

SQL Server 2005 Beta II
Snapshot Isolation

Author: Kimberly L. Tripp, SQLskills.com

Summary: In many systems today, significant read activity is isolated from write
activity in the form of a data warehouse or separated system. There are numerous
advantages to this approach; read-intensive applications tend to want more index
structures, data redundancies and even alternate views of data. Transaction processing
systems want throughput; only the most minimal overhead to allow the best write
throughput. The access patterns of readers and writers typically differs; readers are
more prone to larger analysis types of queries and writers are more prone to singleton
inserts, updates and deletes. When these activities are separated the administrator can
focus on recovery strategies for a smaller more manageable transaction processing
system; OLTP databases tend to be only a fraction of their data redundant Decision
Support/Analysis Database cousins. Having said this; however, it is not always possible
to clearly make this distinction. Once data is copied/transformed/archived to an
analysis-oriented database it must be maintained and/or rebuilt periodically. Users
certainly benefit from looking at a transactionally consistent version of the database;
however that version is no longer current data, may take many hours to build and index
and might not be what the user really needs. Enter snapshot isolation.

The primary focus of this paper will be to discuss when this isolation level is
appropriate, what possible trade-offs exist and what are the best practices for use.
Before reading this document you should consider reading these topics from the SQL
Server 2005 Beta II documentation:

 “Concurrency Problems”

Scripts from this Whitepaper:

The scripts are in the zip file named SQLServer2005SnapshotIsolation.zip. This file is
here:
http://www.SQLskills.com/Resources/Whitepapers/SQLServer2005SnapshotIsolation.zi
p.

Table of Contents
SQL Server 2005 Beta II Snapshot Isolation ... 1

Table of Contents... i
Data Access Patterns and Usage .. 1

Usage Scenarios ... 2
Application in Online Transaction Processing .. 2
Adhoc Reporting against Live Data.. 4
Adhoc reporting against a copy-managed database....................................... 7
Overnight reporting against live data .. 9

Transaction Processing System Workload...10
Datawarehousing System Workload ..11

Migration to a common database technology...12
SQL Server and Oracle Differences in Snapshot13
SQL Server and Oracle Similarities in Snapshot16

Understanding Concurrency Control ..17
Understanding Isolation ..20

Isolation Levels Offered in SQL Server 2005..20
Isolation Level and Application Best Suited ...21

Snapshot Isolation Considerations ..22
Definitions, Terminology and Syntax.. 22

Read Committed with snapshots (Statement-level Snapshot)23
Snapshot Isolation (Transaction-level Snapshot)..24

Allowing Snapshot Isolation ..24
Requesting Snapshot Transactions...26

Understanding the “Beginning” of a Transaction......................................26
Combining Read-Committed and Snapshot Isolation..27
Understanding Row Versioning...29

Row Versioning in Read Committed with snapshots29
Row Versioning in Snapshot Isolation...29

DDL Statements within Snapshot Isolation...30
Development Best Practices... 34

Read Committed Snapshot ..34
Snapshot Isolation ...35
Minimizing Update Conflicts ...39
Illustrating Optimistic Concurrency Behavior ..39

Administrative Best Practices... 49
Database-level Settings ..49
Upgrade Issues..49

Version Store Usage of TempDB...51
Sizing TempDB ..52
Monitoring Version Store Activity..53

Function: dm_tran_active_snapshot_database_transactions ():53
Function: dm_tran_transactions_snapshot(): ..54
Performance Monitor Counters ..56

For more information ... 58
Books Online Topics ...58
Knowledge Base Articles of Interest ..58
Additional Reading ...58
Newsgroups of Interest...59

 1

Data Access Patterns and Usage
Production databases are growing rapidly in size and data retention periods are
increasing with changing business requirements as well as regulatory changes.
Additionally, with drive capacity doubling every 12-18 months and storage costs falling,
the amount of desired data to keep “online” is increasing. One solution is to separate
analysis from transaction processing and while that may have many benefits for
complex detailed analysis and business intelligence probing; it does not always work in
terms of disk space and manageability. With the need for more data to be online with
more active queries executing, the need for more current and real-time analysis
contention for data exists.

In SQL Server 2000 contention can be minimized under Read Committed transaction
isolation as the Select statement processing releases read locks after a resource is
read. The default environment follows the standard SQL-92 definition in that ONLY
committed data is read and uncommitted changes are not visible. However, while only
committed data can be read, the standard does not guaranteed read consistency – even
within the life of a statement. The resource lock (a shared lock) is released immediately
after processing the row and that data row can be immediately (even while the read is
still processing other rows) modified.

[NOTE: If data movement is not likely (i.e. splitting is reduced through thorough proper
index creation and maintenance) the chance of re-reading a row within a single
statement drops so significantly it becomes hard to produce this anomaly.]

In many situations this is the correct and performant choice. Only committed changes
are visible and they are visible quickly with minimal resources locking. For example, if
looking for the current total of sales – as an estimate from the currently processing
system – only an estimate may be desired as the value will become “stale” only
moments after being accessed (because transactions continue to be processed). In fact,
in many environments an even less restrictive transaction isolation level called READ
UNCOMMITTED this is often specified with a lock hint, by using either the WITH
(NOLOCK) or WITH (READUNCOMMITTED) hints - these are synonyms. This
environment allows for uncommitted data to be read; however, when the count of sales
and/or total sales is only an estimate then seeing data which is “in progress” may be
acceptable. When this is not acceptable then a change in isolation level – made by the
programmer to ensure consistency through read repeatability of the data - must be
used.

So where do you draw the line? Is it possible to return statement-level or transaction-
level read consistent data while a system is actively processing? Can you write a long-
running query in a production environment, ask for consistency and not block writers?
In SQL Server 2005, the ability to offer this to your users can be done through an
optional database-level setting which automatically changes the behavior of READ
COMMITTED; this new behavior offers non-locking, non-blocking, statement-level read-
consistency. In this whitepaper the traditional READ COMMITTED will be referred to as
“Read Committed using locking”; and the optional new behavior as “Read Committed
using snapshots”.

 2

For transaction-level consistency a new Isolation Level has been added: SNAPSHOT;
changing to this Isolation Level will make transaction level consistency a controllable
setting. Without any of these new options set, SQL Server 2005 databases’ default
behavior work as they do in previous releases; this default will continue to be desired in
many systems where transaction processing throughput and performance are the
highest goals. If a form of non-locking snapshot is desired (either statement level or
transaction level) row versioning will be used to track row modifications. To enable this,
data writers will pay the cost when an update is made, even if there is no reader at
the time.

The version store retains version records until all active transactions commit (assuming
that the Update/Delete statement has itselfalready committed). Or more accurately:
the version store needs to retain specific version records until the transactions explicitly
running under Snapshot Isolation or Read Committed with snapshots that started
before the commit time of the transaction that made the change themselves commit or
end. However, in both cases the version will still need to be made. While this cost of
taking a version is minimal, choosing to implement this should not be taken without
careful consideration and many best practices in place.

Usage Scenarios
This section explores how the SQL Server 2005 Snapshot Isolation Level and the new
form of the Read Committed Isolation Level (Read Committed with snapshots) can help
deliver improved performance, reduced latency and greater developer and database
administrator productivity in your organization.

The following common business scenarios are discussed:

• Application in Online Transaction Processing

• Adhoc reporting against live data

• Adhoc reporting against a copy-managed database

• Overnight reporting against live data

• Migration to a common database technology

Application in Online Transaction Processing
At first glance the primary use of Snapshot technology might seem to be in read-
intensive workloads such as data warehousing and operational reporting systems where
there might be a concurrency impact caused by the table-level read locks of complex,
long running queries (especially aggregations) against large tables that require a
transactionally consistent view of the database which can effectively lock out
transactions that need to update the data. However this is not the only application of
Snapshot technology – the optional new behavior of the Read Committed isolation level,
which works with a snapshot at the statement level, can significantly improve the
throughput of mixed-workload systems while offering transactionally consistent data –
for large joins and aggregations. Since the snapshot guarantees the consistency of the
read – for only the statement – long running conflicts cannot occur. Additionally, in this
environment application changes are not necessary; the change is made at the
database options level.

 3

When pessimistic locking (the way most database vendors traditionally implement the
full ANSI standard for levels of transaction isolation) is used, applications typically
exhibit blocking. Simultaneous data access requests from readers and writers within
transactions request conflicting locks; this is entirely normal and provided the blocking
is short lived, not a significant performance bottleneck. This can change on systems
under stress, as any increase in the time taken to process a transaction (for example
delays caused by over-utilized system resources such as disk I/O, RAM or CPU as well
as delays caused by poorly written transaction such as those that hold locks across user
interaction) can have a disproportional impact on blocking – the longer the transaction
takes to execute, the longer locks are held and the greater the likelihood of blocking.

An example of this might be a car rental company which uses both an internal and web-
based reservation application to book cars on behalf of its customers. Systems such as
these have transactions that are contending for the same data (i.e. cars). The system
will offer short-running queries that allow the customer service representative to check
availability of cars in certain locations prior to booking them for the customer – this is
an area where programming techniques such as disconnected datasets are often used
to provide optimistic concurrency control, specifically:

1. The application queries for all available cars of a certain class, in a specific
date range at a rental location. This query is likely to be a join of at least a few
tables such as Car, Class, Reservation and Location. Additionally, this query will
run under the Read Committed isolation level to ensure that only committed
data is returned to the user.

2. The recordset or dataset obtained by the query will be “disconnected” from
the database so as to remove any locks held on the data while the data is
displayed in the caller’s application. This is often called “batch optimistic” as it
emulates the optimistic forms of database concurrency control. It is optimistic in
that although the data is active; the likelihood for conflict should be low. The use
of row-level timestamps enables the programmer to identify data change and
manage conflicting updates with appropriate messages to the user interface.

3. The caller will select a specific car and the dataset will be edited to reflect the
reservation.

4. The application will then reconnect and attempt to synchronize the change to
the database, using the row-level SQL Server timestamp column to ensure that
the data has not been changed by other callers while the data was disconnected.

5. The application then reports back to the caller to either report success (the
reservation was taken) or to indicate a conflict (the car was taken by another
caller) and to offer the chance to try to book another car.

Note that the above technique is not truly optimistic. In this design pattern a significant
amount of contention can take place while the query in step 1 is running to find
candidate cars. With SQL Server 2005 Read Committed with snapshots these requests
are given a non-locking, non-blocking, transactionally consistent version of the data –
while the query runs. With this isolation, the locking/blocking load on the server can be

 4

reduced and the live data is not blocked for other customers who want to reserve cars.
While this can improve the end-to-end performance for the transactions booking cars
be eliminating lock waits, it does not necessarily improve the chances that a car viewed
by the long running query will be available. However, this is an acceptable trade-off.
The reservations occur faster and are not blocked by simultaneous requests for car
rental data. This leads to increased throughput of transactions, especially under peak
workloads, such as those caused by holiday bookings and business travel peak times.

Once the new Read Committed with snapshots behavior has been enabled by the
database administrator at the database level, the programming logic that was used in
steps 1-5 above can take immediate benefit of this new behavior without changing a
line of code. In fact, once the database setting has been set, all queries will default to
this form of statement-level read consistency.

Adhoc Reporting against Live Data
All companies are continually striving to reduce costs while expanding the capabilities of
their information systems. One of the guiding targets for SQL Server 2005 is the
elimination of the latency between data being captured within a database and it being
available for use for reporting by the organization – this reduction in latency enables
developers to build systems that provide data outside of the traditional batch reporting
schedule.

Consider the scenario of a food retailer who is trying to balance the need to minimize
the stock of fast moving consumer goods such as sandwiches, milk and other
perishables which are held at each store; with the need to ensure that the shelves in
the supermarket are stocked with items that their customers want to buy. Many of
these kinds of items are very sensitive to the weather, for example barbeque items and
ice cream sell more on sunny days; comfort foods sell more on rainy days.

Previous to the introduction of the new snapshot-based isolation levels the developers
of the supermarket application might have avoided long blocks on the live data by using
the Read Uncommitted Isolation Level, This can be difficult to use, especially when
joining across multiple tables because the Read Uncommitted Isolation Level provides
non-blocking access to a statement-level transactionally inconsistent view of the
database, a view where the data related to a business transaction may have only
partially arrived in the database.

 5

Furthermore the practice
of analyzing sales to look
at the mix of other items
sold together with the
fastest selling items (also
known as basket
analysis) can be very
data intensive and hence
long-running, thus
leading to an even
greater chance of
inconsistencies as data
continues to arrive in the
database.

In situations where a
transactionally consistent
view of the data is a
necessity the system
designers would typically
design for these types of
reports to run out of
hours to avoid impacting
the concurrency of the
live system (where a
long running, read-only
report that was launched
during peak usage could
end up blocking all
writers from updating the
system, as depicted in
Figure 1, above).

Having an IT infrastructure that only provides for pre-planned overnight reporting could
hinder the ability of the Supermarket Manager to react to unexpected demands and
review which products are at risk of selling out, and thus potentially miss an
opportunity to order a second delivery to restock from the warehouse to meet demand,
leading to loss of potential revenue, or even worse, loss of customers to competitors.

The new isolation levels provide applications with non-locking access to a transaction or
statement level transactionally consistent view of the whole database, thus making the
report writer’s job much easier and also much more rewarding. In SQL Server 2005 the
power of the database engine has been even more tightly integrated with the advanced
aggregation and analytical capabilities of the Analysis Services component, which
introduces the Universal Data Model and enables full analytical reporting without the
need to extract and transform data into star schema. Snapshot Isolation technology has
a major role to play in making data more accessible to this kind of application – being
able to combine the power of the cross-selling reports with live data has the potential to
change the way these business processes work.

T
I
L
L
S

Figure 1: Tills blocked by a reporting user

 6

• The new Read Committed with snapshots Isolation Level is best used for existing
report systems (or systems purchased from third parties where the isolation
level cannot be changed) as it is likely that no application change will be
required to take advantage of non-locking reads, especially as the majority of
these applications populate reports with the results of a single query. In this
scenario the row version (or snapshot) need only be retained for the length of
each query. (Note that in Beta 2 of SQL Server 2005 the versions will remain
until the end of the transaction).

• The new Snapshot Isolation Level is well suited to more complex requirements
such as running a series of reports that must run within the same transaction in
order to all see the same transactionally consistent view of the data – this is
more likely in complex financial reporting systems where it is not desirable that
data changes are picked up while the report suite is running as it could easily
cause anomalies in totals and checksums between reports. In this scenario the
row version would be retained for the length of the transaction.

SQL Server 2005 makes it simple to enable these new isolation levels for a database.
Once the new form of Read Committed behavior is configured, SQL Server
automatically uses it without requiring any application or transactional code changes.
To make use of the transaction-level snapshot isolation, you must configure the
isolation level for the connection before any snapshot transactions can begin.

Once either of these capabilities is enabled, it is then safe to provide the supermarket
manager with a series of parameterized reports that can be run when unexpected
demand takes place in the store – without blocking the data coming in from the store’s
tills, thus helping the manager ensure that the needs of the store’s customers are
anticipated and met – leading to high customer satisfaction.

Enabling Snapshot Isolation makes additional demands on the database server. In the
scenario discussed above it is assumed that the back office server used to collect data
arriving from the supermarket’s tills had enough spare capacity to support the
occasional requirement to run adhoc reports against the live data. The use of snapshot
isolation imposes added load on a server running update transactions, both for data
writers and data readers. For data writers, their changes must be versioned. For data
readers, their reads must traverse the version chain to obtain the version appropriate
to the time of their transaction start.

The additional load can apply to TempDB (as TempDB is where SQL Server stores the
version store - used to provide a transactionally consistent view of the changing data,
especially for long running transactions) and so it is recommended that the DBA test
this new technology on preproduction systems under simulated load prior to production
deployment.

Note that simple measures such as providing more I/O bandwidth for TempDB, together
with the scalability improvements made to TempDB in SQL Server 2005, may more
than offset the impact of enabling the versioning-based isolation levels. However, if the

 7

system is already heavily loaded with a mixed update and read workload then
configurations discussed in other scenarios (see below) may be more appropriate. This
can be especially true when transaction-wide Snapshot Isolation is required rather than
statement-level Read Committed with snapshots.

Adhoc reporting against a copy-managed
database

In systems with a high percentage of data changing, enabling the use of the new
Snapshot Isolation Level may have a negative impact on overall performance as the
overhead of creating and managing the previous versions of a row can slow down
transactions, particularly if TempDB or the disk subsystem is already close to being a
system bottleneck. In this situation the performance cost of enabling the new
infrastructure may not worth the value of reporting against the real time data,
especially as any reporting will likely add even more load to an already busy system.

This scenario is typical of reservation systems (such as airline and hotel reservation
systems) as well as order entry systems including online systems such as web shopping
sites. The performance of updates during peak periods of load is critical – a slow update
can cause a consumer to give up their purchase and head to another site; conversely
the customer service departments and demand forecasting staff need access to reports
containing live data to help in their interaction with customers and to perform planning.

These conflicting requirements may best be served by creating a copy managed
database – a near real time replica of the data that lags behind the live system, but
that is “live enough” for reporting to take place. The goal of this replica is to offload the
reporting users to another server (or even a set of servers) so that they do not add to
the workload of the live system.

SQL Server 2005 provides two options for automating the maintenance of a replica
database, both of which operate within the transaction logging mechanism and hence
on committed data:

1. Database Mirroring (a.k.a. Synchronous Log-Shipping) – this technology is
primarily designed to provide a hot-standby of the live system: data is sent to
the replica during each transaction commit process – the commit does not
complete until the data is in both the live and replica database logs. Performance
on the live system is thus sensitive to the ability of the replica standby system to
commit. For this reason Data Mirroring is less suited to offloading reporting
workload as any spikes in reporting workload can directly impact live system
performance. For systems that must sustain continuous high rates of update
transactions database mirroring should be seen as more an availability feature
rather than as enabling a secondary reporting database.

Data Mirroring has the advantages that it is extremely easy to set up and to
manage, and once established all data is transferred without the database
administrator having to select specific tables, in fact as changes are made to the

 8

live system they automatically occur on the replica. Furthermore the use of SQL
Server 2005 Database Snapshots on the replica server can be used to provide
transactionally consistent point in time reporting. However database snapshots
must be created manually and it may be unrealistic to maintain a viewpoint for
each report (assuming each report requires access to the most current data).

Other disadvantages include the fact that it is not possible to make changes
solely to the replica such as filtering a subset of the data; adding reporting-only
users with read-only privileges; and adding additional table indexes and indexed
views designed to aid reporting performance. These changes can only be made
to the live system, which may see degradation in update performance as a
result.

2. Replication (specifically Transactional Replication) – this technology imposes only
a light overhead on the live system, which can be mitigated by improving
database log file I/O bandwidth. Committed transactions are read
asynchronously from the database transaction log file and the data moved to the
distribution database from where it can be fanned-out to multiple subscribers.

This technology can be harder to manage yet is often well known by database

administrators as it has been a core component of SQL Server over many years.
The data that is replicated can be a subset of the live system (by table and both
by row and by column) and has the advantage of allowing different users,
indexes and views to be present in the subscriber (reporting) database.

Disadvantages are few – there is always a lag between a committed record
arriving in each subscriber replica system; and an additional copy of data must
be maintained in the distributor database until it is propagated to all subscribers.

SQL Server 2005 schema changes on replicated objects rarely require the sort of
reworking (and no longer require use of replication-specific stored procedures to
add/remove columns) that previous versions required. Previously, these
commands restricted the use of replication from third party applications when
the applications did not use replication commands to change schema across

Logreader

Live

Subscriber
(Reporting)

DistributorLogreader

Live

Subscriber
(Reporting)

Distributor

Figure 2: Replicating Data

 9

releases. Figure 2 illustrates a typical transactional replication setup across two
servers.

The main issue with the use of transactional replication in the past was that the
distribution/subscription database link suffered from the same issues seen in the live
system. When long running reports run in the subscriber database they block the
replicated data from arriving in the subscriber system. This blocking can cause the
replica to get increasingly out of synch and behind the live system. In turn, this
frustrates the call center employees who are trying to help customers with recent
purchases or reservations that have not yet arrived in their system. This problem is
fully addressed by the new Snapshot Isolation Level and the new Read Committed with
snapshots.

The subscriber database(s) can be set to use Snapshot Isolation and the reports (and
read-only applications) that rely on that data can use either Snapshot Isolation (for a
consistent view across a suite of reports/dialogs) or Read Committed with snapshots for
individual reports. Neither of these applications will require shared locks, thus removing
blocking caused by database readers and hence preventing the mostly-read database
from getting significantly behind the live system, The incoming data will not be blocked
behind long running read transactions and queries will execute against a transactionally
consistent view of the database. Additionally, replication can maintain better
transactional fidelity as it moves data around the system.

This is also a very scalable solution. As the reporting workload grows, it is possible to
add a second (or more) subscriber databases on new servers so as to cope with the
additional load without any further impact on the live system as data is fanned out from
the distributor database rather than the live system. Now the customer service
representative should be able to see the transactions made by the customer (in the live
system) while accessing the replica to assist the customer as necessary.

Overnight reporting against live data
This scenario considers the classic data-processing model of an “Online Day” and an
“Overnight Batch.” The Online Day matches a defined set of typical in-office “business
hours” where data is entered into the system with a workload exclusively composed of
short transactions. Overnight batch is where long-running reports move and report
against the data that arrived during the day. This scenario is very typical in mainframe
applications, with TP monitors running in the day, and batch jobs running at night.

The growth of customer-facing, internet-aware applications as well as increasing
globalization of companies (with some offices coming online as others go offline) has
meant that this model is less relevant to modern datacenters. However there are still
some lessons that can be learned by looking at this old technology:

1. User-centric workloads tend to have peaks and troughs.

2. Reports tend to be run at specific times so as to allow comparison with
reports run previously at that time.

 10

3. The workload of most databases has peaks of updates (such as data
loading) and peaks of reads (such as reporting).

Consider “Gadget.com” a fictitious internet-facing company that supports and sells
personal audio technology; it has a datacenter in New York that services its US business
as well as several smaller offices across 7 countries. Like most companies, its online
systems have definite usage patterns. Here, the peak load coincides with US patterns
with the arrival of staff in offices and the arrival of their primary customers at the web
site:

Transaction Processing System Workload
Time (Eastern) Business Events Datacenter Events

08:00 AM US Offices coming online Any remaining reporting is
halted

12:00 PM All US offices online,
European offices closing

Peak office load

06:00 PM US offices start closing,
Smaller Asian & Australian
offices coming online

Peak online load

10:00 PM Lowest office & online load

Snapshot Isolation enabled,
data extracts begin followed by
main operational reporting suite

02:00 AM European offices coming
online

Snapshot Isolation disabled,
some US-specific operational
reporting continues

In the above scenario the datacenter can manage the state of Snapshot Isolation while
the database is online; there is no need to restart the database to pick up different
settings. By only activating Snapshot Isolation in a narrow window Gadget.com
continued to offer service to online and global office users, but also ensured that long-
running reports that require a transactionally-consistent view of the database across
queries would not block those users. By disabling Snapshot Isolation during peak usage
Gadget.com also ensured that maximum throughput is available to its primary users
and customers.

Gadget.com also runs a complex data warehouse that is used to provide information
about customer and stock trends and to run larger reports that look for other patterns
in the data over time. This system is primarily read-only; however there are a limited
number of users who need update access to the database so as to perform accounting-
style journal adjustments, as well as stock adjustments following audits. This does not
present a problem for Gadget.com as they have adapted their strategy for using
Snapshot Isolation to the needs of this system.

 11

Datawarehousing System Workload
Gadget.com runs their data warehouse system 24x7; they use Snapshot Isolation to
provide their report consumers with high-performance access to transactionally
consistent data.

Time (Eastern) Business Events Datacenter Events

08:00 AM US Offices coming online Peak online reporting load

12:00 PM All US offices online,
European offices closing

Peak adjustment load (but
minor)

06:00 PM US offices start closing,
Smaller Asian & Australian
offices coming online

Reporting still online

10:00 PM Lowest reporting load

Database placed into the bulk-
logged recovery model. The
reporting application queues
incoming report requests, the
data loads and then data
transformations begin.

02:00 AM European offices coming
online

System placed into the full
recovery model. A log backup
begins, long-running and
queued reports start and then
finally, the ad-hoc workload
begins.

Gadget.com decided to continually operate this database with Snapshot Isolation
enabled. In addition they looked at the amount of data they had to take on into the
system each day and decided to maximize the performance of the load by using a mix
of the Full and Bulk-logged recovery models. The Full recovery model is used to protect
the adhoc adjustments made to data by the warehouse administrators. The Bulk-logged
recovery model is used to reduce the logging when loading data.

In the data loading case, Snapshot Isolation settings did not need to be disabled
because row insertion does not generate a version chain entry (there is no older data to
version). Running with 24x7 Snapshot Isolation allows Gadget.com to enjoy both
unimpacted fast data loading while allowing adhoc data adjustments to continue
without being impacted by long running reports that could otherwise block the data load
process. The only operational adjustment made was to adjust the recovery models to
reduce logging and improve the data load:

 Bulk-logged Recovery model during dataload (as the system is fully recoverable
using the previous full backup, its associated logs and the incoming data extract
files. The load is followed by a changing the recovery model to Full and then
performing a log backup.

 12

 Full Recovery model the rest of the time, allowing log backups to be taken so
that accountant adjustments are not lost by hardware failure or media
corruption.

The above scenarios illustrate how Snapshot Isolation can be deployed in a system with
variable transaction workloads, both online transaction processing and data
warehousing. Snapshot Isolation can be left active so that it’s benefits can be realized
without significant impact on any of the key activities of the systems underlines the
utility of this technology.

Migration to a common database technology
In the commercial relational database management system world, prior to SQL Server
2005, there were two camps. The first were the systems that implemented a
pessimistic concurrency based on locking schemes that enable support for the four
ANSI-standard isolation levels as defined in the SQL-92 standard (ANSI X3.135-1992,
American National Standard for Information Systems — Database Language — SQL,
November, 1992) – these systems include Microsoft SQL Server, IBM DB2 (all of its
many code bases/platforms and variants) as well as Sybase Adaptive Server. The
second camp implemented a non-standard transaction isolation model with optimistic
concurrency based on retaining a view of the data as of the start of the transaction –
the only commercial system in this camp was Oracle.

This division has led to three types of software developer:

1. Develops on Oracle, ports to Microsoft SQL Server

2. Develops on Microsoft SQL Server, ports to Oracle

3. Develops and optimizes for both camps.

Generally only the largest software companies can afford to be “type 3” – companies
such as SAP, Siebel and Peoplesoft. Most developers must pick between type 1 or type
2, their choice normally being predicated by the degree to which the datacenter Unix
market matters to their sales.

With SQL Server 2005 and the introduction of optimistic concurrency control with
Snapshot Isolation it is now much easier for a type 1 application vendor to make a
direct port to SQL Server and extend their market beyond the confines of the
Oracle/Unix platform. IT Departments who want to drive down the complexities
associated with supporting multiple database platforms and to avoid costs such as:

• multiple database teams

• increased training costs

• reduced volume software licensing costs

• management time interacting with multiple vendors

• matching differing supplier service levels

SQL Server 2005 offers the opportunity for customers to eliminate these additional
costs, without having to change application vendor or suffer a drop in optimal
performance caused by the paradigm shift in transaction isolation model.

 13

The implementation of optimistic concurrency differs widely between SQL Server 2005
and Oracle – the SQL Server implementation is designed to be more controllable by the
database administrator (it can be enabled & disabled on command, as illustrated in the
previous scenario) and also to be more manageable – there are a wealth of Windows
System Monitor performance counters and virtual tables accessible through system
functions which can help detect and decipher what is happening with the database.

SQL Server and Oracle Differences in Snapshot
Microsoft SQL Server 2005 Oracle

No table modifications required, the snapshot
version store and the version chain of changed
records is completely independent of your table
definition – this is something the system manages
on your behalf

Requires use of INITRANS >= 3 &
MAXTRANS on CREATE/ALTER TABLE
DDL to enable space for on-page
transaction information before
SERIALIZABLE can be used – you have
to get it right before you start using
the table or face a costly DDL change
after your users start complaining
about ORA-08177: “Can't serialize
access for this transaction.”

Version store is held in memory and TempDB. The
dba must ensure that TempDB is optimized for
increased i/o bandwidth based on the version store
workload – TempDB database size must also be
monitored (especially if the application has long
running transactions), SQL Server has supported
dba-friendly percentage and absolute database
and log autogrow settings for many releases, but
these are obviously constrained by the physical
availability of disk space.

This can lead to long version chains in SQL Server.
The version store keeps a full copy of the data row
which saves the expense of reconstructing the row
when it is accessed by another transaction.

The integrated SQL Server Agent event
management and job scheduling sub-system can
be programmed to react automatically to an out of
physical space condition and corrective action
(such as forcing rollback of any transaction
contributing to version store space usage)

Can require complex configuration of
ROLLBACK SEGMENTS (creation &
on/offline status) & defining
transaction level USE ROLLBACK
SEGMENT statements to avoid ORA-
01555: "Snapshot too old." caused by
“long running” transactions overwriting
their versioned pages in the rollback
segment. Note: Oracle does not have a
definition for “long running”
transactions.

In recent versions (starting with Oracle
9i) Oracle have introduced a
technology similar to that used in SQL
Server 2005 called “Automatic Undo
Management Mode” – this new method
is incompatible with the previous
manual method and will require code
changes if USE ROLLBACK SEGMENT
statements have been used

The rollback segment/undo tablespace
only stores the ‘changed’ value of the
row (thus saving space) at the expense
of reconstructing the versioned row at

 14

Microsoft SQL Server 2005 Oracle
run-time.

Oracle 9i users still experienced the
“dreaded” ORA-015551 and in response
Oracle 10i introduced the new
“UNDO_RETENTION_PERIOD”
initialization setting, used in
conjunction with the RETENTION
GUARANTEE property of undo
tablespaces to allow the Oracle DBA to
specify how long undo data is retained.

This is not an automatic setting and
changes are picked up by
stopping/starting the Oracle instance –
to tune this setting the Oracle DBA can
monitor V$ROLLSTAT to track
“wrapping” (the reuse of undo
tablespace storage) and the application
can detect and report either ORA-
01555 (no retention guarantee); or out
of space conditions.

TempDB can autogrow as a % of current size (to
elastically reduce the number of autogrow
attempts) or as an absolute value

ROLLBACK SEGMENTS don’t support
PCTINCREASE and hence don’t
“autogrow” so you must get the size
right when they are created. If using
the automatic mode then the Undo
Tablespace behaviour is very similar to
that of SQL Server 2005 TempDB

Row Based data versioning – smaller amounts of
data are written to/read from the version store,
row level versioning means true row level
serialization of transacted data access

The INITTRANS setting determines how
many changes can be tracked in any
one data block – exceed this value and
the next transaction using
SERIALIZABLE access to access other
rows on an updated data block by
other transactions causes ORA-08177:
“Can't serialize access for this
transaction.”

This is why Oracle recommends the
use of SERIALIZABLE for systems with
few, short update transactions (where
the chance of filling the INITTRANS
area is low)

Snapshot Isolation & Read Committed with
snapshots are enabled at the database level. Only

Data versioning is not optional; it is
always enabled.

1 From: http://www.oracle.com/technology/pub/articles/10gdba/week20_10gdba.html

 15

Microsoft SQL Server 2005 Oracle
databases which require this option need to enable
it and incur the overhead associated with it. You
must enable it across all databases which will
participate in a cross-database transactions using
snapshot isolation.

Extensive operational Performance Counters,
especially the SQLServer:Transactions set of
counters that allow the dba to monitor the state of
the version store, including:

• Free Space in TempDB

• Size of Version Store

• Rate of growth

• Number of Conflicts

• Longest running active transaction
(excluding non-version consuming or
generating transactions)

Oracle has chosen to implement a
platform-independent approach – this
has benefits to customers who are very
familiar with the Oracle toolset but
excludes customers from easily
integrating Oracle performance
counters with the wealth of systems
management products and expertise
that is available on the Windows
Platform.

SQL Server 2005 implements Virtual tables which
allow the dba to see whether or not snapshot
transactions have occurred as well as the size of
the version store and earliest record in the version
store:

• sys.dm_tran_active_snapshot_database_transactions()

• sys.dm_tran_active_transactions

• sys.dm_tran_current_snapshot()

• sys.dm_tran_current_transaction()

• sys.dm_tran_database_transactions

• sys.dm_tran_locks

• sys.dm_tran_session_transactions

• sys.dm_tran_top_version_generators()

• sys.dm_tran_transactions_snapshot()

• sys.dm_tran_version_store()

These virtual system tables & functions are also
called Data Management Views and can be used to
monitor & report on the state of active
transactions and their version & lock usage.

Oracle implements Data Management
Views (Virtual Tables and functions) –
typically V$UNDOSTAT (a histogram
like record of undo statistics);
V$WAITSTAT (with the Undo class);
and V$TRANSACTION for per-
transaction undo space usage

As well as the differences outline above, which are designed to ease the job of the
database administrator, there are also similarities that are designed to make the
developers life easier when porting an application from Oracle to Microsoft SQL Server
2005.

 16

SQL Server and Oracle Similarities in Snapshot
Microsoft SQL Server 2005 Oracle

SELECT … WITH (UPDLOCK)
Equivalent, performs conflict checks immediately

SELECT… FOR UPDATE
Lock a record within a transaction to prevent conflicts

READ COMMITTED with snapshots READ COMMITTED

SNAPSHOT SERIALIZABLE

SNAPSHOT READ ONLY

READ UNCOMMITTED (access to
uncommitted data)

No Equivalent

READ COMMITTED with locking No Equivalent

REPEATABLE READ No Equivalent

SERIALIZABLE No Equivalent – the lack of read locking can
cause design challenges for the developer, as
outlined in Oracle9i Application
Developer's Guide - Fundamentals
Release 2 (9.2)
Part Number A96590-01 :

“Because Oracle does not use read locks,
even in SERIALIZABLE transactions, data
read by one transaction can be overwritten
by another. Transactions that perform
database consistency checks at the
application level should not assume that the
data they read will not change during the
execution of the transaction (even though
such changes are not visible to the
transaction). Database inconsistencies can
result unless such application-level
consistency checks are coded carefully, even
when using SERIALIZABLE transactions.”

Can use blocking in pessimistic isolation
levels or must handle conflicts (data row
updated outside of the transaction) &
retry failed transactions. Row level
versioning reduces chances of conflict.

Must handle conflicts (ORA-08177: data page
updated outside of the transaction) & retry
failed transactions.

The application can choose an
appropriate concurrency model.

Application always sees potentially stale data
unless using manual table locking or
SELECT…FOR UPDATE as there is no choice
between concurrency models.

Transact-SQL TRY/CATCH logic handles
conflict errors but doesn’t handle out of
space issues with TempDB.

PL/SQL has error handling that enables ORA-
08177 (conflict) error handling, but doesn’t
handle ORA-01555 (rollback segment space
issue). With Undo Tablespaces a similar out

 17

of space issue can arise.

Based on these similarities, SQL Server 2005 makes the porting of applications built to
run against databases that support optimistic concurrency significantly easier than in
past releases. Additionally, SQL Server 2005 introduces a programming model which
allows the choice between pessimistic and optimistic concurrency control – as well as
numerous mechanisms for implementation. The database administrator’s life is eased
by having a simple, easily configured version store that is online, enabled at the
database level, and the developer’s task in porting code is simpler because of the close
functional match between the Oracle and the SQL Server 2005 schemes (although the
SQL Server 2005 exhibits more granular consistency behavior in that it manages
versions at the row-level rather than the data block level).

Understanding Concurrency Control
As seen within the usage scenarios, there are two primary models used in controlling
concurrency: pessimistic concurrency and optimistic concurrency.

Under a pessimistic concurrency control-based system locks are used to prevent users
from modifying data in a way that affects other users. Once a lock has been applied,
other users cannot perform actions that would conflict with the lock until the owner
releases it. This level of control is used in environments where there is high contention
for data and where the cost of protecting the data using locks is less than the cost of
rolling back transactions if/when concurrency conflicts occur.

Conversely, under an optimistic concurrency control-based system, users do not lock
data when they read it. Instead, when an update is performed the system checks to see
if another user changed the data after it was read. If another user updated the data, an
error is raised. Typically, the user receiving the error rolls back the transaction,
resubmits (application/environment dependant) and/or starts over. This is called
optimistic concurrency because it is mainly used in environments where there is low
contention for data, and where the cost of occasionally rolling back a transaction
outweighs the costs of locking data when read.

Note that updates performed under Read Committed with snapshots do not
conflict and hence will never incur the cost of rollback.

Prior to SQL Server 2005, transactions are always controlled in a pessimistic manner –
meaning all transactions acquire locks. While locking can be the best concurrency
control choice for applications requiring data consistency and inter-transaction
protection, it can cause writers to block readers. If a transaction changes a row, then
another transaction cannot read the row until the writer commits. There are cases
where waiting for the change to complete is the correct response; however there are
cases where the previous transactionally consistent state of the row is sufficient.

Snapshot-based isolation levels allow the reader to get the previously committed value
of the row at the cost of having to keep this version when the row is modified – even if
no one is “currently” accessing the data. This means that all select, update and delete
statements (but not inserts – unless re-inserting over a recently deleted record) may
have to pay the cost of versioning with additional I/O into/from the versioning store.

 18

You must decide to make this trade in improved concurrency at the cost of overhead
(and therefore performance). It is important to state that while each query may cost
more to execute (because of versioning) the end result may be that you are able to
support more throughput because of reduced contention. For this reason it is important
that snapshot-based isolation levels be enabled where contention was costing you
throughput; if you use this as a solution to a performance problem which is not caused
by contention then you might be solving the wrong problem and in fact, degrading your
system throughput – this is akin to throwing hardware at a problem where the
performance issue is caused by poor application design and locking conflicts.

In general, application programming is easier when the database automatically controls
your view of the data through versioning-based isolation. In this environment, you
worry less about deadlocks and blocking and pay a slight additional cost in
administrative management overhead and performance. In many cases, paying a cost
in administrative overhead and in providing more disk throughput for TempDB can be
an easier choice; this is often known as “killing it with iron” and has the benefit that
programmers do not have to worry about complex programming logic. If all snapshot
based queries are solely for read consistency and not the basis for later modifications;
no application retry logic is necessary. However, you may end up with conflicts in
transactions which use the Snapshot isolation level and later perform updates; if the
version is “stale” then it is likely you will need to use transaction retry logic for updates.

In situations where blocking is being used to control access to resources (such as
queues implemented in tables) then if you have enabled Read Committed with
snapshots then you must use the WITH (READCOMMITTEDLOCK) locking hint to get
the expected “classic” behavior as the snapshot-based read will never block.

The programmer now has the option of using SQL Server 2005 conflict resolution in
conjunction with application and/or Transact-SQL transaction error handling in place of
previous timestamp management techniques. Additionally, when your workload consists
of batch style updates where many rows are modified, snapshot isolation is not
recommended as the chance of conflict can be significantly larger. In that case you
should choose a lock based isolation level (READ COMMITTED, REPEATABLE READ, OR
SERIALIZABLE), keep your transaction short, and carefully design your transactions to
minimize resource conflicts so that you minimize deadlocks.

Note that in the Beta 2 Release of SQL Server 2005 indexes were required to avoid
update conflicts when two transactions update different rows in the table.

(Beta 2
Only)

This is because snapshot isolation introduces a further consideration for
the database developer/designer in that data access as part of an update
must be through an index otherwise an update conflict will be returned
even if no actual conflict occurs as, without an index, SQL Server has no
mechanism to determine the range of data changed by the update
command.

In the simple case of two snapshot transactions that update data in a table
with no indexes, then the first transaction to commit will cause the second
transaction to receive an update conflict:

 19

Msg 3960, Level 16, State 1, Line 1
Cannot use snapshot isolation to access table 'TableWithNoIndexes' in database
'Optimistic'. Snapshot transaction aborted due to update conflict. Retry
transaction.

This can also occur in the less obvious situation where un-indexed data is
updated:

(Beta 2
Only)

Transaction 1 Transaction 2

 -- Create & Populate a Table
create table UnIndexedData
(SurrogateKey int identity(1,1)
not null primary key clustered,
 NoIndex int not null)
go
declare @cnt int
set @cnt = 0
while @cnt < 1000
 begin
 insert UnIndexedData
(NoIndex) values(@cnt)
 set @cnt = @cnt + 1
 end

go

 -- Begin a transaction
set transaction isolation
level snapshot
go

begin transaction
select top 5 * from
UnIndexedData

 -- Begin a transaction
set transaction isolation level
snapshot
go
begin transaction
select top 5 * from
UnIndexedData

-- Update some unindexed data
update UnIndexedData set
NoIndex = NoIndex +1 where
NoIndex <100

 -- Update some unindexed data
-- This will block on
Transaction 2
-- even though they don’t
overlap
update UnIndexedData set
NoIndex = NoIndex + 1 where
NoIndex > 950

 -- Commit the update

 20

(Beta 2
Only)

Transaction 1 Transaction 2

Commit Transaction
 -- Transaction 1 will abort

with update conflict (Beta 2
only)

Note that it would have been possible to avoid the above conflict in Beta 2 had the
query included the (indexed) SurrogateKey column. This will not be a restriction in SQL
Server 2005 Beta 3 onwards; furthermore the blocking behavior will only be seen when
using Read Committed with Snapshots.

Understanding Isolation
Because Isolation Level is completely controllable in SQL Server 2005, understanding
the most appropriate isolation for your application is important – for both concurrency
and performance while still maintaining the appropriate level of accuracy. The concept
of Isolation Level is not new – in fact, details regarding the ANSI specifications for
Isolation can be found on: www.ansi.org and the current specification to review is ANSI
INCITS 135-1992 (R1998). However, the standard is intended to be implementation-
independent and doing so is somewhat ambiguous in what the exact trade-offs are in
consistency and performance as well as how to achieve these goals and standards. As a
result numerous papers have been written to further clarify the standards: Generalized
Isolation Level Definitions or even critique them – as in The Critique of ANSI Isolation
Levels. Based on the philosophies these works represent and the ambiguity in the ANSI
standard, SQL Server 2005 offers many of the possible combinations typically desired.

Isolation Levels Offered in SQL Server 2005

 Possible Phenomena
(as defined in ANSI SQL

Standard)

Isolation level
Dirty
read

Non-
repeatable

read
Phantom

Concurrency
Control

Read Uncommitted Yes Yes Yes (None)

Read Committed with
locks

No Yes Yes Pessimistic

Read Committed with
snapshots

No Yes Yes Optimistic

 21

Repeatable Read No No Yes Pessimistic

Snapshot No No No Optimistic

Serializable No No No Pessimistic

The application usage for each of the above varies based on the desired level of
“correctness” and the trade-off chosen in performance and administrative overhead.

Isolation Level and Application Best Suited

Isolation level Best Suited for an Application when:

Read Uncommitted The application does not require absolute accuracy of data (and could
get a larger/smaller number than the final value) and wants
performance of OLTP operations above all else. No version store, no
locks acquired, no locks are honored when reading data. Data
accuracy of queries in this isolation may see uncommitted changes.

Read Committed
(with locks)

The application does not require point-in-time consistency for long
running aggregations or long-running queries yet wants data values
which are read to be only transactionally consistent. The application
does not want the overhead of the version store when reading data
with the trade-off of potential incorrectness for long running queries
because of non-repeatable reads. This isolation level is ideally suited
to transactions that rely upon the blocking behavior of locks to
implement queuing applications and/or other ordered access to data.

Read Committed
(with snapshots)

The application requires absolute point-in-time consistency for long
running aggregations and/or long-running queries. All data values
must be transactionally consistent at the point in time where the
query begins. The database administrator chooses the overhead of
the version store for the application for the benefit of increased
throughput due to reduced lock contention. Additionally, the
application wants transactional consistency for large queries not
transactions.

Repeatable Read The application requires absolute accuracy for long running multi-
statement transactions and must hold all requested data from other
modifications until the transaction completes. The application requires
consistency for all data which is read repeatedly within this
transaction and requires that no other modifications are allowed –
this can impact concurrency in a multi-user system if other
transactions are attempting to update data that has been locked by
the reader. This is best when the application is relying on consistent
data and plans to modify it later within the same transaction.

Snapshot The application requires absolute accuracy for long running multi-
statement transactions but does not plan to modify the data. The

 22

application requires consistency for all data which is read repeatedly
within this transaction but plans to only read data. Read Locks are not
necessary to prevent modifications by other transactions as the
changes will not be seen until after the data modification transactions
commit or rollback and the snapshot transaction completes. Data can
be modified within this transaction level at the risk of conflicts with
transactions that have updated the same data after the snapshot
transaction started. This conflict must be handled by each updating
transaction. A system with multiple readers and a single writer (such
as the replicated reporting system in the scenario section above) will
not encounter conflicts.

Serializable The application requires absolute accuracy for long running multi-
statement transactions and must hold all requested data from other
modifications until the transaction completes. Additionally, the
transactions are requesting sets of data and not just singleton rows.
Each of the sets must produce the same output at each request
within the transaction and with modifications expected no other users
can modify not only the data which has been read but must prevent
new rows from entering the set. This is best when the application is
relying on consistent data, plans to modify it later within the same
transaction, requires absolute accuracy and data consistency – even
at the end of the transaction (within the active data).

Snapshot Isolation Considerations
While the change to Read Committed with snapshots does not require application
changes (unless the application is reliant on the underlying locking behavior); it does
require administration changes – the option must be activated per database. Enabling a
database to allow snapshot isolation requires both administrative planning and possibly
application planning. In both cases, the snapshot option is enabled at the database
level and in all cases row versioning data is stored within memory (for short lived
versions) and TempDB.

Note that as with other database-level settings both snapshot isolation settings can be
made on the Model system database; these settings are then propagated when
databases are created – Model acts as a template that is applied at create time – this is
useful if you wish to create a set of standard database settings at it saves you from the
administration task of connecting & updating each database in turn.

Definitions, Terminology and Syntax
To implement snapshot isolation in SQL Server 2005 you must be familiar with a few
new concepts, terms and syntax. In previous releases Isolation Level was controlled
solely by a session setting (SET TRANSACTION ISOLATION LEVEL, or the equivalent
settings on the ADO or ADO.NET call) or by a query hint (FROM tablename WITH
(isolation hint)).

In SQL Server 2005, one of the two supported database options must already be set
(and not pending) in order to use the snapshot isolation. If snapshot isolation is

 23

requested and the database is not yet ready to handle snapshots (i.e. still pending)
then the statement requesting snapshot will fail. It is important to make changes at the
appropriate time when changing back and forth – as well as understand the state of the
database and client requests at the time of the change.

In order to use row versioning, you must first determine which isolation level is
required for your application. SQL Server 2005 supports two types of snapshot
isolation: statement-level snapshot and transaction-level snapshot.

Read Committed with snapshots (Statement-
level Snapshot)

When set, statement-level snapshot guarantees that each statement under read-
committed isolation sees only committed changes which occurred before the start of the
statement. Each new statement within the transaction picks up the most recent
committed changes. The version “refresh” occurs at the beginning of each SELECT
statement. In other words, this version of read committed is semantically similar in that
only committed changes are visible but the timing of when those changes committed
differs. Each statement sees the changes that were committed before the statement
began instead of when the resource is read. In other words, this is solely a new flavor
of read committed that is non-locking, non-blocking and creates a solid point in time for
which the data is accurate – accurate as of the start of the statement.

Statement-level snapshot is allowed by turning on the READ_COMMITTED_SNAPSHOT
database option. Once turned on no other application changes are necessary.

Syntax:

 ALTER DATABASE <databasename>

 SET READ_COMMITTED_SNAPSHOT ON

 WITH <termination>

Executing this statement requires single user session access to the database. Use the
ALTER DATABASE WITH <termination> options to end other user sessions in the
database and to rollback their incomplete transactions. Ideally, this change should be
made off hours and it is likely that this will be a permanent change. To see if a
database has this option set use the sys.databases system view.

Syntax:

SELECT sd.is_read_committed_snapshot_on

FROM sys.databases AS sd

WHERE sd.[name] = <databasename>

The value returned for is_read_committed_snapshot_on will return either true (1) or
false (0). When Read_committed_snapshot option is turned ON, read operations under
the read committed isolation level are based on snapshot scans and are executed in a

 24

non-locking, mode. When Read_committed_snapshot is turned OFF, the scans under
read committed isolation are executed in a short-term locking mode where locks are
only held for the life of the read request.

Snapshot Isolation
(Transaction-level Snapshot)

When set, transaction-level snapshot isolation guarantees – by default – that every
statement within a snapshot isolation transaction sees only committed changes which
occurred before the start of the transaction. Effectively, each statement in the
transaction sees the same set of data; while the data is available for modifications
outside of this transaction. The modifications are not prevented and this “snapshot”
transaction is unaware of the changes. The version “refresh” occurs only in the
beginning of each transaction as long as you run under transaction-level snapshot
semantics. If you override the transaction with the lock-based READ COMMITTED hint
then locks (and potentially blocking) will occur unless you also have the new Read
Committed Isolation turned on. If the new Read Committed with snapshots Isolation is
in effect you will use row-versioning to return data to the query – unless you override
that with the new READCOMMITTEDLOCK lock hint.

Note that DDL (Data Definition) changes to the database catalog can have immediate
impact on transactions running under Snapshot isolation.

To achieve transaction-level snapshots there are two changes required. First the
database must allow it by turning on the ALLOW_SNAPSHOT_ISOLATION database
option. Second, the application/user must explicitly request a snapshot transaction.

Allowing Snapshot Isolation
Administrators must set a database option to allow snapshot isolation. This database
option may not take effect immediately; however, it can be changed while users are
connected to the database. If users are currently processing transactions when the
state change is made, all transactions must complete before snapshot transactions can
occur (because row versions have not been maintained for those transactions currently
executing).

If changing the state is taking a lot of time and transactions attempt a snapshot
transaction while the database is still “pending” then they will receive an error. If there
are long running transactions executing at the time of the change, then the change to a
versioning state can take a long time to complete. The DBA can cancel the request and
if cancelled, the versioning state is rolled back to the prior versioned (or non-versioned)
state. To request snapshot isolation for the database, change the database state using
ALTER DATABASE:

Syntax:

 ALTER DATABASE <databasename>

 SET ALLOW_SNAPSHOT_ISOLATION ON

 25

To see if the option has taken effect you can check the sys.databases system view.
There are two columns which may be of interest: snapshot_isolation_state and
sd.snapshot_isolation_state_desc. The snapshot_isolation_state returns a tinyint value
between 0 and 3:

0 = Snapshot-Isolation is Off

1 = Snapshot-Isolation is On

2 = Snapshot-Isolation state is in transition to Off state

3 = Snapshot-Isolation state is in transition to On state

The snapshot_isolation_state_desc returns an nvarchar(60) which is a character
description of this pending state:

OFF = Snapshot-Isolation is Off

ON = Snapshot-Isolation is On

IN_TRANSITION_TO_OFF = Snapshot-Isolation state is in transition to Off state

IN_TRANSITION_TO_ON = Snapshot-Isolation state is in transition to On state

Syntax:

SELECT sd.snapshot_isolation_state

 , sd.snapshot_isolation_state_desc

FROM sys.databases AS sd

WHERE sd.[name] = <databasename>

Snapshot
Isolation state

Description

OFF Snapshot isolation state is disabled in the database. In
other words, transactions with Snapshot based Isolations
levels are not allowed. Database versioning state is initially
set to OFF during restart recovery (a new SQL Server 2005
feature is that the database is made available after the
REDO phase of recovery). If versioning is enabled, then
after recovery completes the versioning state is set to ON.

PENDING_ON In the process of enabling snapshot isolation state. It waits
for the completion of all update transactions which are
active when ALTER DATABASE command was issued. New
update transactions in this database start paying the cost
of versioning by generating record versions. Transactions
under snapshot isolation can not start.

ON Snapshot isolation state is enabled. New snapshot
transactions can start in this database.

Existing snapshot transactions (in another snapshot
enabled database) which start before versioning state is
turned ON can not do a snapshot scan in this database,
because the snapshot those transactions are interested in

 26

cannot be properly generated by the update transactions.

PENDING_OFF In the process of disabling snapshot isolation state. Unable
to start new snapshot transactions. Update transactions
still pay the cost of versioning in this database. Existing
snapshot transactions can still do snapshot scans.
PENDING_OFF does not become OFF until all existing
transactions finish.

If the database option is taking a long time to move out of the pending state you can
use the following function to return a virtual table showing the transactions that are
active and blocking the database state change.

Syntax:

SELECT stx.spid

 , atx.[name]

 , stx.transaction_sequence_num

 , stx.first_snapshot_sequence_num

 , stx.commit_sequence_num

FROM sys.dm_tran_active_transactions AS atx

INNER JOIN sys.dm_tran_active_snapshot_database_transactions() AS stx

ON atx.tran_id = stx.transaction_id

Requesting Snapshot Transactions
As mentioned above, once the database has been enabled for Snapshot Isolation
developers and users must then request that their transactions run in this snapshot
mode. This must be done before beginning a transaction, either by a client side
directive on the ADO.NET transaction object or within their Transact-SQL query.

Syntax:

 SET TRANSACTION ISOLATION LEVEL SNAPSHOT

If users execute this session setting change before the database has completed this
change, the user’s transaction will fail with error 3959: Transaction failed in database
<databasename> because an ALTER DATABASE command which enables snapshot
isolation is not finished yet. Wait until the command is finished.

Understanding the “Beginning” of a Transaction
Versioning is performed for all updates when the database allows snapshot; however,
the version which a transaction will use is based on the first statement which accesses

 27

data – not the BEGIN TRAN that creates the transaction. However if the transaction
isolation level is being set to use Snapshot Isolation this must be done before any
transaction is created (with a BEGIN TRAN or ADO.NET equivalent), otherwise the
following error message will result:

Msg 3951, Level 16, State 1, Line 7
Transaction failed in database 'Optimistic' because the statement used snapshot isolation
but the transaction did not start in snapshot isolation.

To resolve this error message relocate the isolation specification before the transaction
is created.

Syntax:

SET TRANSACTION ISOLATION LEVEL SNAPSHOT

BEGIN TRAN

 SELECT getdate() -- (T1) transaction has not “officially begun”

 SELECT * FROM <tablename> -- (T2) transaction t has begun

 SELECT... -- will see all committed changes as of (t)

 SELECT... -- will see all committed changes as of (t)

COMMIT TRAN

Combining Read-Committed and Snapshot
Isolation

Transaction Without
Snapshot
based
Isolations
levels
(locking)

Read
Committed
with
snapshots
(non-locking)

Snapshot
Isolation

Database
set to
support
both Read
Committed
with
snapshots
and
Snapshot
Isolation

BEGIN TRAN

SELECT *
FROM t1

Lock (Data is
locked as it is
accessed)
Can see
committed
changes
occurring
while the

Committed
version of the
rows –
committed
before the
statement
began. Non-
locking, non-

Committed
version of the
rows –
committed
before the
transaction.
Non-locking,
non-blocking.

Committed
version of the
rows –
committed
before the
transaction
began. Non-
locking, non-

 28

statement is
executing.
Locks
released after
the resource
is read.

blocking. blocking.

SELECT *
FROM t1 WITH
(NOLOCK) OR
(READUNCOMMITTED)

Uncommitted
data can be
accessed.

Uncommitted
data can be
accessed.

Uncommitted
data can be
accessed.

Uncommitted
data can be
accessed.

SELECT *
FROM t1 WITH
(READCOMMITTED)

Lock (Data is
locked as it is
accessed.
Can see
committed
changes
occurring
while the
statement is
executing.
Locks
released after
the resource
is read.

Committed
version of the
rows –
committed
before the
statement
began. Non-
locking, non-
blocking.

Lock (Data is
locked as it is
accessed.
Can see
committed
changes
occurring
while the
statement is
executing.
Locks
released after
the resource
is read.

Committed
version of the
rows –
committed
before the
statement
began. Non-
locking, non-
blocking.

SELECT *
FROM t1 WITH
(REPEATABLEREAD)

Data
accessed is
locked until
the end of
the
transaction.
Data cannot
be modified
by other
transactions.

Data accessed
is locked until
the end of the
transaction.
Data cannot
be modified
by other
transactions.

Data
accessed is
locked until
the end of
the
transaction.
Data cannot
be modified
by other
transactions.

Data accessed
is locked until
the end of the
transaction.
Data cannot
be modified
by other
transactions.

SELECT *
FROM t1 WITH
(SERIALIZABLE)

Datasets
accessed are
locked until
the end of
the
transaction.
Data cannot
be modified
or added to
the set by
other
transactions.

Datasets
accessed are
locked until
the end of the
transaction.
Data cannot
be modified or
added to the
set by other
transactions.

Datasets
accessed are
locked until
the end of
the
transaction.
Data cannot
be modified
or added to
the set by
other
transactions.

Datasets
accessed are
locked until
the end of the
transaction.
Data cannot
be modified or
added to the
set by other
transactions.

COMMIT TRAN

 29

Understanding Row Versioning
Versioning effectively starts with a copy-on-write mechanism which is invoked when a
row is modified or deleted. This requires that while the transaction is running the old
version of the row must be available for transactions which require an earlier
transactionally consistent state. Snapshot transactions can effectively “view” the
consistent version of the data from these previous row-versions. Row versions are
stored within the version store which is housed within the TempDB database.

More specifically, when a record in a table or index is modified, the new record is
stamped with the “sequence_number” of the transaction that is performing the
modification. The old version of the record is copied to the version store, and the new
record contains a pointer to the old record in the version store. If multiple long running
transactions exist and multiple “versions” are required, records in the version store may
contain pointers to even earlier versions of the row. All the earlier versions of a
particular record are chained in a linked list, and in the case of long running snapshot
transactions, the link will need to be traversed on each access so as to reach the
transactionally consistent version of the row. Version records need to be kept in the
version store only as long as there are snapshot queries that might be interested in
them; this length of time depends primarily on whether or not the snapshot is
statement-based or transaction-based.

Row Versioning in Read Committed with
snapshots

For selects running under Read Committed with snapshots Isolation, the need of a
particular row version ends when there are no queries running which reference the row.
In other words the particular row version is not needed once ALL SELECTs that started
before or during the transaction that modified the row have completed. Any SELECT
which started after or during the row modification’s transaction will require the row
version to stay active in the version stored. However, once ALL of the SELECTs
complete the row version can be removed. The version store under Read Committed
with snapshots should not grow as large or be as difficult to predict as the size will be
self-maintained by the frequent invalidation of a previous row version. However, this
does depend solely upon the execution time of the statement.

Row Versioning in Snapshot Isolation
For queries running under snapshot isolation, the row versions need to be kept until the
end of the transaction. Since a transaction may span multiple statements and a
potentially longer period of time; the version store will need to potentially
accommodate multiple versions of a row for a potentially longer period of time.

In the following figure, the current version of the record is generated by transaction T3,
and it is stored in the normal data page. The previous versions of the record, generated
by transaction T2 and transaction T1 are stored in pages in the version store as there

 30

are still transaction running under Snapshot isolation accessing the previous state of
the data.

Using row-versioning will slow the update performance because of the extra work
involved in keeping old versions; however, in the case when contention was costly you
may see improved performance in the reduction in contention. Additionally, snapshot
statements and transactions (a.k.a. version readers) have the extra cost of traversing
the version link pointers. If many snapshot transactions exist and are long running
transactions – a larger and faster TempDB may be necessary and performance may
degrade if TempDB is not configured properly.

DDL Statements within Snapshot Isolation
Certain data definition language statements which modify the structure of an object will
be disallowed as their changes cannot be seen through row versioning. Take for
example a snapshot transaction which has read table1 and found 6 rows:

Syntax:

SET TRANSACTION ISOLATION LEVEL SNAPSHOT

BEGIN TRAN

 SELECT count(*) FROM <tablename> -- (Returns 6 rows)

…

A second transaction adds rows to this table – which under snapshot are NOT visible to
this transaction. If this transaction were allowed to execute a CREATE INDEX statement
then how would this work? Would the index be created on the snapshot view of the
data or would it include all rows – as create index normally would? And if they chose
the first – how would they reconcile the changes which are occurring simultaneously
with the DDL? Even worse, what if multiple snapshots were creating additional
indexes… Instead, CREATE INDEX is disallowed within a snapshot transaction. In fact,
numerous DDL statements are disallowed as they violate the concept of “snapshot” and
must be invoked against the actual base object – not a “version” of it.

Current Row (col1 = 1, col2 = 11)
created by Transaction T3

Previous Version Row (col1 = 1, col2 = 9)
 created by transaction T2

Previous Version Row (col1 = 1, col2 = 5)
created by transaction T1

Figure 3: Versions of a Row

 31

Note that these restrictions do not apply to Read Committed with snapshots –
DDL statements (or data access queries) will queue and not fail.

DDL Statements NOT Allowed within Snapshot
Isolation

Certain statements are not allowed within a transaction running under Snapshot
Isolation because of their disruptive potential on the snapshot copies of the data:

• CREATE INDEX

• CREATE XML INDEX

• ALTER INDEX

• ALTER TABLE

• DBCC DBREINDEX

• ALTER PARTITION FUNCTION

• ALTER PARTITION SCHEME

• DROP INDEX

• CLR DDL

An attempt to run one of these commands will result in a severity level 16 message
such as:

Msg 3964, Level 16, State 1, Line 1

Transaction failed because the statement is not allowed in snapshot

transaction.

Other DDL statements not listed here, for example CREATE TABLE, are allowed as other
transactions could not have been viewing prior versions of the data as it is a new
object. This does not violate the rules listed above.

Other DDL Statements Changes after Snapshot
Isolation Started

In most production databases the schema is relatively stable. However, changes may
need to be made. If the system is highly available and user activity will occur
concurrently with schema changes, programmers should be prepared for errors results
from these changes. Since row versioning only exists for data rows – not metadata, one
way of keeping the view consistent for the databases is to block all DDL in the server
instance while a snapshot transaction is running. This would be too restrictive because
a long running snapshot transaction would prevent a DBA from performing any DDL in a
database for potentially a lengthy time. Instead, the DDL is supported while snapshot
transactions are running yet the snapshot transaction may encounter failure if they try
to access the objects changed since the start of the snapshot transaction. A timeline
(time is from left to right) is shown below:

 32

T1 |--- Snapshot transaction ------------------------ Use object (fail) -----------|

T2 |---DDL, change the object ---commit --|

The application programmer should put in retry logic for snapshot transactions to deal
with this kind of error and administrators should attempt to minimize DDL changes
during highly active times of day.

Snapshot Transaction Failure due to DDL Changes
outside of the transaction

Not all DDL changes will cause a snapshot transaction to fail. Use the table below to see
the likely impact of DDL changes taking place while snapshot transactions are running.
It is important to realize that stable schemas will avoid transaction failure when using
snapshot.

Note that this behavior is expected because the system catalogs are not covered by the
snapshot scheme – if they were then for example the system would potentially have to
maintain multiple copies of an index (and the accompanying data) – which would incur
large overhead, perhaps inadvertently.

DDL Changes outside of the
Snapshot Transaction

The Snapshot Transaction
will Fail when:

• CREATE TABLE

• ALTER TABLE
* Including column change, type change,
XML type binding change, constraint
change, etc.

• DROP TABLE

The snapshot transaction attempts
to use the table AFTER the
modification has occurred.

A sample error message:
Msg 3961, Level 16, State 1, Line 1

Transaction failed in database
'Optimistic' because data needed by
the statement has been modified by
a DDL statement in another
transaction since the start of this
transaction. It may help to retry the
transaction.

• CREATE STATISTICS

• UPDATE STATISTICS

• DROP STATISTICS

Allowed – these statements are not
impacted by the Snapshot Isolation
or Read Committed with snapshots
settings

• CREATE INDEX

• ALTER INDEX

• DROP INDEX

Includes all index types (clustered, non-
clustered, XML Indexes, Fulltext Indexes, etc.)

The snapshot transaction attempts
to use the table or view AFTER the
modification has occurred to one of
the table’s associated index(es).

• CREATE TYPE The snapshot transaction attempts

 33

• DROP TYPE to use the type AFTER the type
modification has occurred.

• CREATE PROC/FUNCTION/VIEW

• ALTER PROC/FUNCTION/VIEW

• DROP PROC/FUNCTION/VIEW

Includes both TSQL and CLR procedures and
functions, including User-Defined Aggregate
Functions.

The snapshot transaction attempts
to use the procedure, function or
view AFTER the modification has
occurred.

• CREATE TRIGGER

• ALTER TRIGGER

• DROP TRIGGER

Includes both TSQL and CLR triggers

The snapshot transaction attempts
to use the table AFTER the change
has occurred.

• sp_addextendedproc

• sp_dropextendedproc

Refers to extended stored procedures

The snapshot transaction attempts
to use the procedure AFTER the
modification has occurred.

• CREATE DEFAULT/RULE

• DROP DEFAULT/RULE

• sp_bindefault/sp_bindrule

• sp_unbindefault/sp_unbindrule

The snapshot transaction attempts
to use the table AFTER the change
has occurred.

• CREATE SCHEMA

• ALTER SCHEMA

• DROP SCHEMA

Includes XML Schema commands

The snapshot transaction attempts
to use the table AFTER the change
has occurred.

• CREATE ASSEMBLY

• ALTER ASSEMBLY

• DROP ASSEMBLY

The snapshot transaction attempts
to use the assembly AFTER the
assembly modification has
occurred.

• CREATE PARTITION SCHEME/FUNCTION

• ALTER PARTITION SCHEME/FUNCTION

• DROP PARTITION SCHEME/FUNCTION

Includes data spaces

The snapshot transaction attempts
to use the partition function or
scheme.

Start full text crawl on table The snapshot transaction attempts
to use the table AFTER the change
has occurred.

Change Full Text Catalog The snapshot transaction attempts
DDL on the catalog AFTER the
change has occurred.

CREATE EXTENDED TRIGGER ON DB FOR DDL The snapshot transaction DDL
which must check if there is
extended trigger defined.

 34

• CREATE SERVICE

• ALTER SERVICE

• DROP SERVICE

The snapshot transaction attempts
to use the service AFTER the
change has occurred.

Development Best Practices
It is expected that the system’s DBA will perform due diligence in terms of system and
application impact prior to activating either of the optimistic transaction isolation
schemes – this leaves the developer with the responsibility of understanding how to
exploit the new isolation level behavior to build better applications. The new capabilities
of SQL Server 2005 present the developer with a new toolkit and understanding when
and how to use these new tools is important if the resulting application is to perform as
expected. The scenarios documented earlier illustrated some configurations where the
new isolation levels would make sense, this section looks a bit more deeply at how the
developer can make use of the new functionality.

Read Committed Snapshot
SQL Server 2005 provides a non-blocking Read Committed transaction isolation level
based on statement level row versioning – this option must be enabled by the DBA and
does not require any application level changes to exploit. If this option is enabled then
transactions running under the default Read Committed isolation level (referred to as
Read Committed with snapshots in this paper) do not acquire read locks as they read
data, instead the version store is used to isolate the transaction from changes taking
place as the read operation executes. This protection is at the statement level – if the
application runs two select statements within the same read committed transaction the
results can differ if data changes have been committed between the two statements, as
they can with the traditional Read Committed with locks isolation level.

This behavior is a powerful tool for developers as it enables the application to consume
more data without leading to increased blocking as readers compete with writers for
data. It is common to see statements such as:

 SELECT COUNT(Orders) FROM sales.dbo.orders WITH(NOLOCK)

In this query the NOLOCK (Read Uncommitted) hint is required to stop the read locks
that would normally be taken by this query from blocking the taking of new orders –
however it has the side-effect of returning uncommitted orders, possibly leading to an
inaccurate total (as the uncommitted orders may never be committed to the database).
Using the new behavior of Read Committed with snapshots the query can be run
without the lock hint and an accurate view of committed data can be obtained without
blocking online updaters. This is even more advantageous when performing a more
complex query involving several joins as a stable view of the database is provided to
the statement, avoiding anomalies in the results caused by late arrival of parent or child
records, with data picked up by the NOLOCK hint.

Some applications, especially those which implement queues in tables, may require the
old blocking behavior – in this case the locking hint READCOMMITTEDLOCK should be
used.

 35

 SELECT TOP 1 NextOrderID FROM sales.dbo.orders
WITH(READCOMMITTEDLOCK) WHERE OrderStatus = N’Unprocessed’

In this query the SELECT statement will be blocked until update statements commit or
rollback – so the order will not be picked up until it is committed.

As stated earlier in this section, the new Read Committed with snapshots behavior
functions only at the statement level even when used within a multi-step transaction –
this has another advantage in that the update conflicts that are possible with the
Snapshot isolation level cannot happen with Read Committed with snapshots, and
hence as a developer, there is no need to add additional logic to handle potential
conflicts, allowing the new behavior to be activated without application change.

Read Committed should be the first choice when implementing a transaction that
includes multiple select statements that do not require (as a group) a uniform,
consistent view of the database.

Snapshot Isolation
Sometimes having a uniform, consistent view of a database over multiple select
statements within a transaction is important. Examples abound in read-only
applications such as financial and human resources reporting where it is important that
totals, sub-totals and check-sums be consistent despite the fact that they can be
calculated over several selects, and sometimes over several minutes – if the system
dictates a uniform view for a longer period then another tool, not discussed here, is the
database snapshot. If the data changes whilst the transaction is running it is possible
that spurious data quality issues will arise as minor discrepancies creep into reports.

Developers who are building read-only systems that run multiple data aggregation and
sorting reports against a database that is constantly changing should consider Snapshot
Isolation if a consistent view of the data is required and if their DBA has determined
that database server capacity allows for the slight increase in database i/o – this class
of application can be built either against the primary system or against a replica system
built using SQL Server 2005 transactional replication. Snapshot Isolation will prevent
the data writers (either other users or the replication distributor process) from being
blocked by long-running read locks taken by the reporting application.

Outside of reports that require consistent data across queries in the same transaction
there are other examples where the developer might want to use Snapshot Isolation –
when filling data-driven dialog elements that are interrelated (again to avoid
inconsistencies between pull-down lists, and other array controls); or in DBA-centered
live system status dialogs where system statistics are being correlated from data stored
across the database.

Snapshot Isolation development gets interesting when the application must perform
updates against the data read within the transaction. This is because the transactionally
consistent view of the database, as of the start of the transaction, necessarily masks
any conflicting updates – they are only discovered when the update is sent to the
database and a conflict error is raised.

 36

The screenshot shows the SqlException that results from the conflict – best practice
dictates that the application intercept this exception and take corrective action as in any
optimistic locking application.

This side-effect of
optimistic
concurrency control
(the application was
optimistic that no
other application
users would update
the same data)
means that the
developer must do a
little extra work to

ensure that their user’s data is not lost. Much of this logic will already exist in systems
that “disconnect” their data from the database, probably based on the row-level
incrementing timestamp value, to provide optimistic concurrency control. If this logic
already exists in your application then Read Committed Snapshot may be a better
choice to eliminate the blocking in the data population phase and to maintain conflict
detection without the need to maintain an active transaction in the database – it
remains best practice to get in and out of the database as quickly as you can to avoid
tying up resources, in this case the version store.

Snapshot Isolation provides an automatic mechanism for detecting conflicts within a
transaction that avoids the need to add timestamp columns or to make other schema
changes – if a conflict is detected when the update is sent to the database then a
SqlException is thrown and the current transaction is aborted.

Consider the Visual C# 2005 code fragments below (note that best practice dictates
that try/catch logic would normally be wrapped around the (missing) connection Open
and around the Fill command, which is where the transaction is initiated):

// (Definition of a SqlConnection object skipped)

// Define a transaction object using the Snapshot Isolation Level.
SqlTransaction DT = sqlCon.BeginTransaction(IsolationLevel.Snapshot);

// Hook up Select & Update command handlers to the dataadapter
// Use the Snapshot transaction “DT”
SqlCommand selectCMD = new SqlCommand();
selectCMD.Connection = sqlCon;
selectCMD.Transaction = DT;
selectCMD.CommandText = "select MessageNo, MessageText " +
 " from dbo.DialogText";
sqlDataAdapter1.SelectCommand = selectCMD;

SqlCommand updateCMD = new SqlCommand();
updateCMD.Connection = sqlCon;
updateCMD.Transaction = DT;

 37

updateCMD.CommandText = "update dbo.DialogText " +
 "set MessageText = @MessageText " +
 "where MessageNo = @MessageNo";
updateCMD.Parameters.Add("@MessageText",
 SqlDbType.NVarChar,
 15, "MessageText");
updateCMD.Parameters.Add("@MessageNo",
 SqlDbType.SmallInt,
 2, "MessageNo");

sqlDataAdapter1.UpdateCommand = updateCMD;
// Now get the data
sqlDataAdapter1.Fill(dataSet1, "DialogText");

The Visual C# code above uses ADO.NET and the Sql Client to populate a dataset with
data from a SQL Server 2005 that has had Snapshot Isolation enabled by the DBA. A
normal Windows Forms application would now commit the transaction, disconnect from
the database and present the data to the user. In the code above we have left the
transaction open so as to allow another transaction to change the data read into the
dataset1 dataset.

The code below illustrates the return of the data to the database:

// Bind the data to the form’s grid control
dataGridView1.DataSource = dataSet1;
dataGridView1.DataMember = "DialogText";
dataGridView1.AutoGenerateColumns = true;

// ...Time passes, conflicting changes take place

// User presses “update now” button:

try
{

sqlDataAdapter1.Update(dataSet1, "DialogText");
 dialogTrans.Commit();
 dataSet1.AcceptChanges();
}
catch (SqlException h)
{
 string errorMessages = "";
 for (int i = 0; i < h.Errors.Count; i++)
 {
 errorMessages += "Index #" + i + "\n" +
 "Message: " + h.Errors[i].Message + "\n" +
 "ErrorNumber: " + h.Errors[i].Number + "\n" +
 "LineNumber: " + h.Errors[i].LineNumber + "\n" +
 "Source: " + h.Errors[i].Source + "\n" +
 "Procedure: " + h.Errors[i].Procedure + "\n";
 }
 if (dialogTrans.Connection != null)
 {
 dialogTrans.Rollback();
 }

 38

 MessageBox.Show(errorMessages, "Conflict Errors");

}
catch (Exception i)
{
// for general exceptions make sure the transaction is rolled back
 dialogTrans.Rollback();
}

In the second snippet the dataset object is bound to a grid control on the form, where
the user is free to make multiple updates to the data – in parallel other transactions
have made conflicting changes. When the user requests that their changes be stored to
the database the dataset’s changes are sent through the sqlDataAdapter as a series of
database update statements – the first update statement that detects a conflict will
cause an exception to be fired that rolls back the work, if no exception is fired then the
transaction is explicitly committed by the dialogTrans.Commit() statement.

The exception handler above catches the SqlException thrown and formats an error
message (see dialog screenshot above) which could be sent to an application log - the
conflict can be explicitly tested as SqlException.Errors[i].Number, where 3960 is the
error number – note that best practice dictates that the whole error collection be
checked in case of other, more severe errors.

Note also that the SqlException handler tests the dialogTrans SqlTransaction object to
see if it is still active (i.e. it has a connection to the database) – if it is active it is rolled
back to ensure transactional consistency. If you attempt to commit/rollback an inactive
object you will see a SystemException indicating a COM+ exception code of
0xE0434F49 (-532459699) with text “This SqlTransaction has completed; it is no longer
usable”

Once the conflict is detected the application should inform the user that their changes
have been rejected and offer them the opportunity to resubmit their changes under a
new transaction.

Conflict detection, resultant transaction rollback and then the need to resubmit the
work illustrates a decision facing the developer – if the optimistic concurrency control
mechanism is too optimistic, and data conflicts occur frequently, then pessimistic
concurrency control may be a better choice. You must balance the blocking caused by
lock contention versus the additional work caused by a transaction rollback when
deciding which method of transaction isolation to deploy within your application.

 39

Minimizing Update Conflicts
Applications designed to work under optimistic concurrency must invest in conflict
avoidance techniques – although they can be handled it is bets to avoid the cost of
transaction rollback & retry if possible. There are two main methods to reduce the risk
of a conflict:

- Application design: when gating access to shared resources it is possible
to “reserve” them for the updating application, the concurrency of the
individual data item is reduced (others cannot access it whilst it is
reserved) but the overall system concurrency is not impacted – examples
of this technique are seen in online ticket booking applications.

- Index design: ensure that modified rows are uniquely identifiable by
ensuring appropriate indexes are used in the access path of update
queries.

Illustrating Optimistic Concurrency Behavior
The table below uses the simple Customers/Orders/Items schema to illustrate the
behavior of the two, new optimistic concurrency isolation levels and both the default
Read Committed with locking and Read Uncommitted.

Two client sessions are required:

- Updater sets up the sample schema and inserts/updates data

- Reader runs under the four isolation levels to illustrate their behavior

The simple schema is recreated at the start of each run by deletion and re-creation of
the database note that to drop a database requires that no sessions can be active in the
database that is being dropped (including that of the dropping session).

READ COMMITTED with locking

Updater Session Reader Session

- Connect to the SQL Server 2005 Beta2
Instance using SQL Management Studio
- Load the PessimisticSetup.sql script

- If required drop the [Pessimistic]
database

- Execute the PessimisticSetup.sql script to
create the [Pessimistic] database and
populate a small sample schema

<disconnected>

 40

READ COMMITTED with locking

Updater Session Reader Session

 - Open another query window in SQL
Management Studio and connect to the
Yukon Beta2 Instance

- Load the PessimisticReader.sql script and
ensure that the SET TRANSACTION
ISOLATION LEVEL READ COMMITTED
statement is not commented out, and that
the SET TRANSACTION ISOLATION LEVEL
READ UNCOMMITTED is commented out.

- Execute the PessimisticReader script
The script will connect to the [Pessimistic]
database and execute the three queries,
each returning data as created in the
setup script

Note that the lock_wait session option is
set to zero so as to report lock conflicts
immediately without blocking

- Load the PessimisticUpdater.sql script

- Select & execute statement block 1

This will lock records in the OrderHeaders
table as the explicit transaction is left
active

 - Execute the PessimisticReader script

This time the first & third SELECT queries
will fail as their data is locked (without the
zero lock_wait the query would have hung
until either the update completed or the
lock wait timeout was reached. You should
see a message:
Msg 1222, Level 16, State 51, Line 8
Lock request time out period exceeded.

If you select the Results tab you will see
that the second query completed
successfully.

Why did the second query work?

If you look at the execution plans for the
three SELECT statements you’ll see that
the second seeks into the OrderHeaders
table based on values in the OrderDetail
table, thus avoiding the locked row as it
has no corresponding OrderDetails row(s).
(To display the execution plans in SQL
Management Studio, highlight the three
SELECT statements and press <ctrl>L)

 41

READ COMMITTED with locking

Updater Session Reader Session

- Select & execute statement block 2

This will rollback the changes made by the
insert statement

- Select & execute statement block 3

This will lock rows in both the
OrderHeaders & OrderDetails tables

 - Execute the PessimisticReader script

This time all three SELECT queries will fail
as each one’s data is locked

- Select & execute statement block 4

This will rollback the changes made by the
previous insert statements

 - Execute the REPORT 1 Select statement
in the PessimisticReader script

This will run successfully and return the
base data entered when the schema was
created

- Select & execute statement block 5

This inserts & commits a new order

 - Execute the REPORT 2 & REPORT 3
Select statements in the PessimisticReader
script

These will run successfully and will return
the base data as well as the new order
(because it was committed) – this
behavior can cause issues in report suites
that expect constant data across multiple
select statements

How would you resolve this? (see the
discussion below for an answer)

Close this session Close this session

The sessions above illustrate the positive behaviors of Read Committed with locking:

- Committed updates are seen immediately

- Locks can be used to serialize access to data, short lock waits (known as
“blocking”) are usually acceptable to most systems

It also illustrated the potential negatives:

- Long lock waits can cause command timeout or lock timeout errors and
increase the risk of deadlocking (mutually exclusive lock requests)

 42

- Data can change while running a suite of queries that expect consistent
data.

There are a number of techniques available for mitigating the negative behavior of Read
Committed with locking:

- Make a read-only replica of the data for reporting purposes. In versions
of SQL Server prior to SQL Server 2005 this can be done with a one-off
backup/restore; and continuously with periodic log shipping or replication
(various techniques).

- Use Read Uncommitted to avoid lock waits (see next table)

- Use Repeatable Read/Serializable transaction isolation levels in a single
transaction that spans the report queries to avoid data changing in
between queries

- In SQL Server 2005 the previous techniques apply and there are new
options such as optimistic concurrency with Snapshot Isolation (across
several queries), Read Committed with snapshots (for a single query),
and database mirroring/viewpoints.

 43

READ UNCOMMITTED

Updater Session Reader Session

- Connect to the SQL Server 2005 Beta2
Instance using SQL Management Studio
- Load the PessimisticSetup.sql script

- If required drop the [Pessimistic]
database

- Execute the PessimisticSetup.sql script to
create the [Pessimistic] database and
populate a small sample schema

<disconnected>

 - Open another query window in SQL
Management Studio and connect to the
SQL Server 2005 Beta 2 Instance

- Load the PessimisticReader.sql script and
ensure that the SET TRANSACTION
ISOLATION LEVEL READ COMMITTED
statement is commented out, and that the
SET TRANSACTION ISOLATION LEVEL
READ UNCOMMITTED is not commented

-Execute the PessimisticReader.sql script,
the results should be same as when first
executed under Read Committed with
locking (above)

- Load the PessimisticUpdater.sql script

- Select & execute statement block 1

This will lock records in the OrderHeaders
table as the explicit transaction is left
active

 -Execute the PessimisticReader.sql script

This time all three queries complete
successfully, however notice the
discrepancy between the first and second
query caused by the first select reading
the uncommitted OrderHeader record that
is filtered out by the join in the second
query

This sort of anomaly can cause problems,
especially for systems that checksum
totals to ensure accuracy

 44

READ UNCOMMITTED

Updater Session Reader Session

- Select & execute statement block 2

This will rollback the changes made by the
insert statement

- Select & execute statement block 3

This will insert & lock rows in both the
OrderHeaders & OrderDetails tables

 - Execute the PessimisticReader script

This time no anomaly is obvious, however
if the addition of OrderDetail records
requires extensive validation, or a large
number of OrderDetail rows is being
inserted across multiple user dialogs; it is
possible that the report could contain
transient numbers, caused by partially
entered orders – the kind of side-effect
that gives DBA’s white hair as by the time
they investigate the anomaly the
transaction is completed and the data is
stable.

- Select & execute statement block 4

This will rollback the changes made by the
previous insert statements

 - Execute the REPORT 1 Select statement
in the PessimisticReader script

This will run successfully and return the
base data entered when the schema was
created

- Select & execute statement block 5

This inserts & commits a new order

 - Execute the REPORT 2 & REPORT 3
Select statements in the PessimisticReader
script

These will run successfully and will return
the base data as well as the new order
(because it was committed) – the Read
Uncommitted behavior is the same as
Read Committed with locking

Close this session Close this session

The use of Read Uncommitted is an effective way of obtaining quick results from the
database without blocking or being blocked by other users – this technique is

 45

recommended when data accuracy is not paramount and the use of transient data is
acceptable.

Where non-blocking access to accurate data within a single query or across several
queries is required, and offloading the query to a replica database is not possible or
desirable then SQL Server 2005 introduces two optimistic transaction isolation schemes
whose behavior is explored below:

READ COMMITTED with snapshots

Updater Session Reader Session

- Connect to the SQL Server 2005 Beta2
Instance using SQL Management Studio
- Load the OptimisticSetup.sql script

- If required drop the [Optimistic]
database

- Execute the OptimisticSetup.sql script to
create the [Optimistic] database and
populate a small sample schema

<disconnected>

 - Open another query window in SQL
Management Studio and connect to the
SQL Server 2005 Beta 2 Instance

- Load the OptimisticReader.sql script and
ensure that the SET TRANSACTION
ISOLATION LEVEL READ COMMITTED
statement is not commented out, and that
the SET TRANSACTION ISOLATION LEVEL
SNAPSHOT is commented out.

-Execute the OptimisticReader.sql script
The results should be same as those
returned by the PessimisticReader.sql
script when first executed under Read
Committed with locking (as above)

- Load the OptimisticUpdater.sql script

- Select & execute statement block 1 in
the OptimisticUpdater.sql script

This will lock records in the OrderHeaders
table as the explicit transaction is left
active

 46

READ COMMITTED with snapshots

Updater Session Reader Session

 - Execute the OptimisticReader.sql script
again

This time the script executes without lock
contention with the Updater session
resulting in a lock timeout – the snapshot
data allows the query to access the
original data and to produce a consistent
view of committed data

- Select & Execute statement block 2 in
the OptimisticUpdater.sql script

This will rollback the change made by the
insert statement

 - Execute the REPORT 1 Select statement
in the OptimisticReader script

This will run successfully and return the
base data entered when the schema was
created

- Select & Execute statement block 3 in
the OptimisticUpdater.sql script

This block inserts & commits a new order,
simulating online activity whilst a report
suite is running

 - Execute the REPORT 2 & REPORT 3
Select

As with the classic Read Committed with
locking behavior these queries will pick up
the data inserted by the Updater Session
and hence be out of synchronization with
the first report.

Close this session Close this session

The sessions above illustrate how the new Read Committed with snapshots behavior
can help when the system design requires a mix of update/long-running read activity –
by obtaining the original data for changes that are uncommitted the report writer can
obtain data:

- without blocking/being blocked by other users

- that is consistent within transaction boundaries

Unlike the Read Uncommitted behavior that will return data that may never be
committed to the database, and that can give inconsistent views of the database.

 47

The one negative behavior is that data is subject to change whilst the Reader Session
runs – this can impact a set of related queries that require a transactionally consistent
view of the database across statements. In pre-SQL Server 2005 versions of SQL
Server there were two isolation levels that delivered the consistent view:

- Repeatable Read – locks the data read within the transaction

- Serializable – locks the sets read within the transaction

Both of these isolation levels shape application concurrency, and hence are usually
unsuitable for scenarios where a mix of multiple, random data changes must be coupled
with long-running read transactions, especially when the impact of lock escalation (the
term given to the run time escalation of multiple granular locks into fewer, less granular
locks to conserve lock space) is taken into consideration.

Prior to SQL Server 2005 application designers would usually deliver the needed
consistency and concurrency by taking occasional snapshots of the data for reporting,
or by implementing some form of row timestamp/datetime versioning within the
application. This design pattern can be avoided by using the new Snapshot Isolation
behavior as illustrated below:

SNAPSHOT ISOLATION

Updater Session Reader Session

- Use SQL Server Management Studio to
connect to the SQL Server 2005 Beta2
Instance
- Load the OptimisticSetup.sql script

- If required drop the [Optimistic]
database

- Execute the OptimisticSetup.sql script to
create the [Optimistic] database and
populate a small sample schema

<disconnected>

 48

SNAPSHOT ISOLATION

Updater Session Reader Session

 - Connect to the SQL Server 2005 Beta 2
Instance

- Load the OptimisticReader.sql script and
ensure that the SET TRANSACTION
ISOLATION LEVEL SNAPSHOT is not
commented out, and that the SET
TRANSACTION ISOLATION LEVEL READ
COMMITTED statement is commented out

-Select & execute the statements up to
and including the REPORT 1 Select
statement

Remember that the Snapshot transaction
does not begin until data is accessed, if
the Select statement is not executed then
the transaction will have access to any
data committed between the BEGIN
TRANSACTION and the first query to
access data.

- Load the OptimisticUpdater.sql script,
connect to the [Optimistic] database and
select & execute statement block 3 to
insert a new order into the schema.

This new data should not be seen by the
Reader Session until its transaction
completes

 - Select & execute the REPORT 2 &
REPORT 3 Select statements in the
OptimisticReader.sql script

The output should not show the data
inserted by the Updater session – the data
is now consistent across the REPORT
Select statements, without blocking the
Updater session

- Select & execute the ROLLBACK
TRANSACTION statement to complete the
reporting transaction

- Execute the entire OptimisticReader.sql
script

This time the results should include the
data entered in the Updater session.

Close this session Close this session

 49

This final session illustrated the multi-statement behavior of a transaction running
under Snapshot Isolation – the results were consistent across Select statements even
though the Updater session had successfully committed new data. This consistency is
achieved without the potentially negative impact of Repeatable Read & Serializable.

Note that the same script was used to demonstrate the behavior of the new Read
Committed with snapshots isolation level, and included the same Begin & Rollback
Transaction statements, but because Read Committed applies at the statement level
there is no “memory” across statements.

The Snapshot Isolation level must be explicitly requested via a SET TRANSACTION
ISOLATION LEVEL statement, and then activated by both starting a transaction and
accessing data.

Administrative Best Practices
As an administration enabling Read-committed Isolation or snapshot isolation should be
decided with care as the impact on performance may be negative when used to solve
the wrong problems. If performance problems exist due to lack of proper indexing and
query performance suffers changing to row versioning probably won’t solve this
problem. If query performance suffers due to significant conflicts due to a mixed
workload of readers and writers then Read-committed Isolation (with snapshot) may be
all that is needed. If transactional consistency is needed for long running transactions
then snapshot may be needed however, each of these incrementally puts a heavier load
on TempDB.

Database-level Settings
Because snapshot isolation is configured at the database level, administrators need to
enable snapshot isolation for each database that requires it. If cross-database
transactions are attempted with snapshot isolation and not all databases are configured
for them; the transaction will fail unless a locking hint is used to override the default.

If all databases are configured for snapshot isolation, then cross-database transactions
will use a consistent snapshot across databases within one server instance. For
example, assume you have two tables in two databases that are enabled for snapshot
in the same server, and your update transactions make the same changes to these two
tables. Your transaction under snapshot isolation never gives you different values for
the two tables.

Upgrade Issues
While upgrading to SQL Server 2005 is dynamic and requires only internal changes to
support row versioning; however an extra 14 bytes per data row is required to store
versioning data irrespective of snapshot/read committed with snapshot being enabled –
this data is added when the row is updated and hence can lead to page splits (for tables

 50

with clustered indexes) or row forwarding for heaps; also changes will need to be made
to all text/image data to allow row versioning.

None of these changes are made during upgrade but are instead made during later data
row and text/image data modifications. It is important that Database Administrators
who manage systems with large LOB data columns are aware that, for upgraded
databases, the text/image columns will be modified dynamically to include versioning
changes when any part of the LOB data is changed. All the text/image pages belonging
to that particular text/image value will be changed. This operation can potentially be
very expensive for large values which extend over many pages (due to page
allocations, copying and logging). You will only pay this overhead when you modify the
text/image column value; there is no overhead if you only modify the parent data row.

Because text/image data modifications can be run in a minimally logged mode, DBAs
should determine if performing a separate and manual step as part of the upgrade to
SQL Server 2005 would be beneficial. The change of fragment size could cause a lot of
fragmentation to existing blobs when there are lots of random, small updates to only
pieces of the text/image values. While random, small, partial updates to blobs are not
the common type of text/image manipulation performed this overhead could be
potentially expensive (both in terms of time and logging) in a live system. DBAs need to
consider adding a step (during upgrade) which will modify all text/image data to have
this new format before going live with SQL Server 2005.

To perform this modification the general process of steps would be:

1. Upgrade the database to SQL Server 2005

o In place – In place upgrades are the easiest to perform as all components
are updated in one upgrade process

o Install SQL Server 2005 on a new server and then use backup/restore to
upgrade. SQL Server 2005 supports restoring SQL Server 2000
databases.

See the “Preparing to Upgrade to SQL Server 2005” topic in the BOL for
complete details about how to successfully upgrade from SQL Server 2000.

2. Verify and/or change the Recovery Model to either SIMPLE or BULK_LOGGED.
Simple is preferred as a full database backup will be performed upon
successfully completing this process.

3. Perform an update to all text/image data values (note that executing a
command such as:

UPDATE … SET a=a

will not actually update the text data, instead use a command sequence such
as:

DECLARE @ptrval binary(16)
DECLARE @dataval CHAR(1)
SELECT @ptrval = TEXTPTR(anytab.a) ,
 @dataval = SUBSTRING(anytab.a,1,1)

 51

 FROM dbo.anytable AS anytab
 WHERE anytab.primarykey = ‘unique value’
UPDATETEXT anytab.a @ptrval 0 0 @dataval
GO

To do this for all records in a table wrap the above set of commands in cursor
loop that iterates through all values in the table.

4. Change the Recovery Model back to the desired recovery model (i.e. Full
Recovery Model).

Version Store Usage of TempDB
The version store is maintained in TempDB (and memory - versions associated with
short running transactions, such as those found in OLTP workloads such as defined by
the TPC-C™ benchmarks may never be written to disk). Because of this sizing TempDB
is critical to the overall performance of the system and whether or not row versioning
will even be possible for some long-running transactions. For example, if the TempDB
runs low on space, performance will degrade as the version store attempts to cleanup.
The regular cleanup function is performed every minute in the background attempting
to reclaim all reusable space from the version store. When TempDB runs out of free
space, the regular cleanup function is called before auto-growth occurs. When the disk
is full and auto-grow cannot increase the file sizes, the version store is first truncated to
return space and then if space pressure continues row versioning is stopped. If a
snapshot query later encounters a record and wants to read an older version of the
record which was not generated due to space constraints, the query fails. Updates and
deletes don’t fail, only queries requesting their row versions fail because once the
version store fills updates/delete no longer generate row versions.

One alternative is to detect a long running snapshot query/transaction and terminate it.
By canceling the query you can help reduce the size of the version store. This can be
automated by associating a script with the event (Error number 3958) in TempDB. This
is a more desirable error behavior for most applications. Otherwise, users might have
many more transactions that fail due to out of space issues in the version store.

To ensure smooth running of a production system using snapshot isolation, the DBA
must allocate enough disk space for TempDB such that there is always roughly 10%
free space. When free space falls below 10%, system throughput will degrade as the
version cleanup process will spend more time trying to reclaim space in the version
store.

It is recommended that if IO performance in TempDB becomes an issue, the DBA
should create more than one file for TempDB on different disks to increase IO
bandwidth. In fact, on multiproc machines increasing the number of files to equal the
number of processors can often yield even greater gains. See Q328551: Concurrency
Enhancements for the Tempdb Database for more information.

 52

If any one application on a server creates unexpectedly large numbers of version store
entries it can impact other applications by physically filling the shared TempDB
database. Large numbers of versions, or long running transactions (not necessarily
running under Snapshot Isolation) that prevent version cleanup can lead to out of space
related problems.

Sizing TempDB
If only read committed isolation is required, sizing TempDB is not as critical as the row
versions are not likely to be held for long periods of time. However, long running
transactions – both readers as well as any writers – can cause problems when the
transactions are excessively long. However, if you are running in Snapshot Isolation
mode, the need for space in TempDB is increased. It is recommended that you use the
following formula to estimate the amount of space needed in TempDB for running
Snapshot Isolation queries.

To estimate how much space you need to have in TempDB, you need to first consider
that an active transaction must keep all its changes in the version store, so that a
snapshot transaction that starts later will be able to get to the old versions. In
addition, if there is an active snapshot transaction, then all the version store data
generated by previous transactions that are active when the snapshot starts must also
be maintained until the last snapshot transaction using them completes.

 Size of Version Store = 2(Version store data generated per minute *
Longest running time (minutes) of your transaction)

(Note that the 2* multiplier reflects the possibility of two long running transaction with
a slight overlap, thus leading to twice the longest running transaction time before the
snapshot records can be released)

Version store data generated per minute for the system on behalf of active transactions
can be compared to the log rows generated per minute – when sizing remember that a
log record will contain data changes and the snapshot the entire row. Using
Performance Monitor counters you can see the amount of version store data generated
per second. In your production system, you should consider monitoring these counters
in order to fine tune the size of TempDB.

Note that SQL Server 2005 online index build transactions are excluded from this
calculation. They do not directly affect the overall version store cleanup because their
processing is handled differently than user transaction version management.

If you have enough disk space, always allocate more than your estimate to prevent
potential space problems. When estimating size of TempDB, the DBA must also
consider the space requirements of DBCC CHECKDB, DBCC CHECKTABLE, index
building, query, and other activities.

 53

Monitoring Version Store Activity
There are a variety of ways to monitor version store activity – from functions which
access virtual tables to performance monitor counters to Profiler Events. Each one
offers a different perspective on the activity currently occurring on the system.

Function:
dm_tran_active_snapshot_database_transactions
():

This function returns a virtual table for all active transactions with a row version-
related sequence_number. Only transactions which are running under snapshot
isolation will include a sequence number. Read-only transactions in auto-commit mode
and system transactions will not appear in this virtual table.

The function returns these columns:

Column Name Type Description

transaction_id bigint A unique number given
for each transaction
started in the system.
Every transaction has
id.

transaction_sequence_num bigint A unique sequence
number indicating when
the transaction starts.
Transactions that do not
generate version
records, and do not use
snapshot scans do not
need transaction
sequence_number.

commit_sequence_num bigint A sequence number
indicating when the
transaction finishes
(commits or aborts). For
active transaction, the
value is NULL.

is_snapshot bit If the transaction is
snapshot transaction

Spid Int Process id of the
connection that started
this transaction.

first_snapshot_sequence_num Bigint When a snapshot

 54

transaction starts, it
takes a snapshot of all
active transactions at
the time. This is the
lowest
sequence_number of
the transactions in the
snapshot.

max_version_chain_traversed int Max length of version
chain traversed

average_version_chain_traversed int Average length of
version chain traversed

elapsed_time_seconds bigint The elapsed time in
seconds since the
transaction obtained the
sequence_number.

The table outputs data in the sequence of the "transaction_sequence_number" column.
This shows transactions based on start time and therefore also “elapsed_time
(seconds)” to help you determine transactions which are long running.

To find the 10 longest (i.e. earliest) transactions:

SELECT TOP 10 atx.transaction_id, atxs.[name]

FROM sys.dm_tran_active_snapshot_database_transactions() AS atx

INNER JOIN sys.dm_tran_active_transactions as atxs

 ON atx.transaction_id = atxs.tran_id

To find out the transaction that has traversed the longest version chains:

SELECT TOP 1 atx.*

FROM sys.dm_tran_active_snapshot_database_transactions() AS atx

ORDER BY atx.max_version_chain_traversed

Function: dm_tran_transactions_snapshot():
This function returns a virtual table for all active transactions with a row version-
related sequence_number. This function returns a virtual table for the
sequence_number of transactions that are active when each snapshot transaction
starts.

The function returns these columns:

Column Name Type Description

 55

transaction_sequence_num BIGINT sequence_number of a transaction, e.g.
‘X’

snapshot_id BIGINT Statement Id for each statement
started under read committed snapshot

snapshot_sequence_num BIGINT sequence_number of a transaction that
is active when transaction ‘X’ starts.

Example:

 T1: BEGIN TRAN T1

 T1: SELECT ... FROM ...

 T2: BEGIN TRAN T2

 T2: SELECT ... FROM ...

 T3: BEGIN TRAN T3

First, find out the transaction sequence information:

SELECT stx.transaction_sequence_num as N’sequence_number’

 , atx.[name]

 , stx.first_snapshot_sequence_num

 , stx.commit_sequence_num

FROM sys.dm_tran_active_snapshot_database_transactions() AS stx

INNER JOIN sys.dm_tran_active_transactions AS atx

ON stx.transaction_id=atx.tran_id

For T3 this returns:

sequence_number name first_snapshot_sequence_num commit_sequence_num

50 T1 0 NULL

52 T2 50 NULL

53 T3 50 NULL

Second, find out the snapshot transactions running:

SELECT txs.*

FROM sys.dm_tran_transactions_snapshot() AS txs

For T3 this returns:

transaction_sequence_number snapshot_sequence_number Snapshot_id

50 0 0

52 50 0

 56

53 50 0

53 52 0

What the result shows are that there are multiple snapshot transactions running and
the first one has a transaction sequence number of 50. Any updates at this sequence
number must stay in the version store until the transaction completes. Transaction T2
picks up where this one leaves off with a sequence number of 52. An additional
transaction starts (T3) and because there are two transactions with row versions
already T3 will have a dependency (in terms of order) on BOTH T1 and T2.

Performance Monitor Counters
The Windows 2003 Performance tool (System Monitor in Windows 2000) allows the DBA
to monitor a variety of system and SQL Server counters in a graphic interface, log the
performance counters in a performance log, analyze the performance log, and define
actions based on these events. There is also API so that DBA can develop their own
programs to access these counters and take proper actions.

The various counters present are as follows:

Counter Explanation

(1) Free Space in tempdb (KB) The free space in tempdb in KB.

The Version store is in tempdb, so the DBA has to
make sure that the tempdb has enough free space.
This is implemented by having a running count of free
extents in tempdb.

(2) Version Store Size(KB) The size of the version store in KB.

The DBA knows how much space in tempdb is being
utilized for the version store.

(3) Version Generation rate(KB/s) The version generation rate in KB per seconds.

(4) Version Cleanup rate(KB/s)

The version cleanup rate in KB per seconds.

With the information from the counters 3 and 4, the DBA can predict the size
requirement of TempDB and make space for it.

(5) Version Store unit count Number of version store units used in the Version
Store. This counter reflects the currently active version
unit count.

(6) Version Store unit creation Creation of new version store units in Version Store.
This counter represents the count since the instance
was started.

(7) Version Store unit truncation Truncation of version store units in Version Store. This
counter represents the count since the instance was
started.

 57

From counters 5, 6 and 7, the DBA would know from the active count & creation
count when a system has reached steady state. A high truncation rate can indicate
that TempDB is/was under space stress from other applications who are also using
TempDB, and could be a cue to the DBA to increase TempDB size.

(8) Update conflict ratio The fraction of update snapshot transactions that have
update conflicts to the total number of update
snapshot transactions.

The DBA would know how appropriate the snapshot
isolation transaction level is based on this percentage.
We note that a transaction can have multiple updates.
Here the measure is the number of transactions that
do updates and not the number of updates themselves.
The reason for not taking the number of updates as
the measure is that this would give a deceivingly low
figure. This is so because for an update conflict, the
numerator count gets incremented by one only with
other earlier updates in the transaction getting rolled
back; whereas in the case of a successful transaction,
the denominator count is incremented by the number
of updates in the transaction.

Note: This is a rate counter and gives the Update
conflict ratio for the last second.

(9) Longest Transaction Running
Time

The longest Running time of any transaction in
seconds.

The DBA can look at this and find out if any transaction
is running for unreasonably long time. To get more
information, the DBA can query the virtual table
dm_tran_active_transactions() to get the
transaction_id and spid. This table is sorted on the
column elapsed_time also giving the DBA the top-n
longest running time transactions with their
information.

(10) Transactions The total number of active transactions.

The number gives all the transactions that are active in
the system. It includes the background internal
transactions in SQL Server, but it does not include the
system transactions.

(11) Snapshot Transactions The total number of active snapshot transactions.

(12) Update Snapshot Transactions The total number of active snapshot transactions that
also include update statements.

(13) NonSnapshot Version
Transactions

The total number of active non-snapshot transactions
that generate version records.

This is from updates that have not requested
SNAPSHOT ISOLATION.

Since all snapshot transactions that do updates result in version generation, the

 58

total number of transactions that cause version generation is the sum of the
counters 12 and 13. Also from the counters 11 and 12 the DBA can figure out the
number of snapshot transactions that are read-only.

Thus from these counters, the DBA knows to what extent the versioning feature is
being used and also how it is being used.

All the above counters are server-wide and have been grouped together in a new
Performance Monitor Object called as “SQLServer: Transactions.”

For more information
Since snapshot isolation impacts both administration and development aspects of a
system it is important to make sure that all aspects are understood. If DBAs
unnecessarily allow snapshot isolation where long running transactions occur and
modifications are constant; users can experience problems committing changes if
TempDB is not sized appropriately. Additionally, if developers expect READ COMMITTED
Isolation to be set and it’s not then data inconsistencies may occur undetected. Make
sure to review all of the associate resources and participate in the beta newsgroups for
more information.

Books Online Topics
Understanding Snapshot Isolation

Adjusting Transaction Isolation Levels

Using Snapshot

Preparing to Upgrade to SQL Server 2005

Knowledge Base Articles of Interest
Q328551: Concurrency Enhancements for the TempDB Database

Additional Reading
Generalized Isolation Level Definitions:
http://research.microsoft.com/~adya/pubs/icde00.pdf

A Critique of ANSI SQL Isolation Levels:
http://research.microsoft.com/research/pubs/view.aspx?tr_id=5

 59

Newsgroups of Interest
Newsgroups for SQL Server 2005 can be found on the betanews.microsoft.com news
server. Information about your account login and password are associated with how you
received the beta of SQL Server 2005.

For specific questions and to previous customer questions, comments, etc. please see
the Microsoft.beta.yukon.relationalserver.general forum.

