (often, the current data) will be active.

This is also where it's most likely that you'll have fragmentation. If you want to
rebuild ONLY that last partition — you'll need take it offline to do it.

HLUT P

<2

SEremg T8 vse vmext £4x <
\ Qund‘;d‘h QpllF 200‘4070) 7

2A Sw _.v looun
T @3

l/fusf ?.
.Z Condva .f

Clem(cle)

(@adg for prod

CQ CL Of‘%y

5 e C
203> @ v/ =%

S49 - The Sliding Window Scenario 2012 t— Cr CS
See the next slide for full details

<2

The prior slide showed the sliding window scenario — but we went through it slowly:
(1) Preparing the table into which we’ll switch OUT our old partition

Review all of the slides for the requirements here but the key point is that this “staging”
table MUST be on the same filegroup as the partition you are going to switch out.

(2) Preparing the table for our data load and what will become our new partition to
switch IN

Again, be sure to review all of the slides for the requirements here but one thing you need
to make sure of is that there’s a TRUSTED constraint on this table before you switch in.

(3) Change the partitioned table to support the new filegroup and data range
Always set the NEXT USED filegroup with ALTER SCHEME

Once you have the correct filegroup specified then ALTER FUNCTION...SPLIT

- Now, you're ready

(4) and (5) can be in any order. SWITCH IN the new partition and SWITCH OUT the old.
(6) Clean up

Merge the boundary point but ONLY if it's empty (the next picture will remind you of
what happens when you don't MERGE an empty boundary point)

Backup the filegroup where the partition resides that you just switched out. OR, drop
the table.

<2

@, wmax Sthame MRXH U 1% 6
5 ®fQ\i’r@ Zoo‘#oﬂ?
E \C

03 o4
oluy oY
// ccaL T 2080670L \S\Qg Consh
— C) LO
6n F3Z é@gﬂ\%
ok 4=’
R N =
Q008> C R \lfT\/ p \/91\/

S$49 - The Sliding Window Scenario

\ ? \{ With PVs - If

1) \/ 2 you want to
create
/\V\ indexed
vA VA views, you

— M must create

(x| [E) [] rea
ey eV cewm indvidually
1 [V per table (for

IL | the tables

| O lzg that
Z | erpin the
30 ~If you're
not on EE

} — then you'll

also need to

create a

specific view

to access

them with

With PTs - If you want to create
indexed views, you must create
them as partition-aligned (for
fast switching). This is available
in SQL Server 2008 +.

<2

cL 0D . Onigu

mal ([omes) L vy gl

ATE . 1D

St | L

& e
ez &= & B0 Soles (Bslesid)
2

<

ng [Cmee) é

— VN

Moving/partitioning the CL index

When you rebuild the CL index on a scheme the clustered index (the table) will be partitioned on the new scheme. However,
nonclustered indexes will NOT be partitioned. Nonclustered indexes must be built separately/individually. And, they might need to
be changed. All unique nonclustered indexes must having the partitioning column defined as part of the key.

If the CL table that you want to partition is clustered by date/id (and is the PK) then rebuilding that on the scheme is fairly easy. But,
if it's not the PK and the PK is instead on SalesID then you'll change this PK to have the partitioning key as part of the PK. And, this
means all FKs will need to change, etc. This can make the process of converting to a partitioned table become an offline process.

<2

Columnstore Indexes

This was a drawing showing the possible compression of 3 columnstore-based indexes.
Then, each columnstore index is broken down into segments. This is the base of batch-
mode processing (another core part to the performance gains that can be recognized with
columnstore indexes).

<2

P \/ & Since columnstore indexes make the

table on which they're created read-
only then you might want to use PVs to
Q D 2D separate read-write and read-only

data.
r&_’ _PT oA T

|
N,) 3 Having said that, one limitation of the
(= ‘3 ((—'S_ current implementation of

. nonclustered columnstore indexes is
] 1 ’
' that they do not support batch mode
processing across views that include

Might want to UNION ALL. The workaround is to use
have CS indexes CTEs.
only on RO
g P tables

(® PT) 8 Check out the discussion: Perform

UNION ALL and Still Get the Benefit
I~ mode M

(@ T) < of Batch Processing on the

columnstore wiki here:

CQ«/QQ '," http://social.technet.microsoft.com/wik
i/contents/articles/perform-union-all-
and-still-get-the-benefit-of-batch-
processing.aspx

<2

http://social.technet.microsoft.com/wiki/contents/articles/perform-union-all-and-still-get-the-benefit-of-batch-processing.aspx

Splitting a partition that already has data:
There isn't a slide to which this applies. This was a side discussion about splitting a partition after
it already has data.

If you forget to split for October and November and the last split was for Sept 1 — then, instead
of splitting for October (which has to move BOTH October and November data) and then
splitting for November (which has to move November’s data again) — you should always split the
last set (November) and then the earlier (October). Then, November's data only moves once and
October’s only once as well

However, if you're going to make significant changes to a partitioning scheme (like 4 partitions
to 8) then instead of splitting 4 times — just create a new function and new scheme and then
rebuild (possibly online) the object on the new scheme.

