
SQLintersection
Precon 05

Queries Gone Wild: Real-world Solutions
Whiteboard Drawings and Annotations

Kimberly L. Tripp
President/Founder/Co-owner

Kimberly@SQLskills.com

NOTE: Whiteboard drawings from our discussions during the

workshop at SQLintersection on Sunday, April 13, 2014.

PS: I also included a few other relevant drawings from other

workshops.

2
© SQLintersection. All rights reserved.

http://www.SQLintersection.com

Auto Update Statistics

 SQL Server 7.0
 Invalidated when sysindexes.rowmodctr reached
 Updated when invalidated

 SQL Server 2000
 Invalidated when sysindexes.rowmodctr reached
 Updated when needed

 SQL Server 2005
 Invalidated when sysrowsetcolumns.rcmodified reached
 Updated when needed

 SQL Server 2008
 Invalidated when sysrscols.rcmodified reached
 Updated when needed

Following drawings apply to

slide 21 from our workshop

deck

3
© SQLintersection. All rights reserved.

http://www.SQLintersection.com

This is a diagram showing the pros/cons of the methods for statistics invalidation. SQL Server 7.0 and 2000 used a rowmodctr
(sysindexes.rowmodctr) to do invalidation. Even though SQL Server doesn’t use this anymore – you can (through the new
sys.dm_db_stats_properties DMV). In 2005+ they moved to an internally defined colmodctr:
• The pro is that you don’t invalidate too soon (when you have a highly volatile column)
• The con is that you might not invalidate soon enough if your modifications are reasonably distributed.

4
© SQLintersection. All rights reserved.

http://www.SQLintersection.com

This shows how relatively distributed modifications effect each column with a small percentage of the modifications
but when they add up to 20% ALL columns become invalidated (this was the PRE-2005 way of doing it):
• The pro was that each column had a reasonable (but lower) percentage of rows modified and the stats were

invalidated
• The con is that a single overly volatile column would cause ALL statistics to be invalidated (which was overkill).

5
© SQLintersection. All rights reserved.

http://www.SQLintersection.com

The problem prior to 2005 was that a single overly volatile column would cause ALL statistics to be invalidated.

6
© SQLintersection. All rights reserved.

http://www.SQLintersection.com

In 2005+ they use an internally defined colmodctr:
• The pro is that you don’t invalidate too soon (when you have a highly volatile column)
• The con is that you might not invalidate soon enough if your modifications are reasonably distributed.

7
© SQLintersection. All rights reserved.

http://www.SQLintersection.com

Even Distribution: Always Even??

 Table scan is always an option
 Use an index on ShipDateKey to look up the actual date for all orders where ShipDateKey is NULL

 This means a bookmark lookup must be run for EVERY NULL so that we can get the OrderDateKey
 The worktable then needs to be sorted to find the lowest order date

 Use an index on OrderDateKey as only 1 on 23.7 sales have a NULL for ShipDateKey
 SQL Server estimates that they’ll find a NULL within 23.7 rows and they won’t need a worktable
 This sounds better…

 But the rows are not evenly distributed!

Following drawing applies

to slide 53 from our

workshop deck

FactInternetSales2

Index on OrderDateKey

(1)

(2)

(3)

Index on ShipDateKey

This was the demo on uneven distribution.
(1) A table scan is always an option.
NOTE: With narrow indexes, SQL Server does not understand the correlation between these
columns. As a result, estimates are going to expect even distribution.
(2) Index on ShipDateKey – requires looking up the OrderDateKey values and placing them in
a temptable. Then, to find min – we have to sort.
(3) Index on OrderDateKey – requires looking up the shipdatekey until we find the first NULL
(because that would be the min). How many lookups? If 2541 are null (out of 60398) then we
should find a null within 23.7 lookups. (60398/2541 = 23.7)

DEMO

This was the demo/discussion on how SQL Server uses nonclustered indexes to scan
(when there isn’t a better index AND the data is selective enough to make it
worthwhile).
(1) A table scan is always an option. And, we’ll always (easily) know the cost.
NOTE: No index exists for seeking by firstname so – what do we do?
(2) Index on LN, FN, MI can be scanned (fewer I/Os than a table scan) but, we’ll still
need to do bookmark lookups to get the rest of the data. But, if there are only a few
rows then it might be worth it… how would we know how many rows? Statistics on
firstname would tell us! So, SQL Server auto creates statistics on firstname, optimizes
the query, and executes!

DEMO

(1) (2)

10
© SQLintersection. All rights reserved.

http://www.SQLintersection.com

Workshop Overview
 Query Optimization
 Statistics
 Data Distribution
 Statement Execution and Plan Caching
 Stored Procedures

Creation
Optimization
Plan invalidation
Recompilation
Optimization strategies

Following drawings apply to

our last section of the workshop

– Optimizing Procedural Code

(starting on slide 66)

Using EXEC (string) [DSE] and/or sp_ExecuteSql [ES] inside of stored procedures
DSE and ES are not the same.
DSE is unknown until runtime. At that point the statement is treated as though it’s adhoc. Because most statements are not
going to be safe, the statement will end up being recompiled (and optimized) for each execution.
ES is forced parameterization. When a statement is stable you can use this to reduce compilation/CPU costs.

Multipurpose screens/dialog boxes that lead to multipurpose procedures
They looked/sounded good at the time?
But, they’re often VERY hard to optimize with where clauses that look like:
WHERE (Column1 = @Value1 OR @Value1 IS NULL)

AND (Column2 = @Value2 OR @Value2 IS NULL)
AND (Column3 = @Value3 OR @Value3 IS NULL)

…
Check out the demo scripts in order to fully see how to better optimize this – using
sp_executesql (for combinations that are stable) and sp_executesql WITH RECOMPILE for
combinations that could generate different plans.

Options for different executions
If we largely execute with “standard” users and we
absolutely want THAT plan to be in cache and to be re-
used then we could:
1) Use option (optimize FOR…) and use a literal that will

generate a plan that’s great for the “typical”
scenario. However, the performance won’t be great
for the atypical (super user) scenario.

2) We could use EXEC for the typical scenario and EXEC
proc WITH RECOMPILE for the super user scenario.
The benefit of this is:

1) We get a cached plan for the typical user
(no CPU/plan stability)

2) We get a specific plan for the atypical user (the
super user) as opposed to a possibly inefficient
plan (so, we have to compile but we’re only
compiling this one type of plan)

Conditional logic and modularization
This is another way of looking at the same thing from the prior diagram. Really, don’t think of the “logic” in your procedure;
think only of the procedure as a list of statements (regardless of conditional logic). SQL Server tries to optimize ANY statement
that’s “optimizable” with the parameters that were supplied (regardless of those specific parameters apply for that
execution). This is another case where you can end up with an inefficient plan because of parameter sniffing.

Conditional logic and modularization
Creating branching logic for different types of parameters seems logical but because SQL Server optimizes the process of
optimization (where they try to optimize anything that’s optimizable), you can often end up with a plan that’s not ideal.
You are much better off breaking that code into smaller subprocedures – SQL Server will never step into a subprocedure
unless it’s executed and in this case it will only be executed with exactly the right parameters.

Parameters are “sniffed”
SQL Server uses parameters to optimize.
Sniffing implies that SQL Server uses the
histogram to evaluate the data selectivity. For
the FIRST execution parameter sniffing is
great. It’s the subsequent executions that can
suffer from parameter sniffing (and therefore
end up with PSP = parameter sniffing
problems).

Variables are “unknown”
Variables are only known at runtime as the
statements execute and the variables are
assigned. As a result, they are unknown
during optimization. With an actual value,
SQL Server cannot use the histogram. Instead
SQL Server uses the density vector for the
“average” numbers of rows that meet that
criteria.

Dynamic String Execution, EXECUTE AS and SQL Injection
People complained that granting permissions directly to the user was a problem… so, they wanted an alternative. Enter:
EXECUTE AS.
While it solves the problem of permissions, it adds more potential for SQLInjection.
So…….. Check out these posts:

Little Bobby Tables, SQL Injection and EXECUTE AS: http://www.sqlskills.com/BLOGS/KIMBERLY/post/Little-Bobby-
Tables-SQL-Injection-and-EXECUTE-AS.aspx
"EXECUTE AS" and an important update your DDL Triggers (for auditing or prevention):
http://www.sqlskills.com/BLOGS/KIMBERLY/post/EXECUTE-AS-and-an-important-update-your-DDL-Triggers-(for-
auditing-or-prevention).aspx

Options that better balancing recompiling too much vs. not recompiling enough
This is from the multipurpose procedure demo. There are 3 parameters and 7 possible combinations that can be submitted.
Instead of adding OPTION (RECOMPILE) to the statement (which doesn’t always work [remember, it has a very checkered past])
you can build the statement dynamically and then programmatically (by setting a RECOMPILE flag to 0 or 1) decide whether or
not OPTION(RECOMPILE) should be added to the dynamically constructed statement. Then, you can use sp_executesql to place
ALL seven statements in cache. Those without the OPTION(RECOMPILE) clause will be cached. Those with – will get a plan on
each execution.

Stable plans vs. unstable plans – how do you know?
• You could test different combinations using execute with recompile.
• You might know because of selectivity?

