

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2004 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft SQL Server 2000 High Availability / Allan Hirt ... [et al.].

p. cm.
Includes index.
ISBN 0-7356-1920-4
1. SQL server. 2. Client/server computing. I. Hirt, Allan.

QA76.9.C55M53215 2003
005.75'85--dc21 2003051241

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 8 7 6 5 4 3

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa-
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send
comments to mspinput@microsoft.com.

BizTalk, Microsoft, Microsoft Press, Outlook, Visio, Visual SourceSafe, Windows, Windows NT,
Windows Server, and Windows Server System are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries. Other product and company
names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people,
places, and events depicted herein are fictitious. No association with any real company, organiza-
tion, product, domain name, e-mail address, logo, person, place, or event is intended or should be
inferred.

Acquisitions Editor: Kathy Harding
Project Editor: Maureen Williams Zimmerman

Body Part No. X09-39086

v

Table of Contents
Foreword xvii

Preface xix

Acknowledgments xxi

Part I The High Availability Primer
1 Preparing for High Availability 3

High Availability—What It Is and How to Get It 4
Prevention 4
Disaster Recovery 5

Agreeing on a Solution 6
The Project Team 6
Guiding Principles for High Availability 7
Making Trade-Offs 8
Identifying Risks 9
Next Steps 10

Availability Calculations and Nines 10
Calculating Availability 10
What Is a Nine? 11
What Level of Nines Is Needed? 12
Negotiating Availability 13

Types of Unavailability 14
Where Does Availability Start? 14

Assessing Your Environment for Availability 15
The Cost of Availability 16
Barriers to Availability 18

Summary 18

vi Table of Contents

2 The Basics of Achieving High Availability 19
Data Center Best Practices 19

Location 21
Security 24
Cabling, Power, Communications Systems, and Networks 25
Third-Party Hosting 27
Support Agreements 28
The “Under the Desk” Syndrome 29

Staffing 30
Creating a Database Team 30
Service Level Agreements 32

Manage Change or Be Managed by It 35
Change Management for Databases: The Basics 35
Development, Testing, and Staging Environments 36
Managing Change and Availability in Development 38
Managing Change in Production 41
Preparing for Change 41
Implementing Change 46

System and Process Standardization 48
Documentation 49

3 Making a High Availability Technology Choice 51
Windows Clustering 52

Server Clusters 52
Network Load Balancing Clusters 58

Geographically Dispersed Clusters 60
SQL Server 2000 61

Failover Clustering 61
Log Shipping 67
Replication 69
Backup and Restore 71

Decisions, Decisions … 72
The Decision Process 72
A Comparison of the SQL Server Technologies 74
What Should You Use? 81

Table of Contents vii

Part II Technology Building Blocks
4 Disk Configuration for High Availability 85

Quick Disk Terminology Check 85
Capacity Planning 86

Raw Disk Space Needed 87
Application Database Usage 88
Understanding Physical Disk Performance 93
Using SQL Server to Assist with Disk Capacity Planning 96

Types of Disk Subsystems 97
Direct-Attached Storage 97
Network-Attached Storage 98
Storage Area Networks 101
What Disk Technology to Use 102

Server Clusters, Failover Clustering, and Disks 103
Pre-Windows Disk Configuration 107

Number of Spindles Needed 108
Understanding Disk Drives 109
Understanding Your Hardware 110
Understanding How SQL Server Interacts with Disks 112
Understanding Disk Cache 113
A RAID Primer 114
Remote Mirroring 119
Storage Composition 120
Types of Disks and File Systems in Windows 121
Formatting the Disks 122

File Placement and Protection 123
System Databases and Full-Text Indexes 124
User Databases 125
Databases, the Quorum, and Failover Clustering 125
Files and Filegroups 126

Database File Size 127
Shrinking Databases and Files 129

Configuration Example 130
The Scenario 131
Sample Drive Configurations 133

viii Table of Contents

5 Designing Highly Available Microsoft Windows Servers 139
General Windows Configuration for SQL Servers 139

Choosing a Version of Windows 139
Versions of SQL Server and Windows Server 2003 143
Disk Requirements for Windows 144
Security 146
Windows Server 2003 Enhancements 147

High Availability Options for Windows 154
Windows Reliability Features 154

Server Clusters 156
Planning a Server Cluster 157
Certified Cluster Applications 165
Ports, Firewalls, Remote Procedure Calls, and Server Clusters 165
Geographically Dispersed Clusters 166
Antivirus Programs, Server Clusters, and SQL Server 166
Server Clusters, Domains, and Networking 167
Implementing a Server Cluster 170

Server Cluster Administration 190
Changing Domains 190
Changing a Node’s IP Address or Name 190
Changing Service Accounts and Passwords 191
Disk Management 193
Forcing Quorum for an MNS Cluster 198

Network Load Balancing 199
General Network Load Balancing Best Practices 200
Implementing Network Load Balancing for SQL Server–Based Architectures 201
Adding a Network Load Balancing Cluster to DNS 206
Configuring Logging for Network Load Balancing Manager 206
Uninstalling Network Load Balancing 207

Part III Microsoft SQL Server Technology
6 Microsoft SQL Server 2000 Failover Clustering 211

Planning for Failover Clustering 211
Versions of Windows Supported 212
Number of SQL Server 2000 Instances per Server Cluster 212

Table of Contents ix

Name of the SQL Server Virtual Server 213
Number of Nodes 214
Disks 216
IP Addresses, Ports, and Network Card Usage 218
Applications and Failover Clustering 219
Third-Party Applications, File Shares, Dependencies,
and SQL Server 2000 Failover Clustering 220
Hardware-Assisted Backups and SQL Server 2000 Failover Clustering 221
Service Accounts and SQL Server 2000 Failover Clustering 222
Memory 223
Coexistence with Stand-Alone Instances and Other Versions of SQL Server 224
Analysis Services and Failover Clustering 224
SQL Mail and Failover Clustering 225
Exchange and SQL Server on the Same Cluster 225
Cluster Group Configuration for Failover Clustering 226

Implementing SQL Server 2000 Failover Clustering 226
Prerequisites 227
Installation Order 227
Installing a SQL Server Virtual Server 229
Postinstallation Tasks 229

Verifying Your Failover Cluster Installation 241
Verifying Connectivity and Name Resolution 242
Verifying the SQL Server Service Account and Node Participation 243
Verifying the Application with Failover 244

Administering SQL Server Virtual Servers 244
Ensuring a Virtual Server Will Not Fail Due to Other Service Failures 245
Adding or Removing a Cluster Node from the Virtual Server
Definition and Adding, Changing, or Updating a TCP/IP Address 245
Renaming a SQL Server 2000 Virtual Server 249
Uninstalling a SQL Server Virtual Server 249
Manually Removing Failover Clustering 251
Manually Removing Clustered Instances of SQL Server 254
Changing SQL Server Service Accounts 256
Changing Domains 259

Troubleshooting SQL Server 2000 Failover Clusters 260
Barriers for Failover Clustering 260
The Troubleshooting Process 262

x Table of Contents

Disaster Recovery for Failover Clustering 265
Scenario 1: Quorum Disk Failure 266
Scenario 2: Cluster Database Corruption on a Node 267
Scenario 3: Quorum Corruption 267
Scenario 4: Checkpoint Files Lost or Corrupt 268
Scenario 5: Cluster Node Failure 268
Scenario 6: A Cluster Disk Is Corrupt or Nonfunctional 271
If You Do Not Have Backups 271

7 Log Shipping 273
Uses of Log Shipping 273
Basic Considerations for All Forms of Log Shipping 275

Ask the Right Questions 276
How Current Do You Need To Be? 279
Secondary Server Capacity and Configuration 279
Disk Space, Retention, and Archiving 280
Full-Text Searching and Log Shipping 281
Recovery Models and Log Shipping 283
Network Bandwidth 285
Logins and Other Objects 286
Clients, Applications, and Log Shipping 288
Security 291

Log Shipping and Database Backups 293
Service Packs and Log Shipping 295
Files, Filegroups, and Transaction Logs 295
Custom Log Shipping Versus Microsoft’s Implementation 296
Configuring and Administering the Built-In Functionality
Using SQL Server 2000 Enterprise Edition 297

Log Shipping Components 298
Configuring Log Shipping 302
Administering Log Shipping 319
Role Changes 335

Creating a Custom Coded Log Shipping Solution 339
Log Shipping From SQL Server 7.0 to SQL Server 2000 340

Configuring Log Shipping from SQL Server 7.0 to SQL Server 2000 341

Table of Contents xi

8 Replication 345
Using Replication to Make a Database Available 345

Choosing a Replication Model for Availability 346
Switch Methods and Logins 348
Replication and Database Schemas 348

Highly Available Replication Architecture 352
Replication Agents 353
Scenario 1: Separate Publisher and Distributor 356
Scenario 2: Using a Republisher 358
SQL Server Service Packs and Replication 360
Planning Disk Capacity for Replication 360

Disaster Recovery with a Replicated Environment 363
Backing Up Replication Databases 364
Disaster Recovery Restore Scenarios 370

Log Shipping and Replication 372
Transactional Replication and Log Shipping 373
Merge Replication and Log Shipping 374
Performing a Role Change Involving Replication 375

9 Database Environment Basics for Recovery 379
Fundamentals 379

Technology Last 380
Understanding Your Backup and Restore Barriers 381
Minimizing Human Error 382
Symptoms and Recovery 384

Backup 384
Understanding Database Structures 385
Initial Database Settings and Recovery Models 399
Recovery Models 404
Backup Types 416

10 Implementing Backup and Restore 429
Creating an Effective Backup Strategy 429

Backup Retention 433
Devising a Backup Strategy to Create an Optimal Recovery Strategy 434

xii Table of Contents

Implementing Your Backup Strategy 444
Options for Performing a Backup 444
Creating a Backup Device 445
Executing the Full Database–Based Backup Strategy
Using Transact-SQL 460
Executing the File-Based Backup Strategy Using Transact-SQL 462
Simplifying and Automating Backups 466
Implementing an Effective Backup Strategy: In Summary 478

Database Recovery 479
Phases of Recovery 481
Useful RESTORE Options 485
Disaster Recovery with Backup and Restore 486

Collected Wisdom and Good Ideas for Backup and Restore 499
Backing Up the Operating System 501

Using Backup 503
Backing Up and Restoring Clustered Environments 507

Backing Up a Standard Server Cluster 507
Third-Party Backup Software and SQL Server 2000 Failover Clustering 509

Part IV Putting the Pieces of the Puzzle Together
11 Real-World High Availability Solutions 513

The Scenario 513
Conditions and Constraints 514
The Planning Process 515

Step 1: Breaking Down the Requirements 515
Step 2: Considering Technologies 517
Step 3: Designing the Architecture 518
Step 4: Choosing Hardware and Costs 519

Exercise Summary 525
Case Study: Microsoft.com 527

Background Information 527
Planning and Development 528
How Microsoft.com Achieves High Availability in Production 529
Microsoft.com’s Barriers to Availability 530

Table of Contents xiii

12 Disaster Recovery Techniques for Microsoft SQL Server 533
Planning for Disaster Recovery 534

Run Book 534
SLAs, Risk, and Disaster Recovery 541
Planning Step 1: Assessing Risk and Defining Dependencies 542
Known Facts About Servers 548
Risks and Unknowns 552
Planning Step 2: Putting the Plan Together 553
When All Else Fails, Go to Plan B 556

Testing Disaster Recovery Plans 556
Executing Disaster Recovery Plans 557

Example Disaster Recovery Execution 558
Disaster Recovery Techniques 560

Step 1: Assessing Damage 562
Step 2: Preparing for Reconstruction 563
Step 3: Reconstructing a System 565

13 Highly Available Upgrades 579
General Upgrade, Consolidation, and Migration Tips 579
Upgrading, Consolidating, and Migrating to SQL Server 2000 584

Phase 1: Envisioning 586
Phase 2: Technical Considerations for Planning 593
Phase 3: Consolidation Planning—The Server
Design and the Test Process 606
Phase 4: Developing 611
Phase 5: Deploying and Stabilizing 612

Windows Version Upgrades 612
Should You Upgrade Your Version of Windows? 612
Performing a Windows Version Upgrade on a Server 614

SQL Server Version Upgrades or Migrations 617
Tools for Upgrading from SQL Server 6.5 619
Tools for Upgrading from SQL Server 7.0 619
Upgrading Between Different Versions of SQL Server 2000 620
Upgrading from Previous Versions of SQL Server Clustering 621

Attaching and Detaching Databases Versus Backup and Restore 622

xiv Table of Contents

Service Packs and Hotfixes 624
Emergency Hotfixes and Testing Requirements 626
Applying a Windows Service Pack 627
Applying a SQL Server 2000 Service Pack 628
Hotfixes 635

Part V Administering Highly Available
Microsoft SQL Servers

14 Administrative Tasks for High Availability 639
Security 640

Securing Your SQL Server Installations 640
Securing Your SQL Server–Based Applications 646

Maintenance 649
Calculating the Cost of Maintenance 650
Intrusive Maintenance 652
Defragmenting Indexes 653
Logical vs. Physical Fragmentation 654
Example: Defragmenting a VLDB That Uses Log Shipping 655
Database Corruption 656

Changing Database Options 657
Memory Management for SQL Server 2000 657

Understanding the Memory Manager 658
Breaking the 2-GB Barrier Under 32-Bit 663
Paging File Sizing and Location 670
SQL Server Memory Recommendations 674

Managing SQL Server Resources with Other Tools 681
Transferring Logins, Users, and Other Objects to the Standby 681
Transferring Logins, Users, and Other Objects Between Instances 682
Transferring Objects 683
DTS Packages 689

15 Monitoring for High Availability 691
Monitoring Basics 692

Setting Ground Rules 696
How Available Is Available? 699

Table of Contents xv

Implementing a Monitoring Solution 702
Hardware Layer Monitoring 702
Monitoring Windows and SQL Server Events 703

Monitoring Your Monitor and Other Critical Services 723
Capacity Planning and Monitoring 724

Glossary 727

Index 733

379

9
Database Environment
Basics for Recovery

Whether you implement failover clustering, log shipping, replication, or a com-
bination of these, they cannot supplant a solid backup and recovery plan.
Things can—and will—go wrong. Even a well-planned highly available system
is subject to user error, administrative error, procedural failure, or a catastrophic
hardware failure. Creating, testing, and maintaining a database environment in
which little to no data is lost and downtime is entirely avoided in a disaster is
no trivial task. Because backup and restore are important, required parts of any
disaster recovery plan, your backup and restore strategy should minimize both
data loss and downtime. This chapter gives you the basic understanding to be
able to proceed to Chapter 10, “Implementing Backup and Restore,” where you
learn how to implement a backup and restore plan in your environment.

Fundamentals
No matter what size the database or the availability requirements, restore is
always an option. In some cases, such as in the event of accidental data modi-
fications or deletions, it is the only option that lets you restore the database to
the state it was in before the modification. But what does it mean to have a
backup and restore strategy focused on high availability?

To be focused on high availability you must be focused on whether or not
the system is accessible and, if it is not, on how long it will be down. A success-
ful disaster recovery plan lets you recover your database within your company’s
defined acceptable amount of downtime and data loss. If downtime must be
kept to an absolute minimum, the key requirement for your backup strategy is

380 Part III Microsoft SQL Server Technology

recovery speed. How do you make your recovery fast? Are there database and
server settings that can impact the recovery of your database? What options must
be determined as part of your strategy? There are many possible backup and
restore strategies, each of which offers different levels of trade-offs between hard-
ware costs, administrative complexity, potential work loss exposure (data loss in
the event of a failure), performance during the backup, performance of batch
operations or maintenance operations, as well as day-to-day performance of user
operations around the clock. Finally, the options that you choose to employ
could also have effects on the transaction log in terms of active size, backup size,
and whether log backups are negatively affected during other operations.

For example, did you know that log backups are paused while a full
backup is running? Do you know the impact of pausing log backups on other
features that depend on frequent log backups, such as log shipping? Do you
know what else could go wrong if the log backup does not occur? The deci-
sions you make here are truly critical to the overall success of your recovery
plan. But where do you start?

Technology Last
First, you must know the barriers for which backup and restore will be the solu-
tion. This helps you determine where you are at risk. Second, you must know
your environment. Knowing your data; the database structures; how the data is
being used; changes made to database settings throughout the day, week, or
month; and the acceptable amount of downtime and data loss (which could
vary at different times of day) is important. You must be familiar with user,
administrative, and batch processes so that you are aware of all that could fail
and what was happening at the time of the failure. This information will help
you estimate how much time is acceptable for repair and recovery, which in
turn helps to dictate your hardware choices. Third, you must have a recovery-
oriented plan that fully aligns with the process of database recovery and the res-
toration phases.

Using these key facts, you can decide among the backup types available
and come up with the best strategy for your environment. Only after you fully
understand each one of these factors should you determine which backup strat-
egy is best. Unfortunately, administrators commonly define backup strategies
by learning only the backup technologies available without considering recov-
ery. This is exactly the wrong approach; instead, you should consider technol-
ogy last and recovery first. If you do not have a recovery-oriented plan, you will
more than likely suffer data loss and significant downtime.

Chapter 9 Database Environment Basics for Recovery 381

Understanding Your Backup and Restore Barriers
Whether you are recovering from accidental data deletion, hardware failure,
natural disaster, or other unplanned incident, you will want your recovery to be
well thought out. There are really two categories of barriers that are likely to be
overcome with your backup and restore strategy: hardware failure and applica-
tion or user error.

Hardware Failure
You should not use backups to recover from hardware failure as a common
practice, as it is likely your system already has hardware redundancy in place.
Whether you are trying to set up a highly available server or just a production
database server, you should always start by using some form of disk redun-
dancy, such as RAID. In Chapter 4, “Disk Configuration for High Availability,”
you looked at many disk considerations for the foundation of your database,
and it is likely you have chosen some form of mirroring, striped mirrors, or
striping with parity. However, what if you lose an entire RAID array? What if a
single disk is lost in a RAID 5 set and the administrator replaces the wrong disk
during the hot swap to replace the failed disk? In the case of hardware failure,
you might choose to minimize downtime by bringing a secondary or standby
server online; however, you will need to recover the failed primary. Often, this
is done with backups.

User Error
You might think that your job would be great if there were no users or even other
DBAs or system administrators. Quite frankly, no human intervention of any sort
would be preferable for most! If you could create a database and then never use
it, it would be much easier to manage. Nevertheless, if users can modify data,
inevitably someone at some time will modify something incorrectly. Similarly, if
system administrators have direct access to the production server, they have the
ability to directly change your production data. In Chapter 14, “Administrative
Tasks to Increase Availability,” you will look at the administrative processes that
should be in place to maintain and secure a highly available system, but even
with extensive preparations, accidents will happen. In fact, accidental damage is
the most difficult from which to recover and it can spread much further than just
an incorrectly dropped table. Application, user, and process error could occur
almost anywhere. Examples include the following scenarios:

■ Administrators or database owners (DBOs) dropping a table incor-
rectly because they are connected to their production and develop-
ment databases all day long—within the same tools.

382 Part III Microsoft SQL Server Technology

■ Users accidentally modifying the wrong data because they have
direct base table permission to INSERT, UPDATE, and DELETE, and
although they normally remember a WHERE clause, they forget to
highlight it when executing their query.

■ Batch processes accidentally dropping the wrong database because the
script performs a drop and re-create of the database. It is the first time
the script is being run on that server, where a different database—
named the same as the other database but supporting different
functionality—already exists.

■ Batch processes accidentally creating objects or making changes to
the wrong database because the initial database creation fails due to
a path error or a not enough disk space error. With little or no error
handling in the script, it continues to run incorrectly in the wrong
database. All of the script’s objects end up in the connected user’s
default database, which in this case is set to the master database.

All of these scenarios are possible, and these few examples are really only
the tip of the iceberg. More important than the original failure is the recovery
process that follows. Incorrect data modifications are the most difficult to
recover from because the longer any problem is left unmanaged, the more
likely you are to lose data. Additionally, the longer you wait, the more difficult
it is to recover the data from the still potentially changing database.

How quickly do your users come running down the hall or pick up the
phone to tell you about their accidental data deletion? Does the DBA immedi-
ately refer to the disaster recovery plan when he or she makes a mistake, or
does he or she try to troubleshoot the problem, possibly compounding it? What
is the best plan of recovery and, more important, how can you prevent some of
these mistakes from happening in the first place?

Minimizing Human Error
To make a system both secure and highly available, you need to have adminis-
trative change control as well as maintenance processes in place to minimize
direct access to production databases. There is a common question asked by
DBAs: Is there a way that SQL Server system administrators can be prevented
from dropping tables? This sometimes garners the answer, “Get new system
administrators.” All kidding aside, this can and does happen. This problem is so
common that many system administrators have learned quite a few tricks, and
the next several paragraphs include a few ideas—not specific to backup and
restore—picked up from them along the way.

Chapter 9 Database Environment Basics for Recovery 383

To prevent tables from being incorrectly dropped, consider schema-
bound views using declarative referential integrity (DRI), which makes inad-
vertently dropping a table more difficult. However, DRI prevents a dropped
table only when the table is being referenced with a foreign key constraint. A
sales table, for example, often references other tables, but other tables do not
always reference it. So how can you prevent an accidental table drop? Consider
using a schema-bound view. If a view is created with SCHEMABINDING, then
the table’s structure cannot be altered (for all columns listed in the view), and
the table cannot be dropped (unless the view is dropped first).

More Info For details on how to create schema-bound views in
Microsoft SQL Server, see Instant DocID#22073 on the SQL Server
Magazine Web site at http://www.sqlmag.com. This article does not
require a subscription.

To prevent data from being incorrectly modified, consider eliminating all
direct access to the base tables. Often having applications designed to manipu-
late the data are best; however, users might then require direct ad hoc access to
your data. Is it really necessary? This requirement usually indicates that the
users are not getting the information they need and the developers gave up.
Regardless, creating boundaries within the ad hoc environment is better than
complete chaos that is marked by bad queries, poor performance, and unhappy
users. Instead of granting direct access (SELECT, INSERT, UPDATE, and
DELETE) to the base tables, create views, stored procedures, and functions to
handle the data access. Using these objects, you can add error handling, trap
unwanted change, manage data redundancy, and generally prevent accidental
modifications where a WHERE clause has been left off inadvertently.

If this seems like a lot of work, you might be surprised at the secondary
benefits. Typically when users write ad hoc queries, performance suffers
because of mistakes in writing Transact-SQL. Users who do not write a lot of
Transact-SQL code are prone to writing poorly performing code. You can opti-
mize objects through the development and quality assurance testing of the
views, procedures, and functions, providing a better outcome for everyone.

Finally, to prevent mistakes in batch processing, consider error handling and
a scheduled code review with all key personnel. The code review allows other
experienced DBAs to determine if anything could interfere with what they are
responsible for. Additionally, another set of eyes to review the batch could prevent
something that might otherwise be a problem with running the batch in the existing

384 Part III Microsoft SQL Server Technology

environment. This need not be a line-by-line code review (although it could be),
but it should at least explain the general principles behind the script’s execution.
Give special attention to all components of the script that drop or modify already
existing data, objects, or databases. If the script includes proper error handling, the
time for the code review could be reduced.

As a trick in batch processing, consider using RAISERROR. There is a special
value for the state parameter of RAISERROR that might help by forcing the termi-
nation of a complex script and preventing further execution when the script is
processing incorrectly. Raising an error with a state of 127 causes the script to
stop processing, and this can be especially helpful when the script might end up
processing in the wrong database. However, setting the state value does not
always appear to terminate the session. Applications such as SQL Server Query
Analyzer might automatically reconnect when a connection is broken. To fully
realize the benefit of the state option, you need to use a tool such as Osql.exe,
which does not reconnect automatically after the connection is terminated.

More Info For details on some of the benefits of using RAISERROR
in your Transact-SQL statements, see Instant DocID#22980 on the Web
at http://www.sqlmag.com. This article does not require a subscription.

However, be aware that nothing is guaranteed. Even if you prevent many
errors using these techniques, the database probably will still need to be recov-
ered after some form of human or application error.

Symptoms and Recovery
Recovering a database after hardware failures or incorrect data modifications
can be quite complex, as there are numerous elements that can fail. Even more
numerous are the options for recovery. The failure might be isolated to one
disk, one RAID array, one table, a group of tables, or only part of the data.
Remember, to create a strategy for high availability you want to recover as fast
as possible. If the damage is isolated, can your restore and recovery be isolated?
Possibly, if you plan for it.

Backup
Before creating your backup strategy, there are a few key facts to know about
how SQL Server works with regard to backup and recovery. First and foremost,

Chapter 9 Database Environment Basics for Recovery 385

there is no need for a traditional backup window. Backups can occur concur-
rently with other operations and while users are online actively changing the
data. Backups have very little impact on the existing workload, as they do not
rely on reading the active data (this is discussed in detail later). Additionally,
backups run as fast as the hardware allows and they are self-tuning.

With this in mind, you might wonder why you cannot just perform back-
ups constantly, and when one completes, begin another. There are many rea-
sons why this might or might not be a good idea, and this is what this chapter
is about: knowing the basics before you implement your backup and restore
plan. More important, are you familiar with the technology? Are you aware that
some backups conflict with some administrative operations? For example, when
performing a full database backup, you can neither change the database’s file
and filegroup structure (either manually or through autogrow options) nor back
up the transaction log. These limitations might prove significant as you review
possible backup strategies.

Understanding Database Structures
Every database has a data portion and a log portion. When you define the data-
base you must create a log—whether you want one or not—and you cannot
turn logging off. In fact, SQL Server creates a transaction log file for you if one
is not specified. When the size of the log is not specified, the default size varies
between the syntax and the Enterprise Manager dialogs so it is important to
explicitly state the size (the Create Database dialog uses a default of 1 MB for
the transaction log and the CREATE DATABASE syntax defaults to 25 percent of
the total size of the data portion; neither is usually appropriate). However, siz-
ing the transaction log is not easy, as there are numerous factors on which the
log size is based. One of the most important is related to backup.

Warning Do not use file system compression with SQL Server data
files, as it is not supported. When SQL Server writes to the transaction
log, it needs to guarantee sector-aligned writes. When using com-
pressed volumes, SQL Server loses the ability to guarantee exact
placement of data within a sector (a sector is 512 bytes, and SQL
Server writes in 8 KB blocks). Putting SQL Server data files on com-
pressed volumes has resulted in lost data. For more information,
review Microsoft Knowledge Base article 231347, “INF: SQL Server
Databases Not Supported on Compressed Volumes,” found at http://
support.microsoft.com.

386 Part III Microsoft SQL Server Technology

Understanding the Write-Ahead Log
When modifications are written to the database, SQL Server goes through a series
of steps to ensure consistency and recovery. To ensure consistency, SQL Server
takes the necessary locks; to ensure recovery, SQL Server writes information to
the transaction log portion of the database. A simplified version of the process is
described in the following steps and text. Although this version is simplified, it
will give you a good understanding of how the log is defined as a write-ahead log
and why it is important for both SQL Server and manual recovery.

1. A user submits a single data modification statement—for example, an
update. This update will affect five rows out of the one million rows
within that table. This is considered an implicit transaction as all five
rows need to be modified or the transaction will not be complete.

2. SQL Server begins the modification by taking update locks on all of the
rows required (there are other locks at the page level, table level, and
database level; however, for this example, they are not significant). An
update lock is an interesting lock that represents someone who has the
intent to modify but has not yet modified the row. SQL Server can pro-
ceed to perform the changes only after all update locks on all rows
involved take place. Although the rows have only the update lock (as
SQL Server is repeating Step 3 for each row), rows with an update lock
are accessible to readers, allowing better concurrency.

3. Modifying the data actually occurs in a number of steps. For each
row, SQL Server follows this process:

a. It obtains the exclusive lock, which is sometimes referred to as X.
To perform the actual data modification, SQL Server must guaran-
tee that no one else can see this data (that is, no one can access
this “dirty” and uncommitted data). To do so, a stricter lock is
required (an exclusive lock). The exclusive lock specifies that only
this transaction can access this data exclusively until the transac-
tion no longer needs it (once the transaction is committed).

b. SQL Server modifies the row (performs the modification as
defined by the modification statement).

c. It logs the modification to the transaction log (which for this
modification might solely be in memory at this point). How-
ever, once all of the rows have been modified, the next step is
to commit this transaction and make it recoverable.

Chapter 9 Database Environment Basics for Recovery 387

4. Once all of the modifications have been performed, the transaction is
ready to commit. The process of committing the changes also occurs
in a number of steps:

a. SQL Server writes the changes to the transaction log on disk
(this might have already happened, but if any of the log pages
on which this transaction resides are still in memory, they are
written at this point).

b. It releases the locks.

c. It notifies the client that the modifications are complete. The
user receives the “5 Rows Affected” message.

This information is interesting, because it shows that there is a time when
information about a transaction is only in memory (Step 3) and another time
when it is both in memory and its log changes are on disk (Step 4). When does
the data make it to the data portion of the database? A separate process synchro-
nizes changes from memory to their appropriate locations on disk. This process,
called a checkpoint, really exists to synchronize all dirty pages with their appro-
priate location on disk, regardless of the state of the transaction (this is one of the
reasons a log page might have already been written to disk before Step 4). Log
pages are always written ahead of data pages, and in many cases it might be min-
utes ahead. A checkpoint is a batch operation (not to be confused with a bulk
operation) that allows modified pages to be written to disk quickly in batches
rather than as they occur. How long does it wait? That is dependent on SQL
Server, and even though you can change this, it is not recommended.

More Info If you are interested in learning more about this configu-
ration option, check out the Recovery Interval setting in SQL Server
Books Online and in the Microsoft Knowledge Base.

The checkpoint process is batched to minimize thrashing to disk, as some
data pages might change due to numerous transactions over a short period of
time. Instead of writing those pages to disk as they occur, the checkpoint
batches them, minimizing the writes to disk. However, to guarantee a user that
his or her transaction is in the database, even if there is a power failure (remem-
ber, the user has received the “5 Rows Affected” message), SQL Server writes

388 Part III Microsoft SQL Server Technology

transaction log information at the commit of a transaction. This allows the trans-
action log activity to be predominantly sequential writes and the data portion
(except at checkpoint) to be more random reads (yes, some users read large
sequential amounts of data, but with numerous users it is more random).

In summary, this is why the transaction log is called a write-ahead log. The
log information is written to disk on the commit of a transaction ahead of the
data. The data is written later during a checkpoint. To improve performance, you
can always place the transaction log portion of your database on a dedicated
disk. This can improve performance, and it is also important for recovery because
it allows you to set different options for the drives on which these files are
located. So how does this apply to backup and restore in terms of recovery?

For databases to recover from incidents like power failure, transactional
information must be available. The transaction log provides this set of instruc-
tions, which can be used in recovery. The instructions contain what has
changed within your database, and this always gets you from one version of the
data to another, not unlike how driving directions get you from one location to
another. Have you ever wanted to tell someone how to get somewhere? When
you are talking to them you always start with a point of reference. For example,
starting at X, you take Y to Z, and so on. The same is true for the transaction
log. All transaction log entries act as instructions based on how the data looked
at the time. To use those instructions, the system must have the data in the same
state as it was in at the time, or the instructions will not make sense.

There are really two purposes for the transaction log. Automatic Recovery
is SQL Server’s primary use for the transaction log. Automatic Recovery occurs
each time SQL Server is started to ensure transactional consistency. If transac-
tions were being processed when the server was stopped, SQL Server can
recover those changes by accessing the log when the server restarts. This
ensures that only committed transactions are within the database and uncom-
mitted transactions are rolled back. SQL Server recovers system databases and
then user databases at startup. Automatic Recovery first reads the log and goes
through a phase called redo (roll forward). During this phase, the transaction
log is read to find all of the changes and perform them, loading the information
into the cache. Once redo is finished, SQL Server performs the undo phase.
During this phase, SQL Server rolls back any changes that do not have a corre-
sponding commit. If the server was shut down properly this should process
very quickly; however, if the server suffered a power failure or improper shut-
down, Automatic Recovery might take significantly longer.

During Automatic Recovery, SQL Server needs to see the instructions about
the changes that are kept in the transaction log if they have not yet made it into
the data portion of the database on disk. Remember, at Step 4 (above), the trans-
action is partially on disk and partially in memory. Specifically, the instructions

Chapter 9 Database Environment Basics for Recovery 389

about the change are in the transaction log on disk and the result of the data
changes is in the data portion of the database in memory. Once the transaction
log has been read and all steps have been processed through redo and undo, the
last step of Automatic Recovery is performing a checkpoint. This synchronizes
memory to disk to ensure that all changes processed by Automatic Recovery are
on disk and would not need to be processed again if the server were to suffer
another power failure. Once recovery completes, SQL Server makes the database
available.

Once the checkpoint process synchronizes that information to disk, SQL
Server no longer needs the information for Automatic Recovery. In fact, SQL
Server even allows you to set an option to clear the information if you choose
to. However, this is where the secondary benefit of having the transaction log
can be seen: manual recovery. You might need to perform manual recovery if
the database is damaged.

Important Although secondary to SQL Server, the advantage of
being able to do a manual recovery is the most important reason to
keep the transaction log and not let SQL Server clear it.

This is another reason the transaction log should be created on a physical
disk that is separate from the data portion of the database. By keeping these
instructions in the transaction log, you can set up a process to capture these
changes later, potentially even when the data portion of the database has been
damaged. To capture these changes, you perform transaction log backups. In
the event of a failure that renders the database inaccessible or corrupts the data
in the database (due to application or human error), having the transaction log
backed up gives you something external to the corrupted database from which
you can recover, potentially even up to the time (or just prior to the time) at
which the database became corrupt. In fact, you can perform backups of the
transaction log at periodic intervals. Each one will act as a set of directions to
get you from one point to another. The more frequently you capture these
instructions, the closer and closer you can get without directly accessing the
original data.

In total, a complete sequence of log backups can get you from various
starting points up to the time of a failure, especially if you have the final set of
instructions. Once you have captured these instructions, SQL Server removes
the inactive instructions (instructions from transactions still being processed
cannot be removed) from the transaction log portion of the database. This helps

390 Part III Microsoft SQL Server Technology

to maintain the overall size of the transaction log. Second, by frequently captur-
ing these instructions, you create smaller backups. In turn, these smaller trans-
action log backups can be performed with little impact on users. Because the
transaction log is critical to recovery, you should make an effort to make it as
efficient as possible.

Optimizing the Performance of the Transaction Log
The log portion of the database should have exactly one file (maximum number
of total files—both data and log—is 32,767); there is rarely a need for more
than one transaction log because you will not see any performance benefits.
More than one transaction log could be useful only if your log needs to span
multiple volumes. If you have more than one file based on capacity alone, you
should consider increasing the frequency of transaction log backups so that a
buildup of instructions does not occur. Also, consider using hardware RAID to
handle the increased need for capacity over having multiple log files. Increasing
the frequency of log backups not only minimizes the need for a large transac-
tion log, it also minimizes your potential data loss exposure.

Because the transaction log is critical in most recovery scenarios, it is also
important to make sure that the drive on which the transaction log resides is
also on some form of RAID. RAID 1 mirroring is acceptable if the transaction
log is not overly active. For extremely active transaction logs where disk activity
queues or where performance is not optimal, consider using a combination of
mirroring and striping (preferably striped mirrors) for the transaction log. This
might mean giving a significant amount of disk space to a relatively small
amount of information, but therein lies the trade-off of disk space versus per-
formance (and possibly availability).

Even if the transaction log is only one physical file, as recommended, SQL
Server maintains that file internally as multiple virtual log files (VLFs). At the
creation of a database, the transaction log is divided into multiple VLFs. SQL
Server determines the size of the VLFs, which is not generally interesting to the
typical administrator. However, you should be concerned with how many VLFs
get created because you do not want to create fragmentation and noncontigu-
ous log access. If the transaction log size was properly estimated during capac-
ity planning and the database was set up with the appropriate size when it was
created, the number of VLFs will be optimized for the size of the file. If the file
was properly created at the correct size it will have very few VLFs.

For example, a 1-GB transaction log will have only eight VLFs. Again, hav-
ing an optimal number of VLFs is based on the file being initially created at (and
not autogrowing to) 1 GB. If the file is added at only 100 MB and grows to 1
GB, you end up with significantly more VLFs; in fact, at least one VLF for each
autogrowth. With a transaction log that grows automatically by 10 percent,

Chapter 9 Database Environment Basics for Recovery 391

starting the transaction log at 100 MB and growing it to 1 GB would create
roughly 25 VLFs instead of 8. (In some cases you might see hundreds of VLFs
when autogrow is growing by a smaller amount, more frequently.) Having
more than the necessary number of VLFs adds overhead both in terms of
backup performance and transaction log performance (logging).

To minimize the number of VLFs, you need to define the transaction log
size appropriately (or at least reasonably) at creation. For the databases where
files are set to autogrow, you can also minimize the number of VLFs by setting
the autogrowth size to a reasonable fixed number of megabytes (the default is
10 percent, but this requires calculation, as it might not be enough). Addition-
ally, transactions processing at the time of autogrowth are paused (or blocked)
and might time-out based on your client settings. Instead, actively monitoring
your transaction logs, performing frequent transaction log backups, and mini-
mizing long-running transactions gives you a more appropriate number of VLFs
and better performance.

To see the number of VLFs your database’s log file has, execute DBCC
LOGINFO.

Caution DBCC LOGINFO is an undocumented READ ONLY com-
mand that displays information about the transaction log. There is no
guarantee that it will work as defined here in future releases.

For the purpose of this discussion, all you are interested in is the number
of rows—this indicates the number of VLFs. If you have more than 16 VLFs,
you should consider trying to consolidate them. The best way to do this is to
clear the transaction log with a regular transaction log backup (if being per-
formed), then shrink the transaction log with a DBCC command and then
finally, manually set the size to the more appropriate size through one execu-
tion of ALTER DATABASE (instead of numerous autogrowths).

In Microsoft SQL Server 2000, shrinking the transaction log should occur
easily by performing a regular transaction log backup and then using DBCC
SHRINKFILE (logfilename, TRUNCATEONLY) to shrink the transaction log to
the smallest possible size. Immediately following the SHRINKFILE, execute
ALTER DATABASE, and increase the transaction log’s size as appropriate. Make
sure to set the maximum size to a finite value instead of allowing it to be unlim-
ited. Additionally, you should make sure to monitor the log size and create both
jobs and alerts to regularly manage the transaction log.

392 Part III Microsoft SQL Server Technology

Understanding Continuity of the Transaction Log
Even though recommended recovery strategies are discussed later, along with
how the different backups work, it is important to make sure that you completely
understand the importance of maintaining continuity of the transaction log. The
database’s transaction log contains instructions and a transaction log backup
allows those changes to be recorded in another location (a backup device).
When a transaction log is backed up, SQL Server can clear much of what was
backed up because it no longer needs the information for Automatic Recovery.
Due to this clearing (or truncation), transaction log backups are usually instruc-
tions only since the last log backup (there is an option that allows you to back up
a transaction log and not clear it; however, this is not the default and it is typically
used only in special circumstances). Other backups do not affect the transaction
log; only transaction log backups manage the transaction log.

Take the following example in which full database backups are repre-
sented as F1 and F2 and 20 transaction log backups are shown as l1 through l20.
Consider the group of backups, starting with each of the full database backups,
as a recovery set. One recovery set begins with F2 and the previous begins with
F1.

F1 l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 F2 l13 l14 l15 l16 l17 l18 l19 l20

This example shows a total of 22 backups. With these two recovery sets
you have created multiple recovery paths. The optimal recovery path would be
to recover with the last full database backup and then apply all of the remaining
transaction log backups.

F2 l13 l14 l15 l16 l17 l18 l19 l20

What if the full database backup F2 were bad? Do you have any other options?
Yes, you do. This is the beauty of the design of both the transaction log and
transaction log backups. If the full database backup at F2 is bad, you can
recover using the F1 full database backup instead. At F1 you can apply the
entire series of transaction log backups in sequence and still recover up to
transaction log l20. If recovery from F1 was desired, the restore sequence would
be as follows:

F1 l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15 l16 l17 l18 l19 l20

In fact, even if the full database backup F1 was bad, you could go back to the
previous full database backup—assuming it is still available and all of the
transaction log backups are accessible—and you could still roll forward to the
last transaction log backup at l20.

Chapter 9 Database Environment Basics for Recovery 393

Many interesting observations stem from this example. As transaction log
backups are performed, SQL Server completes the backup by essentially clear-
ing (truncating) what was backed up (with the exception of that which is still
active). Transaction log backups have a very specific sequence to them and you
must perform recovery using all transaction logs. Each and every transaction
log must be applied in sequence; if one is not available, the recovery process
cannot move forward. More important, even when other backups are per-
formed, they do not affect the continuity of the transaction log. The full data-
base backup performed at F2 can be skipped as though it had not occurred, and
recovery can occur seamlessly by beginning with the full database backup F1
and then restoring all of the transaction logs from l1 through l20.

You can learn numerous lessons from this discussion. First and foremost,
transaction log backups are the most critical backups to have in a recovery sce-
nario. If a transaction log backup is damaged, the last successfully loaded transac-
tion log will be the final transaction log backup to which you can recover. In fact,
you might even consider creating multiple copies of your transaction log backups
or mirroring them to multiple backup devices. That said, with certain backup hard-
ware you might be able to back up transaction logs to multiple devices simulta-
neously. In Figure 9-1, a single transaction log backup is written to four tapes.

F09HA01Figure 9-1 Duplexed and mirrored transaction logs.

It is also important that you keep more than one set of backups on hand.
Before you discard a recovery set’s starting point (that is, before you discard a
full database backup), you should test the recovery set you are keeping. To
ensure comprehensive recovery of a database during a restore you must have a
complete sequence of all transaction logs up to the time of the failure or the

SD

R
C

N
10

1
R

IN
G

 C
N

TL
R

64
4-

01
04

-0
01

ALARM

OFF
LINE

IDLE

Duplexed Controllers

SD

R
C

N
10

1
R

IN
G

 C
N

TL
R

64
4-

01
04

-0
01

ALARM

OFF
LINE

IDLE

Duplexed Controllers

SD

R
C

N
10

1
R

IN
G

 C
N

TL
R

64
4-

01
04

-0
01

ALARM

OFF
LINE

IDLE

Duplexed Controllers

SD

R
C

N
10

1
R

IN
G

 C
N

TL
R

64
4-

01
04

-0
01

ALARM

OFF
LINE

IDLE

Duplexed Controllers

Duplexed
Controllers

SQL Server

DB

Mirrored Tape Backups

394 Part III Microsoft SQL Server Technology

point in time to which you want to recover. Having all of these logs gives you
continuity. Anything that breaks the continuity of the log causes that to be the
last log you can apply.

Other operations could affect the continuity of the transaction log, but
they are not recommended when you want to recover from the transaction log.
In fact, in a production transaction-processing database, the only operation that
should ever truncate a transaction log is a transaction log backup. When this is
true and you maintain transaction log continuity, you have added redundancy
to your backup strategy.

What If the Transaction Log Fills?
Nothing is certain, and even with precautions the transaction log could still fill.
This might not seem like it could be problematic but it is very important to real-
ize that a full transaction log translates to downtime. When the transaction log
is full, the database stops all modifications, and any transactions pending at the
time the log fills are rolled back. Additionally, new modifications are not
allowed. By most definitions this is downtime. The database is available, but
only for read operations. No new modifications are allowed until space is made
available. The correct—and simple—response to the full transaction log is to
perform a backup of the transaction log so that SQL Server can clear the inac-
tive portion of the transaction log (something that occurs as part of a transaction
log backup).

In previous releases of SQL Server, a special command was used in this
scenario, but it was mainly because of how previous versions were designed.
When the transaction log filled, there was no room for SQL Server to mark (or
log) the fact that the transaction log was being backed up. Because of this,
transaction log backups were not allowed when the transaction log filled. The
special clause WITH NO_LOG had to be added to the BACKUP LOG command
to clear the log without backing it up. In Microsoft SQL Server 7.0, this was
fixed and BACKUP LOG now works for most transaction logs, even when they
are full.

For those of you experienced with previous releases, this might come as
quite a shock, but this reaction—to flush the transaction log when it fills—is not
only the wrong response, it should be avoided! If you flush the log, you are
doing something worse than just throwing it away: you are breaking the conti-
nuity of the transaction log. In fact, in SQL Server 7.0 or SQL Server 2000, the
BACKUP LOG with the NO_LOG option is really no longer necessary; it has
become synonymous with BACKUP LOG WITH TRUNCATE_ONLY. You should
never need either of these commands in a properly maintained database.

However, because so many people have this improper response to a
transaction log filling, which is usually automated with a SQL Server Agent job,

Chapter 9 Database Environment Basics for Recovery 395

a trace flag was added. Trace flag 3231 makes both of these backup commands
benign. You can turn on a trace flag in multiple ways. First, you can set it as a
startup parameter. The easiest way to do this is through the Enterprise Manager.
Right-click your server and choose Properties. In the General Tab, click Startup
Parameters. In the Startup Parameters tab, enter -T3231 in the Parameter text
box and then click Add. This will be set the next time you restart SQL Server. If
you want to turn off the trace flag permanently you can remove the startup
parameter. If you want to turn off the trace flag temporarily you can just execute
DBCC TRACEOFF(3231). This statement turns the trace flag off until you turn it
back on with DBCC TRACEON(3231) or until you restart your server (if it still
remains a startup parameter).

Trace flag 3231 protects the continuity of the transaction log from com-
mon and inappropriate reactions to a full transaction log. In fact, with this trace
flag turned on neither of the following commands

BACKUP LOG dbname WITH NO_LOG

BACKUP LOG dbname WITH TRUNCATE_ONLY

does anything in databases where the recovery model is set to Full or Bulk-
Logged. In fact, these commands are so unnecessary that the trace flag makes
them behave as if the BACKUP LOG WITH … commands execute successfully
(so that automated batches do not fail), but both commands are turned into a
no operation (NO-OP). With this trace flag turned on, you can ensure that the
continuity is never broken by an improperly executed backup log command,
minimizing the potential for human error. However, the transaction log will still
be full and you still have to take the appropriate actions to resolve this.

Caution Even if the continuity of the transaction log is broken, there
are cases where subsequent log backups do not generate an error
and are allowed. Even if a warning message is produced, it is likely to
go unnoticed if transaction log backups occur through scheduled oper-
ations that continue automatically.

Unfortunately, there are rare cases when backing up the log might not be
possible. Even then you still have options. If a normal transaction log backup
does not work or it is going to take too much time (therefore causing down-
time; remember, the database is unavailable until space is available), there are

396 Part III Microsoft SQL Server Technology

two options. The best of them would be to add space to the size of the trans-
action log. There are three ways to do this: allow autogrowth, manually
increase the size, or add another file to the transaction log. The easiest way is
to allow the transaction log to increase through autogrowth, but make sure to
set a predetermined maximum size so it does not use all disk space, and always
monitor it (especially with Administrative Alerts). If the transaction log still fills,
then you need to reevaluate the maximum and manually increase the size while
setting a new maximum size. If the maximum is unlimited and you are out of
disk space, temporarily adding another file to the log to get back up and run-
ning quickly is the best choice (and can often be the fastest, especially when
the size of the file being added is significantly smaller than the current size of
the transaction log). If you add a file, you should remove it once the transaction
log has been backed up properly. To remove this file you can use DBCC
SHRINKFILE with the EMPTYFILE option; this causes SQL Server to stop using
this file for transaction log extent allocations. Once the file is properly emptied,
it can be removed with the ALTER DATABASE REMOVE file option.

The other option, which is never recommended if recoverability or avail-
ability is a goal, is to flush the information that is currently in the transaction
log. You should always remove the inactive entries from the transaction log
with a transaction log backup. If you choose to clear the log and not back it up
(maybe because nothing else is working, as you have no free space and no
additional disks on which you can create another file and seemingly nothing
else to do), then you will have broken the continuity of the transaction log and
need to create a backup that does not require transaction log backups—either
a full database backup, a differential database backup, or a complete set of file
or filegroup backups (a new recovery set).

It is very important that you create a backup after the continuity of the
transaction log is broken. If your database becomes corrupt before you have a
chance to create a new recovery set, a disaster would possibly cause a loss of
data. Without a new recovery set, the backups you have can only restore up to
the last successful transaction log backup performed before the continuity of
the log was broken. Every transaction log backup performed after the continu-
ity of the log was broken is useless. Having a new full database backup or dif-
ferential database backup allows you to get your system back up and running,
which is the most important thing. However, you have lost the ability to go
back to the previous recovery set and move beyond where the continuity of the
log has been broken (with the exception of differential backups) and move for-
ward. At this point, you have lost some redundancy in your backup strategy and
it is even more important that this backup is protected and tested. This is an
important point when reviewing the pros and cons of various backup strategies!

Chapter 9 Database Environment Basics for Recovery 397

Important Remember, although SQL Server provides functionality
to truncate (clear) the transaction log and it is very easy to do, clearing
the transaction log significantly compromises your available options
during recovery. If you do truncate the transaction log, immediately
perform the correct backups to create a new recovery set. Simply put,
you must follow this operation with a full or differential database
backup, or a complete set of full or differential file or filegroup backups.

Breaking the Continuity of the Transaction Log
In well-maintained databases, meaning those that have a well-planned backup
and restore strategy and effective log monitoring, and databases for which
capacity planning and testing have defined an appropriately sized transaction
log, operations that clear the transaction log—other than normal log backups—
should never occur. In fact, it is critical to understand what operations should
not be performed. The following operations break the continuity of the log:

■ Clearing the log with

❑ BACKUP LOG dbname WITH TRUNCATE_ONLY

❑ BACKUP LOG dbname WITH NO_LOG

■ Changing the recovery model to Simple

■ Discarding a transaction log backup (by overwriting it or deleting
the file)

■ Having a transaction log backup become corrupt

All but the last operation are controllable. Corruption of a transaction
backup log is hard to control, but performing transaction log backups to hard
disk is usually safer than using tape, as tapes have a higher rate of error. Mir-
roring the backup device (either disk or tape) where the transaction log back-
ups are written can significantly reduce the chance of corruption. Finally, there
are additional backup types that can also minimize the reliance on a significant
number of transaction log backups in sequence (that is, differential). In fact,
there are numerous precautions you can take when managing backups of the
transaction log.

398 Part III Microsoft SQL Server Technology

Properly Managing the Transaction Log
Proper maintenance of the transaction log is, obviously, critical to keeping the
database up and running. Additionally, proper management keeps the transaction
log size smaller and eliminates the need for emergency operations that could com-
promise your recovery. Performing more frequent log backups is the best way to
minimize the potential for data loss. However, there are a few key things that
could make backups of the transaction log more difficult. It is very important that
you understand how the transaction log works and how a transaction log backup
works. Even if transaction log backups are set to occur frequently, you might not
see the full benefit of performing them frequently unless the system is designed to
support frequent transaction log backups. Simply put, SQL Server can only clear
inactive transactions that have completed from the transaction log. To optimize the
transaction log backup process it clears everything up to the first open transaction
in the log. To keep the actively processing portion of the transaction log small, you
should perform transaction log backups frequently and clear the inactive portion
of the log. Some operations could prevent the transaction log from being cleared.
For example, SQL Server 2000 (as well as SQL Server 7.0) never backs up any of
the transaction log more than once even if a long-running transaction is active
through multiple log backups, so the long transaction prevents log truncation and
reuse, but does not affect anything else. All of this means you should avoid certain
operations that create a significant amount of log activity or those that keep the
active portion of the log active, such as the following:

■ Avoid long-running transactions. Consider breaking the large transac-
tions into more manageable chunks, and consider partitioning some of
your larger tables to minimize the impact to the log during table man-
agement operations such as index rebuilds (if required). Instead of per-
forming a single update statement against the entire set, break it into
smaller batches. For example, instead of changing the entire year’s sales,
change them month by month, day by day, or hour by hour.

■ Avoid spreading a transaction over multiple batches. If there is user
interaction and the user does not interact because he or she is dis-
tracted, the transaction is considered active in the transaction log
until it completes. When SQL Server backs up a transaction log it
clears only the inactive portion of the log. If you suspect that a user has
long-running and open transactions there are a few procedures you
can use to monitor these situations: sp_who2 and DBCC OPENTRAN.

Make sure that your transaction log is sized for all operations, especially those
that might occur during the hours of a full database backup. Why? If the transaction
log fills while a full database backup is being performed, you cannot back up, clear,

Chapter 9 Database Environment Basics for Recovery 399

or increase the size of the transaction log until the backup completes, meaning your
database is unavailable until then. This is the case unless you try to cancel the
backup, and that might not be possible—nor is it generally a good idea, as you
need to restart it again later. All of these concepts come together as you understand
the process of how full database backups and transaction log backups work. How-
ever, there are still other factors—database settings.

Initial Database Settings and Recovery Models
When you create a database you always begin with a copy of the model database.
All database settings are inherited from the model database at creation. The recov-
ery model is probably the most critical setting with regard to backup and recovery,
and it has different default values depending on the version of SQL Server you have
installed. However, with respect to high availability, the only versions of SQL Server
you are likely to be using are Enterprise or Developer editions (possibly Standard,
but quite a few high-availability-related features require Enterprise Edition). The
engine edition of these versions returns either Enterprise or Standard.

Note If you are interested in seeing the engine edition setting, you
can use the SERVERPROPERTY function. Use the following query to
see which engine edition you are running:

SELECT SERVERPROPERTY('EngineEdition')
There are only three possible return values for SQL Server 2000: 1

for the Personal and Desktop Engines editions, 2 for the Standard edition,
and 3 for the Enterprise, Enterprise Evaluation, and Developer editions.

Note The default setting for the recovery model of the model data-
base is Full recovery model if you are using the Enterprise (or Stan-
dard) edition. Use the following query to see the recovery model setting
of the model database:

SELECT DATABASEPROPERTYEX('model', 'Recovery')
Make sure to use DATABASEPROPERTYEX and not DATA-

BASEPROPERTY. DATABASEPROPERTYEX is the appropriate func-
tion in SQL Server 2000 that includes all of the extended properties
not available in SQL Server 7.0.

400 Part III Microsoft SQL Server Technology

The concept of a recovery model is new to SQL Server 2000 and the log-
ging that is performed for numerous commands is not like any other release of
SQL Server. More important, even though the name of one of the new recovery
models (Bulk-Logged) sounds similar to a previous database option (SELECT
INTO/Bulk Copy), this recovery model does not behave exactly the same in
terms of logging and recovery. You must make sure that you completely under-
stand the recovery models or you might be surprised by some of their effects on
performance, the size of the active log, the size of the backed up log (as it dif-
fers from the size of the active log), and potential work loss exposure.

Understanding Recovery Model Settings by Default
If you worked with SQL Server releases prior to SQL Server 7.0, it is likely you
have seen a full transaction log. In earlier releases the transaction log was not
set to autogrow, nor did it clear by default. Because of the importance of trans-
action log continuity, the only operation you should use to clear the transaction
log is a transaction log backup. However, the behavior of the transaction log
when a database is first created might surprise you. When a database is created,
by default, the transaction log runs in a mode that clears the transaction log
after checkpoint until you begin your recovery strategy with your first full data-
base backup or file/filegroup backup.

After the first backup is performed in SQL Server 2000, the behavior of your
log is solely dependent on the setting for your database recovery model. In SQL
Server 7.0, logging was controlled by database options (Trunc. Log On Chkpt.
and SELECT INTO/Bulk Copy) and the statements and tools you executed (for
example, SELECT INTO and bcp). In fact, prior to SQL Server 2000, the ability to
completely and accurately know the state of the current transaction log was ham-
pered. Even worse, it was during recovery that people would realize how these
options and operations affected them (not realizing that they had an impact on
recovery operations). Often it was too late for adequate recovery, and data loss
occurred. Recovery models were introduced to simplify recovery planning and tie
together the importance of the log with certain activities. In SQL Server 2000, the
logging of all operations is dependent on the setting for recovery model.

Understanding Log Behavior on Initial Database Creation
In SQL Server 7.0 and later versions (including SQL Server 2000), the transaction
log is in a pseudo truncate log on checkpoint mode until you perform a backup.
The database option will not show as being set, and in SQL Server 2000, this
behavior occurs regardless of your recovery model setting. After the creation of a
database the log is set to clear on checkpoint because a transaction log backup (if
you were able to back it up, which you are not) would be useless. Think back to
the basics of a transaction log: it is a log or report, per se, of what has occurred

Chapter 9 Database Environment Basics for Recovery 401

within your database. This report always gets you from one point to another,
almost as detailed directions to a location would. However, you always have to
have a starting point of reference. The same is true for a transaction log: it always
gets you from one defined point to another. If a transaction log backup were
allowed after creating a database, what would be the starting point in recovery?
To which backup would you apply that log? Would it be the creation of a new
database? Could you create a database, at any time, and ensure that it will always
be the same as the original database? The answer is no. If there have been any
changes to the model database, then the newly created database would inherit
those changes, rendering the log backup useless because you have directions
from a different starting point. Instead of leaving this vulnerability, SQL Server
does not allow a log backup until you have created a starting point for recovery
to which a log backup would make sense. For recovery there are really two
options as starting points: a full database backup or a file or filegroup backup.

To fully understand what happens to the transaction log on the creation of
a database, think through this simple scenario while reviewing the recom-
mended performance monitor counters.

On the CD The code for this log behavior example can be found in
the script file Default_Log_Behavior.sql.

1. Create a test database. For this exercise you can name the database
anything you want; for this example, the name TestDB is used.

CREATE DATABASE TestDB

2. Create a table. This is just a simple table that allows you to add
rows quickly:

CREATE TABLE dbo.TestTable

col1 int identity(100,10),

col2 datetime DEFAULT current_timestamp,

col3 datetime DEFAULT getdate(),

col4 char(30) DEFAULT user_name(),

col5 char(30) DEFAULT user_name(),

col6 char(80) DEFAULT 'This is a wide column created to
 simulate data and therefore create log space.')

402 Part III Microsoft SQL Server Technology

3. Verify that the recovery model of the new TestDB database is set
to Full.

SELECT DATABASEPROPERTYEX('TestDB', 'Recovery')

4. Start the System Monitor and add the Percent Log Used counter for
the instance of TestDB (see Figure 9-2). The Percent Log Used
counter is under the Performance Object of SQLServer:Databases.

F09HA02

Figure 9-2 Percent Log Used counter.

5. Leave System Monitor running and create log activity with the fol-
lowing WHILE loop. Once you start running this infinite loop it con-
tinues to add rows to the database (autogrowing the data portion)
until you manually stop the execution.

WHILE 1=1

INSERT dbo.TestTable DEFAULT VALUES

6. Return to the System Monitor and watch the log increase and then
drop while the overall size of the log does not grow (see Figure 9-3).
Add the Log File Size to the Performance Monitor as well. You
should see that the Log File Size does not change even with all of the
log activity.

Chapter 9 Database Environment Basics for Recovery 403

F09HA03

Figure 9-3 Performance of log file with autogrow.

7. Make sure you stop the WHILE loop relatively quickly; otherwise,
you could fill your hard drive though database autogrowth. Remem-
ber, the database files are set to grow automatically by default.

8. Next, create a database backup using Transact-SQL. This simulates
the beginning of your recovery strategy:

BACKUP DATABASE TestDB TO DISK = N'C:\TestDB.bak'

9. Run the WHILE loop again and then return to the Performance Mon-
itor. This time you will see the Percent Log Used stay at the top of the
graph, indicating that the log is almost full. You will also see that it
dips, but only by roughly 10 percent, because of the automatic
growth that is occurring. You will also notice that the size of the log
is increasing quickly (see Figure 9-4).

404 Part III Microsoft SQL Server Technology

F09HA04

Figure 9-4 Performance of log after recovery plan is started
using backup.

10. Finally, make sure that you stop the loop, delete the backup, and
drop the TestDB database.

Recovery Models
There are three recovery models in SQL Server 2000: Full, Bulk-Logged, and
Simple. Because there is a lot of confusion about the different recovery models,
it is critical to eliminate the common misunderstandings associated with recov-
ery models. To do this well, you should understand what the recovery models
are not. Recovery models are completely new for SQL Server 2000. There are
some similarities to former (prior to SQL Server 2000) database options, but
there is no direct correlation between recovery models and previous database
options. Unfortunately, this has not stopped the common comparisons between
the new database recovery models and the old database options SELECT INTO/
Bulk Copy and Trunc. Log On Chkpt. Table 9-1 shows the database options as
they are usually compared. However, for completeness they are listed in terms
of what they are not.

Chapter 9 Database Environment Basics for Recovery 405

Truthfully, there are many resemblances between the database options
and the new recovery models, but they are mostly superficial. The Full recovery
model logs information in a new way. For some commands, this has never been
done within SQL Server before SQL Server 2000. You might have learned this
the hard way, as batch operations are likely to take more time and more log
space than they did in previous releases because, for some operations, this new
style of logging is more extensive.

The Bulk-Logged recovery model is also new. From a performance per-
spective, you can compare it to having the SELECT INTO/Bulk Copy option.
However, the performance similarities exist for different reasons, as the logging
has changed. In previous releases the performance gains occurred because the
operations were run in a “nonlogged” state (they really were not nonlogged, as
you could have still filled the transaction log; for the purposes of this discussion
nonlogged means that the operation was not recoverable from information in
the log). In releases before SQL Server 2000, SQL Server required these data-
base options. Under certain circumstances the operations would run faster due
to less log activity. Unfortunately, when bulk operations were performed with
SELECT INTO/Bulk Copy set to true, the operation would break the continuity
of the log, subsequently requiring a full database or differential database
backup on completion from which you could recover. When you added the
cost of the full database backup or the differential database backup to the batch
operation’s time, it was no longer very “fast.”

In contrast, the operations run quickly in SQL Server 2000 but for different
reasons: the way in which they are logged and the way in which SQL Server
allows log backups on their completion. With SQL Server 2000 it is more appro-
priate to refer to these operations as minimally logged instead of nonlogged.

Table 9-1 SQL Server 2000 Recovery Models

SQL Server 2000
Recovery Model

Common Incorrect Comparisons with the Database
Options SELECT INTO/Bulk Copy and Trunc. Log On
Chkpt.

Full Not the same as if neither option is set. Some operations take
longer and require more log space.

Bulk-Logged Not the same as having the select into/bulk copy option set—
although there is still similar performance, the recovery has
changed.

Simple Not exactly the same as having both options set (this is the
closest, however).

406 Part III Microsoft SQL Server Technology

Do not be fooled, however; the performance gains of minimally logging certain
operations come at a price. There is some potential for work loss if you are run-
ning the Bulk-Logged recovery model and you have performed a Bulk-Logged
operation at the time of a disaster. However, if the database is accessible on
completion of the bulk operation, a transaction log backup is all you need to
fully recover the batch operations (this was not true before SQL Server 2000).
Finally, the Simple recovery model is most like the old Trunc. Log On Chkpt.
option with which the log is cleared at checkpoint, meaning that SQL Server has
enough information from which committed transactions are guaranteed even
after an unintended shutdown (for example, a power failure). However,
because the log is cleared periodically, no log backups can occur; this elimi-
nates manual recovery options involving the log including up-to-the-minute
recovery and point-in-time recovery.

Where are the similarities between the recovery models? What should your
expectations be at the time of a disaster? Using the Simple or Bulk-Logged recov-
ery models, bulk operations should yield the same performance. However, trans-
action log backups are possible in the Bulk-Logged recovery model and the
transaction log will not be cleared when a checkpoint occurs. You can perform
transaction log backups—with the exception that the “tail” of the transaction log
is not accessible after a bulk operation has been performed—to manage the
transaction log size, and compared to the Full recovery model it should stay rel-
atively small. However, the savings are only realized while the database is
actively processing. The transaction log backup is significantly larger when
backed up and it can only be backed up when the data portion of the database
is accessible. The size of the transaction log backup should be similar in size to a
transaction log backup performed when the database is in Full recovery model.
However, whether or not a transaction log backup can be performed is not in
question when you are running in Full recovery model. In the Full recovery
model, the actual transaction log and the transaction log backup are both large.
This allows you to back it up even when the database is not accessible. This is
what allows the “full” range of recovery options for the Full recovery model.

Understanding the Purpose of Recovery Models
To fully understand the purpose of the recovery models, you must always
speak in terms of how much and until what point data can be recovered as well
as how efficiently database operations will perform. The primary focus is on
what can be recovered, how it can be recovered, and what options are allowed.
Before you can understand the key recovery model concepts, you must also
understand the importance of the transaction log and two key concepts regard-
ing the transaction log: how to achieve continuity (covered earlier) and how to
access the “tail” of the log.

Chapter 9 Database Environment Basics for Recovery 407

The “Tail” of the Log and Recovery Models
The transaction log is a series of instructions from the last time the transaction log
was cleared (preferably when it was last backed up). If all transaction log backups
are available and the current log is available then you are said to have continuity of
the transaction log up-to-the-minute. What if the database is not available? If you
backed up the transaction log at 3 P.M. and the database is damaged at 3:45 P.M.,
you have to determine up to what point data can be recovered. When a database
becomes unavailable because of file corruption, disk failure, controller failure, or
other situation, one of the first steps you should try to perform is a backup of the
“tail” of the log. The tail of the log is the transaction log backup of all changes from
the time of the last log backup until the time when the database became damaged
or suspect. The tail of the log cannot be accessed if the log portion of the database
is damaged. Additionally, the tail of the log cannot be accessed if the database is in
Bulk-Logged recovery model and a bulk operation has occurred. If the tail of the
transaction log is available, up-to-the-minute recovery is possible. Because of this,
choosing the right recovery model is critical to your overall recovery strategy.

Choosing the Right Recovery Model
Generally speaking, most database recovery scenarios rely on the accessibility of
the transaction log. The setting of the recovery model dictates whether or not the
log is accessible and the performance impact logging has during certain opera-
tions. With SQL Server 2000, DBAs can trade performance for recovery options.
Fortunately, it is completely up to the DBA and it is significantly simpler than it
was in previous releases. However, in high-end databases where every transac-
tion is critical and downtime must be at an absolute minimum, an understanding
of the recovery models is required. As each recovery model is defined, keep in
mind the key reasons for the addition of recovery models to SQL Server 2000:

■ To better tie together the idea of the transaction log and recovery. In
past releases, developers and new DBAs often learned about the trans-
action log after it filled. Once it filled, they also seemed to learn (very
quickly) how to clear the log (that is to use the Trunc. Log On Chkpt.
option), but they did not seem to learn about disaster recovery until a
disaster. This happened because the option did not make it obvious
that the log was needed for recovery. Now the options are database
specific and their title (Recovery Model) makes it more apparent.

■ To centrally and more appropriately define potential work loss expo-
sure. DBAs should always have control over what operations are to
be recoverable. In previous releases it was a complex combination
of database options, user operations, and other factors that deter-
mined a database’s ability to recover.

408 Part III Microsoft SQL Server Technology

■ To allow database administrators the ability to choose from among a
variety of trade-offs between transaction log management, system
and data recovery, and operational and batch performance for some
of the more expensive operations.

■ To minimize the complexity of knowing whether or not an operation
can be performed. For example, SELECT INTO can be used to create
a permanent table in any recovery model and no longer requires a
database option. The logging of the SELECT INTO operation is deter-
mined by the database’s recovery model.

■ To no longer break the continuity of the log for batch processes and
bulk operations, yet still allow the operations to perform optimally
with only a transaction log backup required on their completion.

■ To simplify SQL Server’s logging logic. When an operation was
logged, earlier versions of SQL Server had to evaluate numerous cri-
teria to determine the correct logging. In SQL Server 2000, all state-
ments are logged based on the recovery model; it is no longer
statement specific (although the performance gains are only for a
select number of specific statements).

■ To determine whether or not up-to-the-minute recovery is required.

Full Recovery Model The Full recovery model requires SQL Server to log every
operation in full. This means that every operation will have rows written to the
transaction log that allow the database to be recovered to any point in time and
with no work loss exposure in the event of a database failure where the log is
still accessible. This is based on a solid backup strategy, but if you are running
in the Full recovery model, you have the most options available to you. It is also
the best model to be in at the time of a failure (if data is changing—read-only
databases have a few other options).

In the Full recovery model, no operations run with minimal logging. In
fact, some operations might not perform as they did in SQL Server 7.0. This is
a common source of misunderstanding, especially for people upgrading from
SQL Server 7.0 to SQL Server 2000. Batch operations, which performed mini-
mally logged operations (for example, building or rebuilding indexes), require
more log space and take longer in SQL Server 2000 than they did in SQL Server
7.0. If you want to run in a minimally logged mode, you can change your recov-
ery model to Bulk-Logged; however, there are some important trade-offs of
which you should be aware.

Chapter 9 Database Environment Basics for Recovery 409

Who Should Use the Full Recovery Model? The Full recovery model is the
only recovery model that has no work loss exposure as long as the continuity
of the log is not broken and the transaction log is accessible at the time of fail-
ure. Therefore, if your databases are processing transactions at all times and
every transaction should be recoverable, this is the only recovery model you
should consider. The Full recovery model is the one that can provide all recov-
ery options, and it also has the least potential for data loss. Both point-in-time
recovery and up-to-the-minute recovery are possible only when the database
recovery model is set to Full.

Bulk-Logged Recovery Model The Bulk-Logged recovery model allows certain
operations to run more efficiently than the Full recovery model because it mini-
mally logs certain operations. Instead of logging every operation fully, the Bulk-
Logged recovery model only logs the extents modified during the operation. This
keeps the active log small and might allow you to have a smaller defined trans-
action log size than the Full recovery model. To be able to recover the operation,
the transaction log should be backed up immediately on the completion of any
Bulk-Logged operation, and this is true for any of the recovery models.

When the transaction log is backed up in this mode there are two steps.
First—and this is the big difference for the Bulk-Logged model—SQL Server backs
up all of the extents modified by the bulk operations performed (the specific com-
mands defined by “bulk” are listed later). Second, the transaction log is backed up
as it would be during a log backup in the Full recovery model. This is similar in
concept to how a differential backup works, but the extents backed up are only
those changed by the bulk operation. This allows some operations to occur
quickly and with minimal logging (only a bitmap is maintained through the oper-
ation), but your recovery options are limited. First, if you have performed a bulk
operation, this transaction log backup does not allow point-in-time recovery dur-
ing a restore. Second, if the data portion of the database is not accessible (because,
for example, the disks failed), a transaction log backup is not possible after a bulk
operation has occurred and you are running in Bulk-Logged recovery model. The
following bulk operations are minimally logged in this recovery model:

■ Index creation or rebuilds

■ Bulk loading of data (fast load) including (but not limited to) BULK
INSERT, Data Transformation Services (DTS) Bulk Load, and bcp

■ SELECT INTO when creating permanent tables

■ WRITETEXT and UPDATETEXT for binary large object (BLOB)
manipulation

410 Part III Microsoft SQL Server Technology

Technically, you can still have point-in-time and up-to-the-minute recov-
ery when running in Bulk-Logged recovery model, but this is possible only
when bulk logged operations have not occurred since the last transaction log
backup. However, this can create confusion and the process is error-prone.
Instead of running in Bulk-Logged recovery model all the time, change
between recovery models as part of your batch processes. If you are in control
of the recovery models, you can force transaction log backups to occur at the
most appropriate times, minimizing the potential for data loss.

It is important that you perform log backups immediately after a batch
operation to ensure that everything is recoverable. Consider this timeline:

■ 12:00 A.M.—Transaction log backup occurs (transaction log backups
occur hourly).

■ 12:10 A.M.—Batch operation begins.

■ 12:20 A.M.—Batch operation completes.

■ 12:47 A.M.—Database becomes suspect due to drive failure.

■ 12:50 A.M.—You become aware of the suspect database. You
attempt to access the tail of the transaction log, but you receive the
following errors:

Server: Msg 4216, Level 16, State 1, Line 1
Minimally logged operations cannot be backed up when the database is
unavailable.
Server: Msg 3013, Level 16, State 1, Line 1
BACKUP LOG is terminating abnormally.

On the CD If you would like to see this process and log backup failure,
use the script Cannot_Backup_Tail_After_Bulk_Operation.sql to test.

At 12:50 A.M., all you can do is restore the database and the logs up until
12:00 A.M. If you had backed up the log at 12:20 A.M., your database would not
have been in a bulk logged state (regardless of the recovery model setting to
Bulk-Logged). You can back up the tail of the transaction log when you are run-
ning in Bulk-Logged recovery model only if no bulk operations have occurred.
By backing up the transaction log immediately after a bulk operation you are in
effect resetting the bulk logged state such that transaction log backups can be
performed without requiring access to the data portion of the database. If the

Chapter 9 Database Environment Basics for Recovery 411

database had not been in a bulk logged state at 12:50, then you would have
been able to get the tail of the transaction log. If the tail of the log had been
accessible, you would have up-to-the-minute recovery and no data loss. Instead
you have lost all activity since 12:00 A.M.

To take these concepts further, look at another scenario. What if the data-
base were to become corrupt at 12:15 A.M. in the middle of the batch operation?
You know that the tail of the transaction log is not accessible because you are in
the process of a bulk operation in the Bulk-Logged recovery model. However,
your data loss is everything past 12:00 A.M. You certainly could have prevented
some—and possibly all—of this data loss. Performing a transaction log backup at
12:10 A.M. when the database was accessible (right before the bulk operation
began) would have at least brought you up to 12:10 A.M., the moment prior to
the bulk operation. If the bulk operation were the only operation occurring from
12:10 A.M. to 12:15 A.M. (when the database became corrupt), the transaction log
backup could be used to bring the database up to 12:10 A.M. Once recovered to
12:10 A.M., the bulk operation could be executed again to bring the database up
to the time of the failure and continue it moving forward.

It is critical to back up your transaction log both immediately before per-
forming batch operations and immediately after performing a batch operation.
Both minimize the overall potential for data loss in the event of a failure.
Remember that if the database is set to the Bulk-Logged recovery model and
you have performed a bulk operation, you cannot backup the tail of the log
even if the transaction log file is accessible. If you have not performed a bulk
operation, you can back up the log. For this reason, some people might con-
sider always running in the Bulk-Logged recovery model. However, this can be
dangerous because you are no longer entirely in control of the recovery. Bulk
operations are not necessarily limited to only DBAs or system administrators.
Anyone who owns a table can create or rebuild indexes of their tables, anyone
with Create Table permissions can use SELECT INTO to create a permanent
table, and anyone who has access to text data can manipulate it with WRITE-
TEXT and UPDATETEXT. Because of this, it is very important to know and limit
when operations are logged fully or minimally. If you are responsible for data
recovery and your environment cannot afford data loss, the only way to mini-
mize data loss is by running in the Full recovery model and controlling changes
to the Bulk-Logged recovery model. Only when the Bulk-Logged recovery
model is appropriate should you switch. In some environments it might not
even be possible to switch. The best practice, if you determine that it is accept-
able to periodically change to the Bulk-Logged recovery model, is to change
within batch processes. This practice ensures that the window of potential work
loss is limited to only appropriate times of day.

412 Part III Microsoft SQL Server Technology

Who Should Use the Bulk-Logged Recovery Model? If your databases are
not processing transactions around the clock or if you are willing to have work
loss exposure to achieve better performance of your batch operations, you
might consider a temporary change to the Bulk-Logged recovery model. How-
ever, even if you decide that this is acceptable, you should change to Bulk-
Logged during the batch operation (preceding the switch with a log backup)
and then change back when the operation is complete (following the switch
with another log backup). Again, these operations only protect data and mini-
mize the potential window for data loss. For batch processes, an example is
given to completely detail the process to optimally change recovery models in
the section “Changing Between Recovery Models” later in this chapter.

Also, as a secondary consideration, depending on the length of the bulk
operation, you might consider trying to break down large or complex batch
operations that might cause the transaction log to grow excessively large. In
fact, to minimize the potential for data loss (because you cannot back up the tail
of the log if the database becomes suspect), you might perform log backups
during the batch process and between some of the steps of the bulk operations.
Breaking down any very large or complex operations and performing log back-
ups between the larger steps allow more recovery options.

Simple Recovery Model The Simple recovery model logs data as if the data-
base were in the Bulk-Logged recovery model; however, the log is periodically
cleared. Instead of keeping all of the log information until a transaction log
backup is performed, SQL Server clears the log information from the transaction
log as the data is synchronized from memory to its appropriate location on disk
(at checkpoint). Because the data no longer resides solely in memory (for the
data portion of the database) there is no need for the information to be stored
in the transaction log for automatic recovery (remember, this is SQL Server’s pri-
mary reason to have a transaction log). However, if the transaction log is peri-
odically cleared, transaction log backups are not possible.

The Simple recovery model is the easiest recovery model to use, as the log is
cleared periodically and automatically. In the Simple recovery model, administra-
tion is simple because no transaction log maintenance is required (the transaction
log is maintained through log truncation when a checkpoint occurs). In fact, only
two backup types are possible: full database backups and differential database
backups. However, this simplified administration comes at the expense of signifi-
cant work loss if the database becomes suspect. In fact, you can recover only up to
your last full database backup or your last differential database backup.

Who Should Use the Simple Recovery Model? If your databases are peri-
odically built as copies of data from other transaction processing systems and

Chapter 9 Database Environment Basics for Recovery 413

can be rebuilt if necessary, you might consider the Simple recovery model with
a full database backup on completion of the database build. The Simple recov-
ery model is common for predominantly read-only or development and test
databases for which up-to-the-minute recovery is not necessary and data loss is
not critical to the success of the business.

Choosing the Right Recovery Model: An Example Test Case To show a quick
overview of the effects on the database’s transaction log size (meaning the
amount of space required to “log” the operation), the size of the transaction log
backup, and the speed of the operation, a simple test was performed using a
very specific operation: SELECT INTO (see Table 9-2). SELECT INTO creates a
new table called TestTable based on a table called a charge table from another
database. The charge table has 800,000 rows and the data is roughly 40 MB in
size.

The interesting observations come from the fact that Simple and Bulk-
Logged seem to have the same performance and the same active log size. How-
ever, recovery models do not affect all operations. In the second test a single
update is performed against all 800,000 rows in TestTable. This caused the
transaction log for all three databases to grow significantly to handle the modi-
fication and there was no difference in the operation’s duration or the size of
the transaction log (where a transaction log backup is permitted).

Table 9-2 SELECT INTO Operation

Database Recovery
Model

Duration
(Seconds)

Database
Transaction Log
Size

Transaction Log
Backup Size

Simple 8.5 < 4 MB Not allowed

Bulk-Logged 8.5 < 4 MB ~40 MB

Full 14 ~40 MB ~40 MB

Table 9-3 UPDATE Operation

Database Recovery
Model

Duration
(Seconds)

Database
Transaction Log
Size

Transaction Log
Backup Size

Simple 18 230 MB Not allowed

Bulk-Logged 18 230 MB ~54 MB

Full 18 230 MB ~54 MB

414 Part III Microsoft SQL Server Technology

From an interpretation of Tables 9-2 and 9-3, you might think that the best
recovery model to use is the Bulk-Logged recovery model, because it seems to
allow transaction log backups and because the operations affected by recovery
models run faster. However, you are missing a key element, because the trans-
action log is not always available for a transaction log backup when running the
Bulk-Logged recovery model. If the device on which the data resides is not
available when a transaction log backup is attempted, then a transaction log
backup cannot be performed, resulting in data loss. Up-to-the-minute recovery
is not always possible with the Bulk-Logged recovery model. Getting familiar
with the different recovery models and their trade-offs is very important for pro-
duction databases, as the recovery model can affect speed, logging, and recovery.

On the CD The code for these two operations and tests can be found
in script file Recovery_Model_Log_Sizes.sql. The code for this script
might need numerous alterations to run on your test server. Be sure to
carefully read all comments.

Changing Between Recovery Models
Generally, you will choose a recovery model and stick with it. However, in
some cases you might want to switch between two recovery models and then
switch back. For example, some databases run in Full recovery model most of
the time and switch to Bulk-Logged during bulk loading or batch processing. As
long as you realize the potential work loss exposure if your database were to
become suspect and you have decided it is acceptable, then changing between
the recovery models is reasonable. There are six possible combinations as
shown in Table 9-4, but only two are common. In fact, the recovery model is
usually only changed for certain operations and then returned after the opera-
tion completes. However, changes to the simple recovery model should be per-
formed with caution, as this change breaks the continuity of the transaction log.

Chapter 9 Database Environment Basics for Recovery 415

The most common changes occur from the Full recovery model to the
Bulk-Logged recovery model and then back to the Full recovery model again.
In fact, the most common strategy actually includes steps to minimize the win-
dow of potential data loss by performing the recovery model changes and the
transaction log backups as part of the batch process. The following is a high-
level overview of the steps that should be performed when switching between
full and Bulk-Logged recovery models.

On the CD If you would like to see sample code, including various
optional parameters to each of these commands, use the script
DB_Alter_For_Batch_Operation.sql.

Table 9-4 Changing Recovery Models and Impact on Backups

FROM

Simple Bulk-Logged Full

TO

Simple N/A Nothing required.
A transaction log
backup is recom-
mended before
the switch.

Nothing required. A
transaction log
backup is recom-
mended before the
switch.

Bulk-
Logged

New recovery set
required; full data-
base or differential
database backup or
a complete file or
filegroup backup
must be performed.

N/A Nothing required. A
transaction log
backup is recom-
mended before the
switch.

Full New recovery set
required; full data-
base or differential
database backup
or a complete file
or filegroup backup
must be performed.

Nothing required.
A transaction log
backup is recom-
mended after the
switch.

N/A

416 Part III Microsoft SQL Server Technology

■ Database is currently in the Full recovery model.

■ As part of the bulk operation’s batch process, perform a transaction
log backup immediately before changing to the Bulk-Logged recov-
ery model.

■ Change the recovery model to Bulk-Logged using the ALTER DATA-
BASE command:

ALTER DATABASE SET RECOVERY BULK_LOGGED

■ Perform your bulk operations, data loads, index builds or rebuilds,
and so on.

■ Change the recovery model back to Full again using the ALTER
DATABASE command:

ALTER DATABASE SET RECOVERY FULL

■ Immediately after the change, perform a transaction log backup.

By performing a transaction log backup before as well as after the bulk
operation, you ensure that the window for potential data loss is significantly
reduced. As long as the transaction log backup occurs, you have something
from which you can recover during manual recovery. However, you cannot
back up the tail of the log if the database were to become damaged during the
bulk operation. If there are any user transactions that are not recoverable by
rerunning your bulk operation, you should remain in the Full recovery model
instead of changing to the Bulk-Logged recovery model. You will lose these
transactions if the database becomes inaccessible.

Recovery models have an obvious and significant impact on the available
recovery options. Knowing how the environment is defined and actively choos-
ing your recovery model is the first step in a complete and effective recovery
strategy. In the next section you will combine your understanding of recovery
models with each backup type to determine the specific database requirements
necessary to support your downtime and data loss specifications.

Backup Types
You always plan your backup strategy based on your desired recovery abilities.
A recovery-oriented strategy is always best. For example, if you want up-to-the-
minute recovery you must use the Full recovery model. How do you actually
achieve an up-to-the-minute recovery? Which backups are critical and in what
order? What could go wrong? Are there operations, settings, or user actions that
could negatively affect the database recovery? In this section, all of the backup

Chapter 9 Database Environment Basics for Recovery 417

types are discussed, and more important, the common combinations that yield
effective strategies to offer the most options for recovery are debated. Some
plans even include redundancy within the backup strategy (yes, a backup plan
in the backup plan!).

SQL Server 2000 (as well as SQL Server 7.0) offers seven different backup
types: full database backups, transaction log backups, differential database
backups, full file backups, full filegroup backups, differential file backups, and
differential filegroup backups. Each one of these is often called something sim-
ilar in other documentation and articles, and even the authors of this book have
probably used multiple terms. For consistency and clarity in this chapter, only
the terms listed in Table 9-5 are used. However, when you read other documen-
tation you might see slightly different names used for each of these backup
types.

Table 9-5 Backup Naming Conventions

Naming Conventions Used
in This Chapter

Naming Conventions Commonly Used Elsewhere or
Important Notes About Usage

Full database backup Database—complete, complete database, full database,
database backup

Differential database backup Database—differential, differential backup

Transaction log backup Log backup, tranlog backup, T-log backup, transaction
backup

Full file backup File backups

Differential file backup File differentials

Full filegroup backup Filegroup backups

Differential filegroup backup Filegroup differentials

Full file/filegroup backups Applies to both full file backups and full filegroup back-
ups

Differential file/filegroup
backups

Applies to both differential file backups and differential
filegroup backups

File/filegroup backups Applies to all types of file/filegroup backups: full file/file-
group backups and differential file/filegroup backups

Full backups Applies to all three: full database backups, full file back-
ups, and full filegroup backups

Differential backups Applies to all three: differential database backups, differ-
ential file backups, and differential filegroup backups

418 Part III Microsoft SQL Server Technology

Full Database Backups
A full database backup is the most complete backup you can create. Because it
is the easiest recovery strategy to manage, it is the foundation for the most
commonly used recovery strategy. Although full database backups are com-
plete, they are often not used alone. Typically full database backups are used
in conjunction with other transaction log backups and differential database
backups.

Tip A full database backup is the most common backup type used to
define the starting point of a recovery strategy, but it is not the only
starting point. In fact, it is not even necessary that you ever perform a
full database backup. There are really two starting points for your
recovery process: full database backups or file/filegroup backups.

A full database backup is complete in that everything necessary to access
the data of that database—even the database structure—is backed up and the
information about the backup (what was backed up, when it was backed up,
what the database structure looks like, and what type of backup it is) can be
easily queried from backup devices. On the restore, you do not need to create
the database prior to restoring a full database backup; instead you can let the
restore create and even move the database files to other locations. When a full
backup is performed it is optimized to back up only pages (rather extents) that
contain data, so the size of a backup is the size of the database minus the unal-
located space. When a full database backup is performed, the image created in
the backup is an image of the database at the backup’s completion.

How Do Full Database Backups Work? SQL Server needs a way to access data
quickly to generate an image of the database while users are actively processing
and create a backup that can restore a transactionally consistent database to the
way it looked on the completion of a backup. This process is quite logical.
Figure 9-5 shows a graphical representation of the logical sequence of steps for
the full database backup process.

Chapter 9 Database Environment Basics for Recovery 419

F09HA05Figure 9-5 Full backups do not block active transactions.

The logical sequence of steps is as follows:

1. The first step is to perform a database checkpoint. Remember, the
purpose of a checkpoint is to write all dirty pages to disk. A dirty
page is one that has changed since it was brought into memory,
regardless of the state of the transaction that modified it. The check-
point is performed to batch the writes to disk and simplify Automatic
Recovery, the process that SQL Server goes through on startup to
make sure that each database is transactionally consistent. By per-
forming a checkpoint, SQL Server guarantees that what is in the data
portion of the database is as close to current as possible, even if the
transactions are still processing.

2. Mark the transaction log. A marker is put into the transaction log to
define where the backup began. This is used later in the backup
process.

3. Read from data files. In this step SQL Server reads the image of data
from the data files. Even while active users are processing, SQL Server
continues to use only the pages that are already on disk, even if they are
not logically consistent with the processing transactions. This does not
seem like it would work, but it does! The result of this phase is consid-
ered a logically inconsistent (often called fuzzy) set of pages.

4. Again, mark the transaction log. This marker defines where the
backup completed.

Backup starts; transaction
log marked

Backup ends; transaction
log marked

Time

Data in data file changing while being backed up

Active Transaction Log

420 Part III Microsoft SQL Server Technology

5. Back up the interesting part of the transaction log. By using the two
markers created by Steps 2 and 4 and some additional information
about the earliest transaction in the log (if it is earlier than the first
marker), SQL Server is able to get directions for how to update the log-
ically inconsistent image of data that has been backed up (although
this only needs to be used during a restore). The transaction log
backup that is performed is not a typical log backup, per se. The log
is only backed up. The log is not cleared (this is the default setting for
a transaction log backup). In fact, a full database backup does not
touch nor does it break the continuity of the transaction log.

The end result of this sequence is that active transactions never wait and
are not negatively impacted by a full database backup. It is true that the system
will see a heavier I/O load, but if the backup devices and database files are well
balanced and placed properly, the impact of the full database backup on
actively processing users is minimal.

If full database backups are so optimal, why not perform them constantly?
It might seem logical to begin another full database backup once one com-
pletes. This, in fact, is not typically a good idea.

Note Certain storage-assisted strategies exist and can successfully
perform full backups in a rolling fashion. This is even recommended for
some situations. However, without storage-assisted backups, rolling
full database backup after full database backup is not recommended.

Why? Full database backups conflict with other operations. In fact, while
a full database backup is running there are other operations that will be paused
until it completes. This can cause a few negative side effects. The operations
and side effects with which full database backup conflicts are as follows:

■ Transaction log backups The effects of this can be quite serious.
Remember, SQL Server backs up the transaction log as part of a full
backup to make the full backup transactionally consistent during
restore. To back up the transaction log, the transaction log needs to
be accessible and complete, meaning that SQL Server must have
access to all log activity that has occurred throughout the entire full
backup. For the log to be accessible, it cannot have been cleared. If

Chapter 9 Database Environment Basics for Recovery 421

there are other operations that depend on the transaction log (for
example, log shipping), log shipping will be paused until the full
database backup completes. If your full database backup takes 6
hours to run, your secondary site could be 6 hours behind. Is 6 hours
of data loss acceptable if you were to have site failure and lose the
primary? Using full database backups as the base for your database
backup strategy might not be best! There are other options.

■ Alternatives Any operation that changes the database structure:

❑ No autogrow

❑ No manual growth with ALTER DATABASE

❑ No autoshrink

❑ No manual database shrinks with DBCC SHRINKDATABASE

❑ No manual database file shrinks with DBCC SHRINKFILE

A secondary problem related to the transaction log filling, the effect on the
database once the transaction log is full is that no modifications are allowed
until space is available in the transaction log. However, when a full database
backup is already being performed, no operations can run to clear the transac-
tion until the full database backup has finished. Neither the data portion nor the
log portion is allowed to grow during a full database backup. It is not as critical
that the data portion cannot autogrow, as this should be relatively unlikely with
proper capacity planning. However, if you decide to use full database backups
as the base for your backup strategy, make sure you have an adequately sized
transaction log—as large as necessary to hold the transactions that occur over
the entire time you perform full database backups. Because most database
backups are performed at “off” hours during which activity is minimal, this
might not present a problem for you. However, if a full database backup is per-
formed for some other purpose (during regular or heavy-use business hours) it
could present a problem.

Tip Not allowing autoshrink or manual shrinks of the database
should not present a problem, as these are rarely used. Autoshrink is
not a typical option for production servers; it is an option more appro-
priate to scaled-down SQL Server databases.

422 Part III Microsoft SQL Server Technology

Speaking of very large databases (VLDBs), does your VLDB have a large
portion of data that is predominantly read-only? Do you really need complete
backups of that data very often? VLDB presents additional concerns with the
strategies based on full database backups. As various strategies are discussed,
you will see other alternatives to frequent full database backups that are helpful
for VLDBs, possibly allowing a strategy that works without ever performing a
full database backup.

Transaction Log Backups
For high availability, transaction log backups are the most important type of
backup. They are a critical component to any backup strategy that desires up-
to-the-minute or point-in-time recovery. The more frequent your log backups
are, the more likely you will have a successful recovery with minimal data loss
(see Figure 9-6). A transaction log backup provides a way to capture the
changes that have occurred since the last transaction log backup. Additionally,
when transaction log backups occur, SQL Server clears the inactive portion of
the transaction log; this helps free space within the transaction log and removes
the instructions so that recovery is possible.

F09HA06Figure 9-6 Frequent log backups minimize potential data loss.

Note Clearing the log does not necessarily clear the entire log. If
you review the percent log used within the System Monitor, you might
never see the percent log used value for the transaction log (even
immediately after a backup) drop to zero. This is based on how the
transaction log backups work and is not likely a concern.

Inactive
Virtual Log

File

Virtual Log File 1 Virtual Log File 2 Virtual Log File 3

Start Logical Log End Logical Log

Min LSN

Virtual Log File 4 Virtual Log File 5

Inactive
Virtual Log

File

Time

Active
Virtual Log

File

Active
Virtual Log

File

Inactive/
Unused Virtual

Log File

Chapter 9 Database Environment Basics for Recovery 423

How Do Transaction Log Backups Work? Take, for example, a 100-MB transac-
tion log divided into five VLFs (for details on VLFs review the earlier section
“Understanding Database Structures”). Log activity starts at the beginning of the
log and at the current time activity is midway through the fourth VLF. There is
an open transaction that began in the third VLF and that is marked as the min-
imum log sequence number (min LSN). You have just requested a transaction
log backup.

SQL Server reviews the log to determine where it is active versus where it
is inactive. VLFs that do not contain any active transactions are inactive, but
used VLFs. SQL Server then backs up all VLFs and clears those that are inactive.
At the time of the backup, at least one VLF is always active. Depending on the
size of the VLFs and the size of the open transactions, you might not be able to
clear anything from your transaction log. To ensure optimal transaction log
backups and optimal performance for log-related operations, it is important to
make sure that you have small, efficient transactions. In fact, if you have large
batch operations you might consider one of two options:

■ Use the Bulk-Logged recovery model (if the work loss exposure is
acceptable and the operation has performance and logging advan-
tages when running in the Bulk-Logged recovery model).

■ Break the batch operations into smaller, more manageable chunks, if
possible, and perform log backups as part of the batch operation.

If all transactions and operations are relatively small, this allows more effec-
tive management of the transaction log, keeping it small and easily recoverable.

The Effects of Recovery Models on the Transaction Log Effects on the transac-
tion log made by the recovery model are evident in many areas: performance,
active log size versus transaction log backup size, and whether or not log back-
ups are allowed. In the simple recovery model, transaction log backups are not
allowed. In the Bulk-Logged recovery model the active log is much smaller than
the transaction log backup because SQL Server uses a bitmap to keep track of
changed extents during bulk operations. This keeps the active log size small,
but causes the transaction log backup size to be as large as a transaction log
backup performed in a database running with the Full recovery model. For
databases running in the Full recovery model, the transaction log backup
should be close to the size of the current transaction log space used. To esti-
mate the size of the transaction log backup, use DBCC SQLPERF (logspace) or

424 Part III Microsoft SQL Server Technology

directly query the master.dbo.sysperfinfo table. For example, to see the “used”
size of the transaction log for a database in the Full recovery model, use the fol-
lowing query prior to performing a backup:

SELECT * FROM master.dbo.sysperfinfo
WHERE object_name = 'SQLServer:Databases'
AND counter_name = 'Log File(s) Used Size (KB)'
AND instance_name = 'YourDatabaseName'

This query is not helpful for estimating the size of the transaction log
backup for a database running in the Bulk-Logged recovery model. This cannot
be estimated and the transaction log backup could be as large as the database
if there has been a significant amount of Bulk-Logged activity. Make sure to test
transaction log backup sizes during testing and development and be sure to
plan for (in terms of backup device location) much larger transaction log back-
ups than the database’s transaction log size.

More Info Using sysperfinfo for monitoring will be covered in Chap-
ter 15, “Monitoring for High Availability.”

Differential Database Backups
A new feature introduced with SQL Server 7.0, differential database backups
specifically minimize backup and recovery time. Differential database backups
reduce recovery time by allowing databases with somewhat isolated activity to
have only the changed extents backed up. When a differential backup is per-
formed, SQL Server goes through the same process as a full database backup.
However, the backup focuses on only the extents that were changed since the
last full database backup. Differential backups can be performed in any data-
base at any time, even after the continuity of the transaction log has been bro-
ken. However, a differential backup—as does a full database backup—pauses
transaction log backups until it has completed. Instead of requiring a full data-
base backup, a differential database backup allows you a faster way to back up
your database and protect your recovery process, not relying so heavily on
transaction log backups or complete backups of the entire database.

The recovery of a database using differential database backups is similar to
applying the sequence of log backups that occurred over the same period of
time. However, it is significantly faster. For all work that has been committed prior
to the start of the differential database backup, there are completed images of
those pages, even if a page was changed multiple times. The differential database

Chapter 9 Database Environment Basics for Recovery 425

backup is almost like a “mini” full database backup, but of only those extents that
have changed. After the extents are restored, the transaction log of activity that
occurred while the differential database backup was being performed is applied.
As with the full database backup, the differential database backup restores a
transactionally consistent image of the database as it looked at the completion of
the differential database backup instead of at the beginning. This results in a
faster recovery sequence than if using only transaction log backups. Instead of
applying all of the individual changes that led up to a specific point in time, the
differential database backup already includes the end result of all of the changes.
Differential backups can be a key element of any backup strategy focused on
high availability, as recovery time must be optimized.

Should every database use the differential backup strategy? Differential data-
base backups are best in cases in which activity is somewhat isolated or in which
the database has a large amount of relatively static data. If almost every page
changes within your database during the expected time between the differential
backups or if you have the ability to perform full database backups frequently
because there are no negative issues associated with costs (for example, backup
media costs, administrative costs, and recovery costs in terms of the operations that
are paused), then performing full database backups instead of differential database
backups can lead to an even shorter recovery time because fewer backups need to
be restored. Differential database backups have the same conflicts with changes in
database structures or transaction log backups as do full database backups.

How Differential Database Backups Work To keep track of which extents have
changed within the database, there is an internal bitmap within each file. Every
time the information within the file is backed up completely, as with a full data-
base backup, the bitmap is reset. This is very efficient because only one bit is
used per extent. Therefore one 8-K page maps to approximately 4 GB of data.
Even in larger files, there is only one bitmap per 4 GB and they are a doubly
linked list starting with the first.

Note The bitmap is new to SQL Server 2000. When a differential
database backup was performed, SQL Server 7.0 would scan the
entire database, reviewing the header of every page to see if it had
been modified since the last full database backup. This was extremely
inefficient when the backup was performed, but had no effect on the
restore. The restore was as efficient as it is in SQL Server 2000. SQL
Server 7.0 was optimized only for restore. SQL Server 2000 is opti-
mized for both backup and restore.

426 Part III Microsoft SQL Server Technology

A differential database backup is therefore very similar to a full database
backup, except that it is only the extents that have changed; therefore the
backup is usually significantly smaller. However, because the bitmap is only
reset when the file is completely backed up—as with a full database backup—
the size of the differential database backups might approach the size of a full
database backup over time or if an operation is performed that affects most of
the pages of the database.

Note There are some caveats to this if you combine full database
backups and differential database backups with full file/filegroup back-
ups and differential file/filegroup backups. The differential bitmap,
which is file based, gets reset anytime the full database or the full file/
filegroup is backed up. Therefore, if they are combined, you can end
up with a significantly slower backup to determine the differential.
However, combining file, filegroup, and full backups for the same data-
base is uncommon and therefore not recommended.

Even if you choose to add differential database backups to your recovery
strategy, it is important that you also continue to periodically perform full data-
base backups as part of a complete backup strategy. By performing full data-
base backups you will reset the bitmap and have a more recent backup (this is
sometimes good because of poor media quality).

Full File/Filegroup Backups
Both full file backups and full filegroup backups work in the same way that a full
database backup works in terms of the data that is backed up. However, full file/
filegroup backups do not back up the transaction log as part of the backup.
Instead, you are required to back up the transaction log separately to make the
full file/filegroup backup consistent at the time of restore. This means two things:
you must be using either the Full or Bulk-Logged recovery model and log back-
ups are never paused. This is one of the best choices for systems using log ship-
ping or systems with large databases. It is excellent for log shipping because log
backups will never have significant delays due to full database backups. It is also
ideal for VLDBs because you can set different frequencies for the different files
(and usually different types of data) within your database. If your VLDB has a
large portion of read-only data that only needs to be backed up monthly, then
you can back up the file or files in which that data resides only monthly.

Chapter 9 Database Environment Basics for Recovery 427

Why should some implement their backups based on file/filegroup strate-
gies and others not consider it? The reason is simple: implementing a file/file-
group backup strategy adds a significant amount of administrative complexity.
You must design your database with file and filegroup strategies in mind, and
restoring the proper combination of backups is also more challenging.

Differential File/Filegroup Backups
Both differential file backups and differential filegroup backups work in the
same way that a differential database backup works. When the differential file
or filegroup backup is performed, all of the extents that changed since the last
full file or filegroup backup, respectively, will be backed up. The file-based bit-
map is reset each time a full file backup or a full filegroup backup is performed.
This is the only part about these that can be tricky. If you were to perform a full
filegroup backup and then a differential filegroup backup, the differential file-
group backup would include only those extents that have changed, and it
would use the bitmap to do so. If you start combining differential filegroup
backups with differential file backups with differential database backups, the
bitmaps might get reset. If the bitmap is reset, SQL Server needs to walk the
entire database to ensure that all extents are properly backed up. This does not
impact the restore, but it will be a less efficient backup. If you choose a file/file-
group-based backup strategy, you should be consistent with the levels at which
you perform differential backups. This ensures not only a speedy restore, but
also an efficient backup.

Tip It is important to realize that even when filegroups are used for
read-only activity, SQL Server 2000 requires that transaction log back-
ups be applied during recovery to make the file or filegroup consistent,
even when no data has changed. It is important to perform file/file-
group differential backups on the file/filegroups that are logically read-
only. During the restore, you can use the last full file/filegroup backup,
the last file/filegroup differential backup, and all of the transaction logs
from there. The differential backups will be effectively empty, but it sig-
nificantly reduces the number of transaction logs that must be applied
and therefore reduces the amount of time it takes to recover.

428 Part III Microsoft SQL Server Technology

Summary

This chapter provides you with the foundation you need as you start to under-
stand backup and restore better. You must know how SQL Server works behind
the scenes if you are to put together a backup and restore plan that fits the
needs of your company. That means knowing what is possible, when it can
happen, and what you should do if something does not go as planned. Without
this understanding, you will have a hard time putting together a cohesive disas-
ter recovery plan.

