
SQL Server
Performance Tuning
Using Wait Statistics:
A Beginner’s Guide
By Jonathan Kehayias
and Erin Stellato

SQL Server performance tuning using wait statistics: a beginner’s guide

2

Content

Introduction

The SQLOS scheduler and
thread scheduling

Using wait statistics for performance
tuning

Investigating active-but-blocked requests
using sys.dm_os_waiting_tasks

Analyzing historical wait statistics using
sys.dm_os_wait_stats

Common wait types

Wait statistics baselines

Summary

Further reading

About the authors

About the technical editor

3

4

8

9

12

17

30

40

41

42

44

SQL Server performance tuning using wait statistics: a beginner’s guide

3

Introduction

When a user application submits to SQL Server a request for data, the biggest

element of SQL Server’s total response time would, ideally, be the CPU

processing time. In other words, the time it takes the CPU to pull together the

required data, slice, dice, and sort it according to the query specifications and send

it back. However, in a busy database system, with hundreds or thousands of user

requests competing for the limited resources of the database server, there will be

times when a request is waiting to proceed, rather than actively processing. For

example, Session A’s request may be waiting for Session B to release a lock on a

resource to which it needs access.

Every time a request is forced to wait, SQL Server records the length of the wait,

and the cause of the wait, a.k.a. the wait type, which generally indicates the

resource on which the request was waiting. These are the wait statistics, and

SQL Server exposes them primarily through two Dynamic Management Views:

• sys.dm_os_wait_stats (or sys.dm_db_wait_stats on Windows Azure

SQL Database) – aggregated wait statistics for all wait types

• sys.dm_os_waiting_tasks – wait statistics for currently-executing requests

that are experiencing resource waits

The basis of performance tuning SQL Server using wait statistics is simply that we

interrogate these statistics to find out the primary reasons why requests are being

forced to wait, and focus our tuning efforts on relieving those bottlenecks.

SQL Server performance tuning using wait statistics: a beginner’s guide

4

The SQLOS scheduler and thread scheduling

In order to understand wait statistics in SQL Server, and how SQL Server measures wait
times, we need to delve a little into SQL Server’s scheduling model.

More on SQLOS

When you’re ready to dig deeper, Slava Oks’s, A new platform layer in SQL Server 2005, is
old but still serves as a good primer on SQLOS architecture. I also recommend highly Paul
Randal’s SQL Server Performance Troubleshooting Using Wait Statistics training course, (see
the Further reading section at the end, for more details).

When a user application requests a connection, SQL Server will authenticate the user and
then create for that connection a session, identified by a unique session_id. Within the
context of this connection and the associated session, the user application can submit
requests, such as queries to return data. As soon as the user submits a query, SQL Server
gets to work executing it.

SQL Server uses operating system threads, or worker threads, to perform the tasks
necessary to complete a given process. Some threads are dedicated (for example, there
is a dedicated thread to perform the CHECKPOINT process) but SQL Server maintains the
others in a thread pool and uses them to process user requests.

SQL Server does its own thread scheduling via a pseudo-operating system called the
SQLOS, which runs as a part of the SQL Server database engine, and also provides
memory management and other functions to SQL Server.

When SQL Server receives a user request, a SQLOS scheduler assigns it to a ‘parent’ task,
and the task to a worker thread. If SQL Server decides to parallelize a task, the assigned
parent task remains and the SQLOS creates new parallel sub-tasks to which it assigns
workers for the parallel-execution portion of the request (if we impose on a workload a
maximum degree of parallelism of one, SQL Server will still generate a parallel plan for
execution but only allow the parent task to execute the parallel operations in the plan).

http://blogs.msdn.com/b/slavao/archive/2005/07/20/441058.aspx
http://pluralsight.com/training/Courses/TableOfContents/sqlserver-waits

SQL Server performance tuning using wait statistics: a beginner’s guide

5

Normally, there is one SQLOS scheduler per CPU “core”. For example, a 16-core
processor has 16 physical CPU and so 16 schedulers. An 8-core processor with hyper-
threading has 8 physical CPU and 8 logical CPU and, again, 16 schedulers. Only one
session’s worker thread can be running on the CPU at any given time. A thread can be in
one of three states, as exposed by the STATUS column of the sys.dm_exec_requests
DMV:

• RUNNING – on the CPU.
• SUSPENDED – whenever a thread requires a resource, such as a page that is not in

memory, the thread yields the CPU and moves onto an unordered waiter list, with
a thread status of SUSPENDED, until the required resource is available.

• RUNNABLE – if a thread is not waiting on any resource, but is not currently on the
CPU, for example because the scheduler to which it is assigned currently has another
session’s thread running, it will be placed in a first-in-first-out (FIFO) queue called the
runnable queue and the thread status will be RUNNABLE.

The SQLOS allows any given thread a small quantum of processing time (4 ms), before it
must yield the CPU to another session’s thread. If, before its allotted quantum is complete,
the running thread needs to request a resource, it moves to the waiter list. Once the
resource is available, the thread moves to the back of the runnable queue and then, when
its time comes, back onto the CPU. It then gets another 4 ms quantum of processing time.
If it doesn’t have to wait for any resource in this time, but fails to complete its work, it yields
the CPU anyway, moves to the back of the runnable queue, and awaits its next turn.

Resource waits and signal waits

Ideally, most of the time required to process a user request will be time spent by its thread
on the CPU. This is all pure CPU time, or service time. Of course, a complex query
requiring lots of data, or very complex aggregations and calculations, or both, will require
longer service time than a small, simple query. SQL Server may decide to parallelize
processing of a complex request across several worker threads, and so split the work over

several CPUs, if available.

SQL Server performance tuning using wait statistics: a beginner’s guide

6

However, there are many reasons why processing of a task, parallel or otherwise, may not
be able to proceed uninterrupted. A request that is on the CPU may be unable to proceed
processing because it needs to wait for a particular resource to become available. For
example, it may need to wait for a data page to be read from disk into the buffer cache,
or for another request to release a lock on a data page to which it needs access. For a
data modification statement, it may need to wait to write the changes, synchronously, to
the database’s transaction log, on disk. As soon as a running thread requires a resource,
it is suspended (i.e. it moves to the waiter list). This is known as a resource wait. Every
time a request’s worker thread has to wait for a resource, the SQLOS tracks the time spent
waiting (the wait time) as well as the cause of the wait, called the wait type, which is the
resource on which the thread waited.

If a thread is ready to run (has been ‘signaled’) but is in the runnable queue, the SQLOS
tracks the time spent waiting to get back on the CPU. This is referred to as a signal wait
and is pure CPU wait. If query response times are slow and we find mainly signal waits,
then we may need to focus our efforts on optimizing CPU usage.

The total wait time for a thread is the time elapsed between yielding the CPU and getting
back on it, in other words the resource wait time plus the signal wait time.

SQLOS’s wait statistics DMVs

The SQLOS exposes this wait statistics data primarily through two dedicated sys.dm_
os_* DMVs.

sys.dm_os_waiting_tasks

The sys.dm_os_waiting_tasks DMV is a view onto the waiter list. In it, the SQLOS
records the wait statistics, i.e. wait types and wait times, for any requests associated with a
currently suspended thread, i.e. any thread that is in the waiter list, waiting for a resource to
become available.

Therefore, we can use this DMV to investigate the primary resource wait types for
a server currently experiencing performance issues (wait times and types for currently
blocked requests also appear in sys.dm_exec_requests).
One common, but not the only, wait type that will show up in sys.dm_os_waiting_
tasks is lock-related waits, where for example one long-running request blocks many
other requests for a significant period.

SQL Server performance tuning using wait statistics: a beginner’s guide

7

sys.dm_os_wait_stats

The sys.dm_os_wait_stats DMV provides the historical perspective of the most
significant waits associated with the overall workload on the server. To give just one
example (we’ll look at many more later), every time a thread, for any request, has to wait
while SQL Server reads a data page into the buffer cache, then SQLOS adds the recorded
wait time to the total cumulative time for a wait of type PAGEIOLATCH_SH.

In this DMV, the SQLOS records the wait type and the cumulative total wait time for each
type of wait. The term cumulative total wait time needs a little elaboration:

• Cumulative – for waits of each type the DMV stores the cumulative wait times, across
all threads and all sessions, since the last instance restart, or since the last time
someone cleared out the wait statistics manually.

• Total – the recorded wait times include both the time spent by a thread in the waiter list
(resource wait) and the time it spends in the runnable queue (signal wait).

The sys.dm_os_wait_stats DMV stores both the cumulative total wait time in
milliseconds (wait_time_ms) as well as the cumulative signal wait, i.e. the time spent
in the RUNNABLE queue (signal_wait_time_ms). Therefore, we can calculate the
cumulative time threads spent in the SUSPENDED list, waiting for a particular resource, as
follows:

Resource waits = Total waits – Signal waits

 =(wait_time_ms) - (signal_wait_time_ms).

We can use sys.dm_os_wait_stats to investigate the most prevalent resource wait
types over a given period, and to investigate CPU waits, possibly indicating CPU pressure.

When using sys.dm_os_wait_stats, it’s very hard to diagnose an ailing system just by
examining the current state of the historical wait data, which may have accumulated over
weeks or even months. The waits currently causing issues on the system could easily be
‘hidden’ among the accumulated waits. Therefore, it’s important to track these statistics
over time, establish the normal “baseline” for wait types for your workload and then look for
anomalies. We’ll explain how to capture waits statistics baselines later in this paper.

SQL Server performance tuning using wait statistics: a beginner’s guide

8

Using wait statistics for performance tuning

Analysis of wait statistics represents a very effective means to diagnose response times in
our databases. In very simple terms, our requests either work, or they wait:

Response time = service time + wait time

If we find the response time comprised mainly time spent waiting for a particular resource
(disk I/O, memory, network, and so on) then we know where to direct our tuning efforts.
However, there are two very important points to remember when using wait statistics for
performance tuning.

First, it’s perfectly normal for threads to wait during task execution. In fact, in busy
databases supporting a high degree of concurrent access, it’s almost inevitable that a
thread for any particular task will have to wait for a resource at some point in its execution
cycle, however briefly. If not, it may simply exceed its 4 ms quantum and wait in the
runnable queue. Likewise, there are certain wait types that do not indicate a performance
problem and that we can simply ignore during our wait statistics analysis (more on this
later). What we’re interested in is significant, and recurring, types of waits.

Second, wait statistics are not really a tool to use in isolation in order to diagnose a
performance issue. They are best used in conjunction with other diagnostic tools, as a way
to direct our tuning efforts and avoid wasting time in ‘blind alleys’. We need to corroborate
what we find from analyzing wait statistics with, for example, Windows and SQL Server
performance monitor (PerfMon) counters, which provide specific resource usage
measurements (disk transfer rates, amount of CPU time consumed, and so on), which
highlight the “queues” in our database system. By correlating wait statistics with resource
measurements, you can quickly locate the most contested resources on your system, and
so highlight potential bottlenecks.

SQL Server 2005 waits and queues

The use of “waits and queues” as the basis for a performance tuning methodology is explained
in an excellent white paper by Tom Davidson, which is available here: http://download.
microsoft.com/download/4/7/a/47a548b9-249e-484c-abd7-29f31282b04d/Performance_
Tuning_Waits_Queues.doc.

http://download.microsoft.com/download/4/7/a/47a548b9-249e-484c-abd7-29f31282b04d/Performance_Tuning_Waits_Queues.doc
http://download.microsoft.com/download/4/7/a/47a548b9-249e-484c-abd7-29f31282b04d/Performance_Tuning_Waits_Queues.doc
http://download.microsoft.com/download/4/7/a/47a548b9-249e-484c-abd7-29f31282b04d/Performance_Tuning_Waits_Queues.doc

SQL Server performance tuning using wait statistics: a beginner’s guide

9

Investigating active-but-blocked requests using
sys.dm_os_waiting_tasks

We can investigate the current, “real time” wait profile of a SQL Server instance, in terms of
the requests and sessions associated with suspended threads, by querying the
sys.dm_os_waiting_tasks DMV and joining it to various other useful views and
functions. The sys.dm_os_waiting_tasks DMV reveals, amongst other columns, the:

• session_id of the session associated with the suspended thread.
• execution_context_id of the task associated with the suspended thread. If there

is more than one execution_context_id associated with a single session_id
then SQL Server has parallelized the task.

• wait_type – the current wait type for the suspended thread.
• wait_duration_ms – length of time, in ms, that the suspended thread has waited

for the current wait type.
• blocking_session_id – reveals the session_id associated with the blocking

thread, if a thread is suspended due to blocking, for example because it is waiting to
acquire a lock.

• resource_description – for some types of resource, a description of the resource
the suspended thread is waiting to acquire. For example, if it’s a locking wait, this
reveals the lock level (page, table, and so on) and the ID of the locked resource.

As noted previously, many wait types are fleeting and so querying the waiting_tasks
DMV repeatedly, for a normally-functioning server, will likely reveal an ever-changing profile
of wait types. This DMV is most useful when a system is currently experiencing blocking
issues, with one or more sessions waiting for resources that other sessions hold.

In such cases, we will likely observe significant locking waits (waits of type LCK_M_XX),
indicating that a session is unable to proceed with its work until it can acquire a lock on the
resource on which another session’s thread holds a conflicting lock. The most common
causes of persistent blocking are poor code, which causes SQL Server to hold locks for far
longer than necessary, lack of indexing, or an IO-intensive process that is blocking many
other sessions for long periods. (Of course, if the server under investigation has a persistent
history of blocking problems, then LCK_* waits will also show up prominently in
sys.dm_os_wait_stats.)

SQL Server performance tuning using wait statistics: a beginner’s guide

10

Listing 1 queries the sys.dm_os_waiting_tasks DMV to show all waiting tasks
currently active or blocked, revealing the wait type, duration, and resource. With a join
to the sys.dm_exec_requests DMV, on the blocking_session_id, and CROSS
APPLY to sys.dm_exec_sql_text, we also reveal the identity of the blocked and
blocking sessions and the associated statements.

SELECT blocking.session_id AS blocking_session_id ,
 blocked.session_id AS blocked_session_id ,
 waitstats.wait_type AS blocking_resource ,
 waitstats.wait_duration_ms ,
 waitstats.resource_description ,
 blocked_cache.text AS blocked_text ,
 blocking_cache.text AS blocking_text
FROM sys.dm_exec_connections AS blocking
 INNER JOIN sys.dm_exec_requests blocked
 ON blocking.session_id = blocked.blocking_session_id
 CROSS APPLY sys.dm_exec_sql_text(blocked.sql_handle)
 blocked_cache
 CROSS APPLY sys.dm_exec_sql_text(blocking.most_recent_sql_handle)
 blocking_cache
 INNER JOIN sys.dm_os_waiting_tasks waitstats
 ON waitstats.session_id = blocked.session_id

Listing 1: Investigating blocking using the sys.dm_os_waiting_tasks DMV

Using the blocking_session_id, we can follow the blocking chain and find out what
request is at the head of the chain and therefore the root cause of all the locking waits. We
could easily extend Listing 1 to return the execution plan for the blocked session simply
by joining (using the APPLY operator) to the sys.dm_exec_query_plan function and
passing in the plan_handle from sys.dm_exec_requests.

SQL Server performance tuning using wait statistics: a beginner’s guide

11

In the sample output shown in Figure 1, we see that one session (51) is blocking another
(56) from attaining a shared read lock (LCK_M_S) on a particular page (14985).

Figure 1: A locking wait in the sys.dm_os_waiting_tasks output

We can see the SQL statements executed by both the blocked and blocking sessions. We
can also use the resource_description to find out, for example, the identity of the
page that is the source of blocking contention. Armed with the pageid of the contended
page, we could use DBCC PAGE to find the owning table and index.

From there, we can investigate the index structures to try to find out what might be causing
the blocking. For example, we can return further information about locking, latching, and
blocking for specific indexes from sys.dm_db_index_operational_stats. We won’t
cover that here, but Chapter 5 of the book SQL Server Performance Tuning with DMVs
explains how to return and analyze data from this view.

In this manner, we can pinpoint and resolve the root cause of the blocking. Commonly, we
might find that the head of the chain is a substantial update request, or table scan, which
causes an entire table to be locked and so all other requests on that table to be blocked for
the duration. Other times, we might find a ‘stalled’ IO operation, pointing to potential disk
IO issues.

It can be useful to corroborate the wait statistics with good baselines for locking related
PerfMon counts such Lock Waits/sec and Avg Wait Time (ms), and possibly
Lock requests/sec, so we can gauge whether the level of locking activity, and lock
waits times, is abnormal.

Ultimately, resolution of waits related to locking is an exercise in query tuning and index
strategy. It is well beyond the scope of this whitepaper to cover those topics here, but
Chapter 6 of the Troubleshooting SQL Server book offers some good starting points, as
well as further troubleshooting and reporting techniques for blocking issues.

See Further Reading for full details of the books referenced in this section, and other useful
resources.

https://www.simple-talk.com/books/sql-books/performance-tuning-with-sql-server-dynamic-management-views/
https://www.simple-talk.com/books/sql-books/troubleshooting-sql-server-a-guide-for-the-accidental-dba/

SQL Server performance tuning using wait statistics: a beginner’s guide

12

Analyzing historical wait statistics using
sys.dm_os_wait_stats

We can also perform historical wait statistics analysis, using the data provided in
sys.dm_os_wait_stats. The wait times provided by sys.dm_os_wait_stats are
running totals, accumulated across all threads and sessions since the server was last
restarted or the statistics were manually reset using the DBCC SQLPERF command, shown
in Listing 2.

DBCC SQLPERF (‘sys.dm_os_wait_stats’, CLEAR);

Listing 2: Resetting the wait statistics

If a SQL Server instance has been running for quite a while and then is subjected to a
significant change, such as adding an important new index, it’s worth considering clearing
the old wait stats in order to prevent the old cumulative wait stats masking the impact of
the change on the wait times.

The sys.dm_os_wait_stats DMV gives us a list of all the different types of waits that
threads have encountered, the number of times they have waited on a resource to be
available, and the amount of time waited. The following columns are available in the view
(times are all in millisecond units):

• wait_type – the type of wait, which generally indicates the resource on which the
worked threads waited (typical resource waits include lock, latch disk I/O waits, and so
on).

• wait_time_ms – total, cumulative amount of time that threads have waited on the
associated wait type; this value includes the time in the signal_wait_time_ms
column. The value increments from the moment a task stops execution to wait for a
resource, to the point it resumes execution.

• signal_wait_time_ms – the total, cumulative amount of time threads took to start
executing after being signaled; this is time spent on the runnable queue.

• waiting_tasks_count – the cumulative total number of waits that have occurred
for the associated resource (wait_type).

• max_wait_time_ms – the maximum amount of time that a thread has been delayed,
for a wait of this type.

http://msdn.microsoft.com/en-us/library/ms189768.aspx

SQL Server performance tuning using wait statistics: a beginner’s guide

13

There are many reasons why a certain task within SQL Server may need to wait, which
means there are many possible values for the wait_type column. Some are quite usual,
such as the need to wait for a lock to be released before a task can access the required
resource (e.g. a data page), and are indicated by the “normal” lock modes such as shared,
intent, and exclusive. Other common causes of waits include latches, backups, external
operations such as extended stored procedure execution, replication, and resource
semaphores (used for memory access synchronization). There are too many to cover them
all in detail, though a little later, we’ll examine many of the most common wait types and
what they indicate. All of the wait types are at least listed, if not well documented, in
Books Online. Alternatively, some third party monitoring tools, such as Red Gate
SQL Monitor, maintain a useful list of wait types, and possible causes, as part of their tool
documentation.

Identifying high signal waits (CPU pressure)

If the signal wait time is a significant portion of the total wait time then it means that tasks
are waiting a relatively long time to resume execution after the resources that they were
waiting for became available. This can indicate either that there are lots of CPU-intensive
queries, which may need optimizing, or that the server needs more CPU. The query in
Listing 3 will provide a measure of how much of the total wait time is signal wait time.

SELECT SUM(signal_wait_time_ms) AS TotalSignalWaitTime ,
 (SUM(CAST(signal_wait_time_ms AS NUMERIC(20, 2)))
 / SUM(CAST(wait_time_ms AS NUMERIC(20, 2))) * 100)
 AS PercentageSignalWaitsOfTotalTime
FROM sys.dm_os_wait_stats

Listing 3: Identifying possible CPU pressure via signal wait time

The sys.dm_os_wait_stats DMV shows aggregated wait times and counts starting
from when the wait statistics were cleared, or from when the server started. Therefore, a
“point-in-time” view of the wait stats is generally not that useful. What is most useful is to
compare the wait stats at a particular time with the stats at an earlier time and see how
they changed. The other option is to clear the wait stats DMV (see Listing 2), and wait a set
period, and then query and see what’s accumulated in that time.

http://technet.microsoft.com/en-us/library/ms179984%28v=sql.105%29.aspx
http://documentation.red-gate.com/display/SM4/List+of+common+wait+types

SQL Server performance tuning using wait statistics: a beginner’s guide

14

If signal waits analysis indicates CPU pressure, then the sys.dm_os_schedulers DMV
can help verify whether a SQL Server instance is currently CPU-bound. This DMV returns
one row for each of the SQL Server schedulers and it lists the total number of tasks that
are assigned to each scheduler, as well as the number that are runnable. Other tasks on
the scheduler that are in the current_tasks_count but not the runnable_tasks_
count are ones that are either sleeping or waiting for a resource.

SELECT scheduler_id ,
 current_tasks_count ,
 runnable_tasks_count
FROM sys.dm_os_schedulers
WHERE scheduler_id < 255

Listing 4: Investigating scheduler queues

The filter for schedulers below 255 removes from the result set the numerous hidden
schedulers in SQL Server, which are used for backups, the Dedicated Administrator
Connection (DAC), and so on, and are not of interest when investigating general CPU load.

There is no threshold value that represents the boundary between a “good” and “bad”
number of runnable tasks, but the lower the better. A high number of runnable tasks, like a
high signal wait time, indicate that there is not enough CPU for the current query load. If the
scheduler queue is currently long, it’s likely you’ll also see the SOS_SCHEDULER_YIELD
wait type in queries against sys.dm_exec_requests and sys.dm_os_waiting_
tasks.

You’ll also want to collect and analyze supporting data from the PerfMon counters that
are of value for monitoring CPU usage, listed below with brief explanations (quoted from
MSDN):

• Processor/ %Privileged Time – “percentage of time the processor spends
on execution of Microsoft Windows kernel commands such as core operating system
activity and device drivers.”

• Processor/ %User Time – “percentage of time that the processor spends on
executing user processes such as SQL Server. This includes I/O requests from SQL
Server”

• Process (sqlservr.exe)/ %Processor Time – “the sum of processor time on
each processor for all threads of the process”.

SQL Server performance tuning using wait statistics: a beginner’s guide

15

If you confirm CPU pressure, probably the first step is to determine the most CPU-intensive
queries in your workload, and see if there are ways to tune them. It is beyond the scope of
this booklet to discuss this topic in detail but an excellent resource is the Troubleshooting
SQL Server, A Guide for the Accidental DBA book. Chapter 3 in this book shows how
to interrogate the sys.dm_exec_query_stats DMV to find the most costly queries in
cache by total worker time (i.e. CPU time), joining to the sys.dm_exec_sql_text and
sys.dm_exec_query_plan functions to retrieve the text and execution plans for these
queries.

Identifying the primary resource waits

The primary use of the sys.dm_os_wait_stats DMV is to help us determine on which
wait types and which resources SQL Server has spent the most time waiting, historically,
while executing that server’s workload. As noted earlier, it’s important to focus this analysis
on the most prevalent waits, and also filter out ‘benign’ waits that will occur frequently
on any database system and are not, except in extreme edge cases, the cause of
performance issues.

Listing 5 is reproduced with permission from the original author, Paul Randal. It provides
both total wait times as well as resource and signal wait times, filters out many benign
waits, and performs some math to present very clearly the most significant waits,
historically, on the instance. Periodically, Paul amends and improves the query in his original
post, for example to expand the benign waits filter. It’s worth checking his post for the
latest version.

This listing will help us locate the biggest bottlenecks, at the instance level, allowing us to
focus our tuning efforts on a particular type of problem. For example, if the top wait types
are all disk I/O related, then we would want to investigate this issue further using disk-
related DMV queries and PerfMon counters.

http://www.sqlskills.com/blogs/paul/wait-statistics-or-please-tell-me-where-it-hurts/
http://www.sqlskills.com/blogs/paul/wait-statistics-or-please-tell-me-where-it-hurts/

SQL Server performance tuning using wait statistics: a beginner’s guide

16

WITH [Waits]
 AS (SELECT [wait_type] ,
 [wait_time_ms] / 1000.0 AS [WaitS] ,
 ([wait_time_ms] - [signal_wait_time_ms]) / 1000.0
 AS [ResourceS] ,
 [signal_wait_time_ms] / 1000.0 AS [SignalS] ,
 [waiting_tasks_count] AS [WaitCount] ,
 100.0 * [wait_time_ms] / SUM([wait_time_ms]) OVER ()
 AS [Percentage] ,
 ROW_NUMBER () OVER (ORDER BY [wait_time_ms] DESC)
 AS [RowNum]
 FROM sys.dm_os_wait_stats
 WHERE [wait_type] NOT IN (N’BROKER_EVENTHANDLER’,
 N’BROKER_RECEIVE_WAITFOR’,
 N’BROKER_TASK_STOP’,
 N’BROKER_TO_FLUSH’,
 N’BROKER_TRANSMITTER’,
 N’CHECKPOINT_QUEUE’, N’CHKPT’,
 N’CLR_AUTO_EVENT’,
 N’CLR_MANUAL_EVENT’,
 <…wait type filter truncated.
 See code download…>
)
)
 SELECT [W1].[wait_type] AS [WaitType] ,
 CAST ([W1].[WaitS] AS DECIMAL(14, 2)) AS [Wait_S] ,
 CAST ([W1].[ResourceS] AS DECIMAL(14, 2)) AS [Resource_S] ,
 CAST ([W1].[SignalS] AS DECIMAL(14, 2)) AS [Signal_S] ,
 [W1].[WaitCount] AS [WaitCount] ,
 CAST ([W1].[Percentage] AS DECIMAL(4, 2)) AS [Percentage] ,
 CAST (([W1].[WaitS] / [W1].[WaitCount]) AS DECIMAL(14, 4))
 AS [AvgWait_S] ,
 CAST (([W1].[ResourceS] / [W1].[WaitCount]) AS DECIMAL(14, 4))
 AS [AvgRes_S] ,
 CAST (([W1].[SignalS] / [W1].[WaitCount]) AS DECIMAL(14, 4))
 AS [AvgSig_S]
 FROM [Waits] AS [W1]
 INNER JOIN [Waits] AS [W2] ON [W2].[RowNum] <= [W1].[RowNum]
 GROUP BY [W1].[RowNum] ,
 [W1].[wait_type] ,
 [W1].[WaitS] ,
 [W1].[ResourceS] ,
 [W1].[SignalS] ,
 [W1].[WaitCount] ,
 [W1].[Percentage]
 HAVING SUM([W2].[Percentage]) - [W1].[Percentage] < 95;
GO

Listing 5: Report on top resource waits

SQL Server performance tuning using wait statistics: a beginner’s guide

17

Common wait types

In general, when examining wait statistics, either historically or for currently active requests,
it’s wise to focus on the top waits, according to wait time, and look out for high wait times
associated with the following specific wait types (some of which we’ll cover in more detail in
subsequent sections).

• CXPACKET
Often indicates nothing more than that certain queries are executing with parallelism;
CXPACKET waits in the server are not an immediate sign of problems, although they
may be the symptom of another problem, associated with one of the other high value
wait types on the instance.

• SOS_SCHEDULER_YIELD
The tasks executing in the system are yielding the scheduler, having exceeded their
quantum, and are having to wait in the runnable queue for other tasks to execute. As
discussed earlier, this wait type is most often associated with high signal wait rather
than waits on a specific resource. If you observe this wait type persistently, investigate
for other evidence that may confirm the server is under CPU pressure.

• THREADPOOL
A task had to wait to have a worker thread bound to it, in order to execute. This could
be a sign of worker thread starvation, requiring an increase in the number of CPUs
in the server, to handle a highly concurrent workload, or it can be a sign of blocking,
resulting in a large number of parallel tasks consuming the worker threads for long
periods.

• LCK_*
These wait types signify that blocking is occurring in the system and that sessions
have had to wait to acquire a lock, of a specific type, which was being held by another
database session.

• PAGEIOLATCH_*, IO_COMPLETION, WRITELOG
These waits are commonly associated with disk I/O bottlenecks, though the root cause
of the problem may be, and commonly is, a poorly performing query that is consuming
excessive amounts of memory in the server, or simply insufficient memory for the buffer
pool.

SQL Server performance tuning using wait statistics: a beginner’s guide

18

• PAGELATCH_*
Non-IO waits for latches on data pages in the buffer pool. A lot of times PAGELATCH_*
waits are associated with allocation contention issues. One of the most well-known
allocations issues associated with PAGELATCH_* waits occurs in tempdb when the a
large number of objects are being created and destroyed in tempdb and the system
experiences contention on the Shared Global Allocation Map (SGAM), Global Allocation
Map (GAM), and Page Free Space (PFS) pages in the tempdb database.

• LATCH_*

These waits are associated with lightweight short-term synchronization objects that are
used to protect access to internal caches, but not the buffer cache. These waits can
indicate a range of problems, depending on the latch type. Determining the specific
latch class that has the most accumulated wait time associated with it can be found by
querying the sys.dm_os_latch_stats DMV.

• ASYNC_NETWORK_IO
This wait is often incorrectly attributed to a network bottleneck. In fact, the most
common cause of this wait is a client application that is performing row-by-row
processing of the data being streamed from SQL Server as a result set (client accepts
one row, processes, accepts next row, and so on). Correcting this wait type generally
requires changing the client side code so that it reads the result set as fast as possible,
and then performs processing.

• OLEDB
Occurs when a thread makes a call to structure that uses the OLEDB provider and
is waiting while it returns the data. A common cause of such waits is linked server
queries. However, for example, many DMVs use OLEDB internally, so frequent calls to
these DMVs can cause these waits. DBCC checks also use OLEDB so it’s common to
see this wait type when such checks run.

These basic explanations of each of the major wait types won’t make you an expert on
wait type analysis, but the appearance of any of these wait types high up in the output of
Listings 1 or 5 will certainly help direct your subsequent investigations.

SQL Server performance tuning using wait statistics: a beginner’s guide

19

After making a code or configuration change on the server, in response to a problem
highlighted in the wait statistics, it’s important to validate that the problem has indeed been
fixed. In order to do this, we’d suggest resetting the wait statistics (Listing 2). One of the
caveats associated with clearing the wait statistics on the server is that it will take a period
of time for the wait statistics to accumulate to the point that you know whether or not a
specific problem has been addressed.

The coming sections review some of the most common wait types associated with the
server resources (Disk IO, CPU, and memory), along with common causes and possible
routes towards resolution.

Disk IO-related waits

Three of the most prevalent disk IO-related waits are as follows:

• PAGEIOLATCH_XX – waits associated with delays in a thread being able to bring a
data file page into cache from the physical data file

• WRITELOG – waits related to issues with writing to the log file
• ASYNC_IO_COMPLETION – waits associated with writing (asynchronously) to the data

files

PAGEIOLATCH_XX

PAGEIOLATCH_XX waits appear when sessions have to wait to obtain a latch on a page
that is not currently in memory. This happens when lots of sessions, or maybe one session
in particular, request many data pages that are not available in the buffer pool, and so the
engine needs to perform physical I/O to retrieve them. SQL Server must allocate a buffer
page for each one and place a latch on that page while it retrieves it from disk.

PAGEIOLATCH_SH and PAGEIOLATCH_EX

If a thread needs to read a page, it needs a shared-mode latch on the buffer page, and waits
for such latches for pages not currently in memory appear as PAGEIOLATCH_SH wait types. If
a thread needs to modify a page, we see PAGEIOLATCH_EX wait types.

SQL Server performance tuning using wait statistics: a beginner’s guide

20

PAGEIOLATCH_XX waits are one of the hardest to diagnose correctly or, to put it another
way, one of the easiest to misdiagnose, since it sounds like a symptom of a malfunctioning
or underpowered disk subsystem. This could be the cause, but the cause is just as likely
to be insufficient memory to accommodate the workload, and even more likely to be
poorly tuned queries driving far more IO than is necessary, which we can often fix with
query tuning and indexes.

PAGEIOLATCH_XX waits do indicate that disk I/O is the bottleneck, since it ultimately
means that the disk subsystem can’t return pages quickly enough to satisfy all of the
page requests, and so sessions are waiting to acquire these latches and performance
is suffering. However, the appearance of this wait type does not necessarily indicate
that a slow disk subsystem is the cause of the bottleneck; it may simply be the victim of
excessive IO caused by a problem elsewhere in the system.

Gathering supporting evidence: virtual file statistics and PerfMon counters

Before jumping to any conclusions on the root cause, we should evaluate PAGEIOLATCH_
XX waits in conjunction with virtual file statistics, using the sys.dm_io_virtual_
file_stats dynamic management function, as well as other prevalent wait types and data
from performance counters relating to disk latency and memory.

For example, let’s say we identify very high PAGEIOLATCH_XX waits, from either of the
SQLOS wait statistics DMVs. Our next step might be to examine the overall read and write
patterns and the distribution of IO load across files and databases on the SQL Server
instance to see if we can find any obvious “hotspots”. Alternatively, if a server is currently
experiencing high PAGEIOLATCH_XX waits, we can use sys.dm_os_waiting_tasks
to identify the page and objects that are the target of threads experiencing these waits, and
then analyze the latencies on the relevant files for those objects.

A query such as that shown in Listing 6 will help us determine if the problem is specific to a
single database, file, or disk, or is instance wide.

SQL Server performance tuning using wait statistics: a beginner’s guide

21

SELECT DB_NAME(vfs.database_id) AS database_name ,
 vfs.database_id ,
 vfs.file_id ,
 io_stall_read_ms / NULLIF(num_of_reads, 0) AS avg_read_latency ,
 io_stall_write_ms / NULLIF(num_of_writes, 0)
 AS avg_write_latency ,
 io_stall_write_ms / NULLIF(num_of_writes + num_of_writes, 0)
 AS avg_total_latency ,
 num_of_bytes_read / NULLIF(num_of_reads, 0)
 AS avg_bytes_per_read ,
 num_of_bytes_written / NULLIF(num_of_writes, 0)
 AS avg_bytes_per_write ,
 vfs.io_stall ,
 vfs.num_of_reads ,
 vfs.num_of_bytes_read ,
 vfs.io_stall_read_ms ,
 vfs.num_of_writes ,
 vfs.num_of_bytes_written ,
 vfs.io_stall_write_ms ,
 size_on_disk_bytes / 1024 / 1024. AS size_on_disk_mbytes ,
 physical_name
FROM sys.dm_io_virtual_file_stats(NULL, NULL) AS vfs
 JOIN sys.master_files AS mf ON vfs.database_id = mf.database_id
 AND vfs.file_id = mf.file_id

ORDER BY avg_total_latency DESC

Listing 6: Virtual file statistics

This will help us identify any files or databases associated with high volumes of reads or
writes, and IO latencies. In particular, we’re seeking evidence of high latency associated
with read and write operations to a particular file or database, via the IO_STALL_*
columns. To corroborate this data further, we might also check the drive-level disk IO
values using the PerfMon counters, Physical Disk\Avg. Disk sec/Read and
Physical Disk\Avg. Disk sec/Write. Latency values over about 10ms are
generally a concern, though of course, “it depends”.

With this information to hand, we’ll want to investigate further the activity on files or
databases identified as IO hotspots and determine the root cause of the waits.

SQL Server performance tuning using wait statistics: a beginner’s guide

22

Possible causes of PAGEIOLATCH waits: sub-optimal queries

Often, the problem is inefficient queries, query plans, and indexes. If a query is performing
large scans instead of targeted seeks, it is potentially reading many more pages than
necessary and will likely cause excessive physical as well as logical IO, as SQL Server
needs to read large numbers of pages in from disk. SQL Server will often parallelize these
big scans, so it’s quite common to see PAGEIOLATCH_XX waits in conjunction with
CXPACKET waits (see later). It will also lead to overuse of the buffer cache.

Having established the databases and files that are physical IO hotspots, and having
identified requests and objects currently associated with the PAGEIOLATCH_XX waits,
using sys.dm_os_waiting_tasks (Listing 1), we can investigate the execution
statistics for queries against the relevant database. These are maintained in sys.dm_
exec_query_stats for the execution plans that are in the plan cache. We need to
identify the queries that have the highest accumulated physical reads, and then review their
associated execution plans, looking for any performance tuning opportunities, either by
adding missing indexes to the database, or making changes to the SQL code, in order to
optimize the way the database engine accesses the data.

A particular issue to look for in the execution plans is implicit conversions, which will
prevent the optimizer using indexes to resolve the query, and result in scans, rather than
seeks. We also need to look out for issues such as out-of-date statistics, causing the
optimizer to choose suboptimal plans, again, often resulting in inefficient scans, and SQL
Server reading more pages than necessary.

Possible causes of PAGEIOLATCH waits: memory pressure

Sometimes, the root cause of PAGEIOLATCH_XX waits is a ‘memory problem’ in that the
buffer pool is experiencing memory pressure, because it is sized inadequately, or it is being
“overused” (see previous section).

In order to verify this, we can examine the PerfMon memory counters (see later). If we see
that the Page Life Expectancy is low or consistently fluctuating, and the system is
experiencing non-zero values for Free List Stalls/sec, and high Lazy Writes/
sec, then we can be fairly certain that the buffer pool is experiencing memory pressure,
meaning that it cannot retain pages in memory for any reasonable length of time. This can
lead to cache “churn” and a high level of disk IO activity.

SQL Server performance tuning using wait statistics: a beginner’s guide

23

If we observe PAGEIOLATCH_XX waits in conjunction with memory pressure on the buffer
pool, we need to investigate the cause of the pressure. It could be due to external pressure
(from the Windows OS) or internal pressure, meaning that some other SQL Server resource
is eating memory that would otherwise be allocated to the buffer pool. A common cause
of the latter is a bloated plan cache, due to ad-hoc non-parameterized queries and the
production of many single-use plans.

Of course, sometimes, we might find that the code is optimized as far as possible, but a
database that used to be 1GB size and fit comfortably in memory is now 4GB in size and
we’ve not expanded the server’s memory capacity appropriately. If a common reporting
query needs to read most or all of that 4 GB of data from disk, for aggregation, it will cause
high physical I/O and account for the high PAGEIOLATCH_XX waits. At this point, the
server needs more memory.

Possible causes of PAGEIOLATCH waits: disk subsystem issues

Finally, we occasionally find that the root cause really is slow storage and we need to
consider hardware upgrade, or workload redistribution.

For example, let’s say that our virtual file statistics highlight that the IO ‘hotspot’ is a
database used for archiving data to slower storage, for year-on-year reporting. In such
cases, it is predictable and expected that we will see PAGEIOLATCH_XX waits in the
database during the archival period.

If the archiving process is as tuned as possible, but its effect on other business process
has become intolerable, then we may indeed have a poorly configured or underpowered
disk subsystem. If so, we could consider workload redistribution, moving the ‘hot’ files to
faster disks.

SQL Server performance tuning using wait statistics: a beginner’s guide

24

WRITELOG

SQL Server’s write-ahead logging mechanism guarantees the durability of transactions by
writing transaction details, synchronously, to the transaction log when each transaction
commits. Thus, when servicing a data modification request, SQL Server writes a
description of the changes to log records, in the log buffer, and modifies the relevant data
pages, in memory. When all necessary changes are complete, and SQL Server is ready
to commit the transaction, it first hardens to disk all of the log records in the buffer, up to
the point of the COMMIT. Note that this is not a selective flushing to disk of just the log
records relating to the current transaction, but a flushing of all log records up to that point,
regardless of whether there are other log records associated with as yet uncommitted
transactions. Only later, at regular CHECKPOINT operations does SQL Server, in general,
write the changed data pages to disk.

On high-volume, write-intensive systems it’s possible that the IO subsystem will fail to cope
with the volume of log writes, resulting in WRITELOG waits, which essentially means that
a thread is waiting for a transaction log block buffer to flush to disk. This, of course, is a
synchronous operation; if a request requires a log buffer flush, either by issuing a commit
or because the current log block is full, SQL Server must complete and acknowledge this
operation before the request can proceed.

WRITELOG waits often arise when the log files for multiple, highly transactional databases
are on the same physical disks. In such cases, the waits are caused by the disk head
having to be repositioned across the disk platters to perform the writes, and can be worse
when multiple transaction log files are physically interleaved, or physically fragmented on
disk.

Again, if you see WRITELOG waits in sys.dm_os_wait_stats, you’ll want to correlate
the observed wait times with the IO latency values for the log file in sys.dm_io_
virtual_file_stats.

Internal log flush limits

In his article, Wait statistics, or please tell me where it hurts, Paul Randal explains how
WRITELOG waits may arise due to exceeding “internal log flush limits” (indicated by WRITELOG
times that are longer than IO latency values for writing to the log file). He suggests that may
mean “splitting your workload over multiple databases or even make your transactions a little
longer to reduce log flushes”.

http://www.sqlskills.com/blogs/paul/wait-statistics-or-please-tell-me-where-it-hurts/

SQL Server performance tuning using wait statistics: a beginner’s guide

25

Ultimately, WRITELOG could indicate a need to review your transaction log architecture,
but it could equally be that that instance is simply generating a lot of unnecessary log
writes due, for example, to log records generated when maintaining unused non-clustered
indexes, or excessive index rebuilds, or by constant page splits as indexes created with
very high fill factor start to fragment. See Paul Randal’s post, Trimming the Transaction Log
Fat, for further details of how you can reduce unnecessary log writes.

IO_COMPLETION and ASYNC_IO_COMPLETION

These waits occur when there is a delay in either a synchronous or asynchronous IO
operation.

IO_COMPLETION waits often show up during operations such as loading a DLL from disk,
writing a tempdb sort file, during certain DBCC CHECKDB operations, sparse file flushes,
and more. The key is that it is IO but not typically database file IO for reading or writing
pages or log records (WRITELOG).

The ASYNC_IO_COMPLETION wait type often shows up during sizeable BACKUP
operations, for example. The fact that SQL Server writes the data asynchronously often
means that these waits are often less of a concern in terms of performance that WRITELOG
waits.

CPU-related waits

Most of time we investigate CPU pressure via signal waits and PerfMon counters as
discussed previously. However, two interesting wait types to look out for, in regard to CPU
pressure, are CXPACKET and SOS_SCHEDULER_YIELD.

Others, which we won’t discuss in detail include (explanation quoted from BOL):

• THREADPOOL – “Occurs when a task is waiting for a worker to run on. This can
indicate that the maximum worker setting is too low, or that batch executions are taking
unusually long, thus reducing the number of workers available to satisfy other batches”.
It usually occurs during highly-parallelized workloads.

• CMEMTHREAD – “Occurs when a task is waiting on a thread-safe memory object” (i.e.
one that must be accessed one thread at a time, typically a cache).

http://www.sqlperformance.com/2012/12/io-subsystem/trimming-t-log-fat
http://www.sqlperformance.com/2012/12/io-subsystem/trimming-t-log-fat

SQL Server performance tuning using wait statistics: a beginner’s guide

26

CXPACKET

CXPACKET waits occur during synchronization of the query processor exchange iterator
between workers, for a query running in parallel across multiple processors. This wait
type is set whenever a thread for a parallel process has to wait in the exchange iterator
for another thread to complete, before it can continue processing. Often, the appearance
of CXPACKET waits indicates nothing more than the fact that SQL Server is parallelizing
queries, since the coordinator thread in a parallel query will always accumulate these waits,
as it waits for each thread running a sub-task to complete its work.

Parallel workloads, and the associated parallelism operations that the server must support,
can generate very heavy demands for memory allocation and disk IO. If the server hosts
a data warehouse or reporting type of database that receives a low volume of queries but
processes large amounts of data, parallelism can substantially reduce the time it takes to
execute those queries. In contrast however, if the server hosts an OLTP database that has
a very high volume of small queries and transactions, then parallelism can degrade both
throughput and performance.

A common diagnosis on seeing very high CXPACKET waits is that the parallel workload is
overwhelming the disk IO subsystem and a common response, in lieu of upgrading the disk
subsystem, is to reduce the max degree of parallelism to one half or one fourth
the number of logical processors, or processor cores, on the server, or even to completely
disable parallelism by setting it to 1. While this is sometimes necessary, it is not the best
response in all, or even most, situations.

If you’re seeing lots of parallelization, and attendant CXPACKET waits in an OLTP system,
the first question to ask is why SQL Server is parallelizing so many of your “short,
fast” transactions. It is worth investigating those queries that are getting parallel plans
and looking for tuning possibilities. It may also be that the cost threshold for
parallelism setting is a little low for your system and raising it will remove some of the
inappropriate parallelization.

For workloads where parallelization is appropriate, often CXPACKET waits are simply a
symptom of a different underlying problem rather than an indication that parallelization
is the actual problem. The trick is to isolate and troubleshoot the main underlying non-
CXPACKET wait type that is causing the CXPACKET waits. Of course, the fact that the
underlying wait causes many parallel workers to wait means that the volume of CXPACKET
waits will often greatly exceed the underlying root wait type.

SQL Server performance tuning using wait statistics: a beginner’s guide

27

The underlying problem could be, for example, that there is an uneven distribution of
work among the threads, or that one thread gets persistently blocked so that CXPACKET
waits accumulate for other worker threads in the parallel process. If we can resolve the
underlying wait, from the historical wait statistics, then we can remove the problem without
having to limit the ability of SQL Server to parallelize query execution. If the system is
currently experiencing high CXPACKET waits, as evidenced by sys.dm_os_waiting_
tasks, look closely at associated waits for the active sessions for signs of an LCK* waits
or PAGEIOLATCH_* waits and so on.

For example, let’s say the underlying wait type, is PAGEIOLATCH_XX meaning that the
parallel operation is waiting on a read from the disk IO subsystem (possibly you will also
see accompanying IO_COMPLETION, ASYNC_IO_COMPLETION waits). If we diagnose
the PAGEIOLATCH_XX waits, in the manner described previously, we resolve the problem.
It could be that the disk subsystem simply can’t cope with the demands of the parallel
workload, but it could equally be that missing indexes or a bad query plan are causing
parallel table scans and consequently much more disk IO than is necessary.

In such cases, reducing the max degree of parallelism won’t resolve the root
problem but it may buy you some time to fix the real problem, since it will reduce the
number of workers being used in the system, reduce the additional load the parallelism
operations place on the disk IO subsystem, and reduce the accumulated wait time for the
CXPACKET wait type. In the meantime, you can perform some tuning and indexing work,
or scale up the IO performance of the server, as appropriate. If the workload is as tuned
as it can be, and scaling up the disk subsystem is not possible, then reducing the level of
parallelism to a degree that still allows parallel processing to occur without bottlenecking in
the disk IO subsystem may be the best option to improve overall system performance.

It is possible that CXPACKET waits in conjunction with other wait types, for example
LATCH_* and SOS_SCHEDULER_YIELD, does show that parallelism is the actual
problem, and further investigation of the latch stats on the system will validate if this is
actually the case. The sys.dm_os_latch_stats DMV contains information about the
specific latch waits that have occurred in the instance, and if one of the top latch waits
is ACCESS_METHODS_DATASET_PARENT, in conjunction with CXPACKET, LATCH_*,
and SOS_SCHEDULER_YIELD wait types as the top waits, the level of parallelism on
the system is the cause of bottlenecking during query execution, and reducing the ‘max
degree of parallelism’ sp_configure option may be required to resolve the
problems.

SQL Server performance tuning using wait statistics: a beginner’s guide

28

SOS_SCHEDULER_YIELD

The SQL scheduler is a co-operative, non-preemptive scheduler. It relies on executing
queries voluntarily relinquishing the CPU after a specific amount of running time (4 ms, as
discussed earlier). When a task voluntarily relinquishes the CPU, and begins waiting to
resume execution, the wait type assigned to the task is SOS_SCHEDULER_YIELD. The
relinquishing task goes back onto the runnable queue and another task gets its allocated
time on the CPU.

Preemptive waits

The only time a thread runs in preemptive mode, meaning Windows controls when it removes
the thread from the CPU, not SQL Server, is when the thread makes a call to the Windows OS.
It is possible for a thread to encounter preemptive waits (PREEMPTIVE_OS_*, where the * is
a Windows API being called). The status of such a thread will be RUNNING, since in this mode
SQL Server no longer controls its execution and so just assumes it is running.

Since SOS_SCHEDULER_YIELD is not generally a resource wait, we won’t see it in
sys.dm_os_waiting_tasks (sometimes, it can be caused by spinlock contention, but
we won’t discuss that further here. See Paul Randal’s blog post, http://www.sqlskills.com/
blogs/paul/sos_scheduler_yield-waits-and-the-lock_hash-spinlock/ for more information).

If overall wait times are low, SOS_SCHEDULER_YIELD waits are benign. However, if
queries show high wait times in sys.dm_os_wait_stats for the SOS_SCHEDULER_
YIELD wait type, it’s an indication of extremely CPU-intensive queries. If there are high
wait times for this wait type overall on the server it can indicate either that there are lots of
CPU-intensive queries, which may need optimizing, or that the server needs more CPU.
Again, look out in general for any large, expensive scans. Chapter 3, High CPU Utilization,
of the previously-referenced Troubleshooting SQL Server book investigates many possible
causes of high CPU usage, including missing indexes, non-sargable predicates, parameter
sniffing, implicit conversions and more (many of which also cause excessive IO).

If we see high SOS_SCHEDULER_YIELD waits but no associated PAGEIOLATCH_* waits,
this is more an indication that threads are persistently using up the allotted quantum of
CPU time without completing their task, and could indicate a need for higher CPU power.

Scheduler activity can be investigated further using the sys.dm_os_schedulers DMV,
as discussed previously.

http://www.sqlskills.com/blogs/paul/sos_scheduler_yield-waits-and-the-lock_hash-spinlock/
http://www.sqlskills.com/blogs/paul/sos_scheduler_yield-waits-and-the-lock_hash-spinlock/

SQL Server performance tuning using wait statistics: a beginner’s guide

29

Memory waits

One of the memory-related waits that we see often is the PAGELATCH_XX wait, which
occurs when a thread is forced to wait for access to a data page that is in the buffer pool.

The best known cause of this wait type is contention for allocation pages (PFS, GAM,
SGAM) during highly concurrent access of tempdb.

Tip: Configuring a single file per processor, or not!

SQL Server MVP Paul Randal provides guidance on the PFS, GAM, SGAM problem with
tempdb and the appropriate number of files to configure based on the number of processors
in his blog posts:
Search Engine Q&A #12: Should you create multiple files for a user DB on a multi-core box?
(http://www.sqlskills.com/blogs/paul/post/Search-Engine-QA-12-Should-you-create-multiple-
files-for-a-user-DB-on-a-multi-core-box.aspx) and A SQL Server DBA myth a day: (12/30)
tempdb should always have one data file per processor core (http://sqlskills.com/BLOGS/
PAUL/post/A-SQL-Server-DBA-myth-a-day-(1230)-tempdb-should-always-have-one-data-file-
per-processor-core.aspx).

However, these waits can also occur when there is a high level of concurrent INSERT
activity on a table that uses a clustered index on an ever-increasing integer key (such as an
IDENTITY), since it leads to contention for access to a single index page.

It can also occur in cases where inserts commonly lead to page splits, since to perform the
split, SQL Server must acquire shared latches at all levels of the index, and then exclusive
latches on the specific pages that need to be split.

Once again, we can use sys.dm_os_waiting_tasks to identify the target objects and
the queries associated with threads experiencing this wait, and then investigate further for
these types of issues.

The whitepaper Diagnosing and Resolving Latch Contention on SQL Server is a useful
resource for further reading.

http://www.sqlskills.com/blogs/paul/search-engine-qa-12-should-you-create-multiple-files-for-a-user-db-on-a-multi-core-box/
http://www.sqlskills.com/blogs/paul/search-engine-qa-12-should-you-create-multiple-files-for-a-user-db-on-a-multi-core-box/
http://www.sqlskills.com/blogs/paul/a-sql-server-dba-myth-a-day-1230-tempdb-should-always-have-one-data-file-per-processor-core/
http://www.sqlskills.com/blogs/paul/a-sql-server-dba-myth-a-day-1230-tempdb-should-always-have-one-data-file-per-processor-core/
http://www.sqlskills.com/blogs/paul/a-sql-server-dba-myth-a-day-1230-tempdb-should-always-have-one-data-file-per-processor-core/
http://www.microsoft.com/en-us/download/details.aspx?id=26665

SQL Server performance tuning using wait statistics: a beginner’s guide

30

Wait Statistics baselines

It is extremely important to understand that all SQL Server instances will have waits
regardless of how well we tune and optimize them. In the sys.dm_os_wait_stats
DMV, the data can accumulate over a long period. If we then interrogate the DMV for, say,
the “top 5 waits on a SQL Server instance”, it will still be very difficult to know if any of
these waits represent a potential problem, or are just “normal” for that instance. Our goal is
to understand the usual waits for an instance.

Once we know what’s normal, then we can focus our tuning efforts, and we have a
reference in the event that performance suddenly degrades. We can see trends over time
and look out for worrying change in the pattern of waits. We can also map sudden changes
to, for example, deployment of new code, or change in hardware configuration and so on.

In order to establish what is normal, then track changes over times, we need to establish
baselines for our historical wait statistics data. Here we offer a manual means to gather and
maintain baseline data for historical wait statistics. However, tools exist that will gather and
manage the same sort of baseline data for you, with less work by the DBA. In the Microsoft
stack, Management Data Warehouse gathers this data, and a lot more, and some third
party SQL Server monitoring tools, such as SQL Monitor, will gather baseline data, as well
as help analyze it for trends and anomalies.

Clearing wait stats

By default, SQL Server clears the cumulative wait statistics for an instance from the
sys.dm_os_wait_stats DMV upon instance restart. In addition, a DBA can clear the
statistics manually using DBCC SQLPERF (see Listing 2).

It is not required to clear out wait statistics on a regular basis. However, in order to analyze
this data in a meaningful way, both to understand what “normal” behavior is and also
quickly spot abnormalities when comparing data from a previous period to current data,
it is important that DBAs adopt a clear policy on the timing and frequency of clearing wait
statistics.

If one DBA is clearing wait statistics at 6 AM daily, and another DBA is capturing the
information at 7 AM, the data only represents the waits accumulated during an hour’s
workload, which may not represent the normal workload.

SQL Server performance tuning using wait statistics: a beginner’s guide

31

Ideally, we need to collect wait statistics for a period that represents normal activity,
without clearing them. At the same time, however, the DBAs will want to understand how
significant changes, such as adding a new index, or altering a configuration setting, affect
the pattern of waits for the instance. Clearing the wait statistics immediately after making
the change can help us understand the impact of the modification.

There are other reasons that may compel a DBA to clear waits statistics. For example,
some companies use a single third-party utility for all backups, regardless of the
application, resulting in an extended time to complete SQL Server database backups.
While there are alternate options, which can perform very fast SQL Server backups (e.g.
native SQL backups, dedicated third-party SQL backup applications), the DBA is unable to
use them. In such cases, the DBA knows backup performance to be poor, but is unable to
make improvements and instead may opt to clear out wait statistics after each backup job
completes, to prevent any waits from the actual backup from influencing the interpretation
of the wait statistics as a whole. Alternatively, the DBA can filter BACKUP* waits from the
output.

The queries in Listing 7 will reveal when wait statistics were last cleared by an instance
restart, as well as if, and when, someone last cleared them manually. Simply compare the
two values to see if wait statistics have been manually cleared since the last restart.

SQL Server performance tuning using wait statistics: a beginner’s guide

32

SELECT [wait_type] ,
 [wait_time_ms] ,
 DATEADD(SS, -[wait_time_ms] / 1000, GETDATE())
 AS “Date/TimeCleared” ,
 CASE WHEN [wait_time_ms] < 1000
 THEN CAST([wait_time_ms] AS VARCHAR(15)) + ‘ms’
 WHEN [wait_time_ms] BETWEEN 1000 AND 60000
 THEN CAST(([wait_time_ms] / 1000)
 AS VARCHAR(15)) + ‘ seconds’
 WHEN [wait_time_ms] BETWEEN 60001 AND 3600000
 THEN CAST(([wait_time_ms] / 60000)
 AS VARCHAR(15)) + ‘ minutes’
 WHEN [wait_time_ms] BETWEEN 3600001 AND 86400000
 THEN CAST(([wait_time_ms] / 3600000)
 AS VARCHAR(15)) + ‘ hours’
 WHEN [wait_time_ms] > 86400000
 THEN CAST(([wait_time_ms] / 86400000)
 AS VARCHAR(15)) + ‘ days’
 END AS “TimeSinceCleared”
FROM [sys].[dm_os_wait_stats]
WHERE [wait_type] = ‘SQLTRACE_INCREMENTAL_FLUSH_SLEEP’;

/*
 check SQL Server start time - 2008 and higher
*/
SELECT [sqlserver_start_time]
FROM [sys].[dm_os_sys_info];

/*
 check SQL Server start time - 2005 and higher
*/
SELECT [create_date]
FROM [sys].[databases]
WHERE [database_id] = 2

Listing 7: When were waits stats last cleared, either manually or by a restart?

SQL Server performance tuning using wait statistics: a beginner’s guide

33

Ultimately, it is at the discretion of the DBAs to decide when to clear out wait statistics, if at
all. If in doubt, collect your wait statistics (see the next section) for a period that will capture
a representative workload (for example one month). The next month, collect the stats on
a more regular schedule, such as every Sunday, after scheduled code changes, and then
immediately clear out the sys.dm_os_wait_stats DMV. Compare each of the four one-
week data sets to the one-month set: do different wait patterns exist (for example, perhaps
the last week of the month, when various business reports run, has different waits), or are
they consistent across all five sets? If you see differences then you may want to consider
clearing out the stats on a regular (e.g. weekly) basis.

Reviewing the collected wait stats is discussed in more detail in the Reviewing Wait
Statistics section.

Creating the database

Let’s start by creating the database to store this data. Please note that in Listing 8 you
may need to change location, file size, and file growth settings, as appropriate for your
environment, and that you will need to back up the database on a regular basis.

USE [master];
GO

CREATE DATABASE [BaselineData] ON PRIMARY
(NAME = N’BaselineData’,
 FILENAME = N’M:\UserDBs\BaselineData.mdf’,
 SIZE = 512MB,
 FILEGROWTH = 512MB
) LOG ON
(NAME = N’BaselineData_log’,
 FILENAME = N’M:\UserDBs\BaselineData_log.ldf’,
 SIZE = 128MB,
 FILEGROWTH = 512MB
);

ALTER DATABASE [BaselineData] SET RECOVERY SIMPLE;

Listing 8: Database to store baseline performance data

SQL Server performance tuning using wait statistics: a beginner’s guide

34

Collecting the data

In order to collect wait statistics, on a regular schedule, the first step is to create a table to
hold the information, as shown in Listing 9 (as described previously, this script assumes the
BaselineData database exists).

USE [BaselineData];
GO

IF NOT EXISTS (SELECT *
 FROM [sys].[tables]
 WHERE [name] = N’WaitStats’
 AND [type] = N’U’)
 CREATE TABLE [dbo].[WaitStats]
 (
 [RowNum] [BIGINT] IDENTITY(1, 1) ,
 [CaptureDate] [DATETIME] ,
 [WaitType] [NVARCHAR](120) ,
 [Wait_S] [DECIMAL](14, 2) ,
 [Resource_S] [DECIMAL](14, 2) ,
 [Signal_S] [DECIMAL](14, 2) ,
 [WaitCount] [BIGINT] ,
 [Percentage] [DECIMAL](4, 2) ,
 [AvgWait_S] [DECIMAL](14, 2) ,
 [AvgRes_S] [DECIMAL](14, 2) ,
 [AvgSig_S] [DECIMAL](14, 2)
);
GO

CREATE CLUSTERED INDEX CI_WaitStats

 ON [dbo].[WaitStats] ([RowNum], [CaptureDate]);

Listing 9: Creating the dbo.WaitStats table

The second step is simply to schedule a query to run on a regular basis, which captures
the wait information to this table. Listing 10 derives from the resource waits query in Listing
5 (in turn adapted from Paul Randal’s previously-referenced wait statistics post). This
query uses a CTE to capture the raw wait statistics data, and then manipulates the output
to include averages, for example, average wait (AvgWait_S), and average signal wait
(AvgSig_S). It includes an additional, optional INSERT as it helps to separate each set
of data collected when reviewing the output (see the code download package for the full
listing).

SQL Server performance tuning using wait statistics: a beginner’s guide

35

USE [BaselineData];
GO

INSERT INTO dbo.WaitStats
 ([WaitType]
)
VALUES (‘Wait Statistics for ‘ + CAST(GETDATE() AS NVARCHAR(19))
);

INSERT INTO dbo.WaitStats
 ([CaptureDate] ,
 [WaitType] ,
 [Wait_S] ,
 [Resource_S] ,
 [Signal_S] ,
 [WaitCount] ,
 [Percentage] ,
 [AvgWait_S] ,
 [AvgRes_S] ,
 [AvgSig_S]
)
 EXEC
 (‘
 WITH [Waits] AS
 (SELECT
 [wait_type],
 [wait_time_ms] / 1000.0 AS [WaitS],
 ([wait_time_ms] - [signal_wait_time_ms]) / 1000.0
 AS [ResourceS],
 [signal_wait_time_ms] / 1000.0 AS [SignalS],
 [waiting_tasks_count] AS [WaitCount],
 100.0 * [wait_time_ms] / SUM ([wait_time_ms]) OVER()
 AS [Percentage],
 ROW_NUMBER() OVER(ORDER BY [wait_time_ms] DESC) AS [RowNum]
 FROM sys.dm_os_wait_stats
 WHERE [wait_type] NOT IN (
 N’’BROKER_EVENTHANDLER’’, N’’BROKER_RECEIVE_WAITFOR’’,
 N’’BROKER_TASK_STOP’’, N’’BROKER_TO_FLUSH’’,
 N’’BROKER_TRANSMITTER’’, N’’CHECKPOINT_QUEUE’’,
 N’’CHKPT’’, N’’CLR_AUTO_EVENT’’,
 N’’CLR_MANUAL_EVENT’’,
 <…rest of filter truncated…>
)
)

SQL Server performance tuning using wait statistics: a beginner’s guide

36

 SELECT
 GETDATE(),
 [W1].[wait_type] AS [WaitType],
 CAST ([W1].[WaitS] AS DECIMAL(14, 2)) AS [Wait_S],
 CAST ([W1].[ResourceS] AS DECIMAL(14, 2)) AS [Resource_S],
 CAST ([W1].[SignalS] AS DECIMAL(14, 2)) AS [Signal_S],
 [W1].[WaitCount] AS [WaitCount],
 CAST ([W1].[Percentage] AS DECIMAL(4, 2)) AS [Percentage],
 CAST (([W1].[WaitS] / [W1].[WaitCount]) AS DECIMAL (14, 4))
 AS [AvgWait_S],
 CAST (([W1].[ResourceS] / [W1].[WaitCount]) AS DECIMAL (14, 4))
 AS [AvgWait_S],
 CAST (([W1].[ResourceS] / [W1].[WaitCount]) AS DECIMAL (14, 4))
 AS [AvgRes_S],
 CAST (([W1].[SignalS] / [W1].[WaitCount]) AS DECIMAL (14, 4))
 AS [AvgSig_S]
 FROM [Waits] AS [W1]
 INNER JOIN [Waits] AS [W2]
 ON [W2].[RowNum] <= [W1].[RowNum]
 GROUP BY [W1].[RowNum], [W1].[wait_type], [W1].[WaitS],
 [W1].[ResourceS], [W1].[SignalS], [W1].[WaitCount],
 [W1].[Percentage]
 HAVING SUM ([W2].[Percentage]) - [W1].[Percentage] < 95;’
);
GO

Listing 10: Capturing wait stats data for analysis

We should capture wait statistics regularly, at least once a week or once a month. We
could do so more frequently, perhaps daily, but remember that unless we are clearing the
data regularly, they represent an aggregation of waits since the last restart. The longer
the waits have been accumulating, the harder it may be to spot smaller changes in wait
percentages. For example, let’s say the system suffers a short period (one hour) of poor
performance, during which the number of, and duration of, a certain wait type increases
significantly. This ‘spike’ may be hard to spot if you’re analyzing waits accumulated over
a long period (e.g. a month), since the spike might not affect significantly the overall wait
percentage for that period.

SQL Server performance tuning using wait statistics: a beginner’s guide

37

Reviewing wait statistics data

We’ll want to review regularly the waits for each SQL Server instance. If you capture them
once a week, then check on the trending once a week. The simple SELECT in Listing 11
retrieves from the dbo.WaitStats table all the data captured for the last 30 days.

SELECT *
FROM [dbo].[WaitStats]
WHERE [CaptureDate] > GETDATE() - 30
ORDER BY [RowNum];

Listing 11: Reviewing the last 30 days’ data

If you need to view older data, adjust the number of days as necessary, or remove the
predicate entirely. In some cases, it might be ideal to look at only the top wait for each set
of data collected, as shown in Listing 12 (again, alter the number of days as needed).

SELECT [w].[CaptureDate] ,
 [w].[WaitType] ,
 [w].[Percentage] ,
 [w].[Wait_S] ,
 [w].[WaitCount] ,
 [w].[AvgWait_S]
FROM [dbo].[WaitStats] w
 JOIN (SELECT MIN([RowNum]) AS [RowNumber] ,
 [CaptureDate]
 FROM [dbo].[WaitStats]
 WHERE [CaptureDate] IS NOT NULL
 AND [CaptureDate] > GETDATE() - 30
 GROUP BY [CaptureDate]
) m ON [w].[RowNum] = [m].[RowNumber]
ORDER BY [w].[CaptureDate];

Listing 12: Reviewing the top wait for each collected data set

SQL Server performance tuning using wait statistics: a beginner’s guide

38

There are many ways in which to examine this data, but our focus, initially, should be to
understand the top waits in our system and ensure they’re consistent over time. Expect to
tweak the capture and monitoring process in the first few weeks of implementation.

As discussed earlier, it’s up to the DBAs to decide on a clear, consistent policy on how
often to collect and analyze this data, and when to clear out the sys.dm_os_wait_
stats DMV. Here, by way of a starting point, we offer three possible options for clearing,
capturing, and reviewing this data:

Option 1:

• Never clear wait statistics
• Capture weekly (at the end of any business day)
• Review weekly

Option 2:

• Clear wait statistics on Sunday nights (or after a full weekly backup)
• Capture daily at the end of the business day
• Review daily, checking to see if the percentages for wait types vary throughout the

week

Option 3:

• Clear wait statistics nightly (after full or differential backups complete)
• Capture daily, at the end of the business day (optional: capture after any evening or

overnight processing)
• Review daily, checking to see how the waits and their percentages vary throughout the

week (and throughout the day if capturing more than once a day)

The critical point to remember is that you are capturing this data to achieve a baseline, and
to understand “normal” wait patterns on your systems. However, it’s common, as you’re
reviewing this information, to identify existing or potential bottlenecks. This is a good thing.
Having this information allows you to investigate an unexpected or high wait type, and
determine the possible source of the bottleneck that caused the wait, before it becomes a
production problem.

SQL Server performance tuning using wait statistics: a beginner’s guide

39

Managing historical data

As with all baseline data, it will cease to be relevant after a certain point, and you can
remove it from the BaselineData database. The query in Listing 13 removes data older
than 90 days, but you can adjust this value as appropriate for your environment. The
overall size of the dbo.WaitStats table will depend on the choices you make on how
often to capture the data and how long to retain it.

DELETE FROM [dbo].[WaitStats]
WHERE [CaptureDate] < GETDATE() – 90;

Listing 13: Purging data over 90 days old

Alternatively, you could implement a dbo.usp_PurgeOldData stored procedure, as
shown in Listing 14.

IF OBJECTPROPERTY(OBJECT_ID(N’usp_PurgeOldData’), ‘IsProcedure’) = 1
 DROP PROCEDURE usp_PurgeOldData;
GO

CREATE PROCEDURE dbo.usp_PurgeOldData
 (
 @PurgeWaits SMALLINT

)
AS
 BEGIN;
 IF @ PurgeWaits IS NULL
 BEGIN;
 RAISERROR(N’Input parameters cannot be NULL’, 16, 1);
 RETURN;
 END;

 DELETE FROM [dbo].[WaitStats]
 WHERE [CaptureDate] < GETDATE() - @PurgeWaits;

 END;

Listing 14: The dbo.usp_PurgeOldData stored procedure

SQL Server performance tuning using wait statistics: a beginner’s guide

40

To wait statistics data older than 90 days, execute the following statement:

EXEC dbo.usp_PurgeOldData 90

Summary

We hope that this whitepaper offers a good “end-to-end” view of how to use wait statistics
to troubleshoot current and historical performance issues on your SQL Server instances.
Wait statistics are a very useful diagnostic tool that can help us direct our tuning efforts
and avoid wasting time, but are most effective when we use them in conjunction with
supporting tools and data, such as virtual files statistics and performance counters.

SQL Server performance tuning using wait statistics: a beginner’s guide

41

Further reading

1. Troubleshooting SQL Server: A Guide for the Accidental DBA (free eBook), by Jonathan
Kehayias and Ted Krueger
https://www.simple-talk.com/books/sql-books/troubleshooting-sql-server-a-guide-for-the-
accidental-dba/

2. Performance Tuning using SQL Server Dynamic Management Views (free eBook), by
Louis Davidson and Tim Ford
https://www.simple-talk.com/books/sql-books/performance-tuning-with-sql-server-
dynamic-management-views/

3. Wait statistics, or please tell me where it hurts (blog post), by Paul Randal
http://www.sqlskills.com/blogs/paul/wait-statistics-or-please-tell-me-where-it-hurts/

4. SQL Server Performance Troubleshooting Using Wait Statistics (Pluralsight video training
course, subscription required), by Paul Randal
http://pluralsight.com/training/Courses/TableOfContents/sqlserver-waits

5. Diagnosing and Resolving Latch Contention on SQL Server (Microsoft whitepaper)
http://www.microsoft.com/en-us/download/details.aspx?id=26665

6. Trimming Transaction Log Fat (blog post), by Paul Randal
http://www.sqlperformance.com/2012/12/io-subsystem/trimming-t-log-fat

7. Description of the waittype and lastwaittype columns in the master.dbo.sysprocesses
table in SQL Server 2000 and SQL Server 2005 (Microsoft Support article)
http://support.microsoft.com/kb/822101

https://www.simple-talk.com/books/sql-books/troubleshooting-sql-server-a-guide-for-the-accidental-dba/
https://www.simple-talk.com/books/sql-books/troubleshooting-sql-server-a-guide-for-the-accidental-dba/
https://www.simple-talk.com/books/sql-books/performance-tuning-with-sql-server-dynamic-management-views/
https://www.simple-talk.com/books/sql-books/performance-tuning-with-sql-server-dynamic-management-views/
http://www.sqlskills.com/blogs/paul/wait-statistics-or-please-tell-me-where-it-hurts/
http://pluralsight.com/training/Courses/TableOfContents/sqlserver-waits
http://www.microsoft.com/en-us/download/details.aspx?id=26665
http://www.sqlperformance.com/2012/12/io-subsystem/trimming-t-log-fat
http://support.microsoft.com/kb/822101

SQL Server performance tuning using wait statistics: a beginner’s guide

42

About the authors

Erin Stellato is a Principal Consultant with SQLskills. Erin discovered a passion

for all things data while completing her M.S. in Motor Control at the University

of Michigan. As she entered the IT field, she discovered the power of relational

databases. During her IT career, Erin has worked closely with customers, users and

colleagues to support business solutions across a variety of industries including

healthcare, insurance, finance and government. These experiences provided

opportunities to see varied implementations, troubleshoot hardware-related

problems, give guidance on configuration and design, and provide consultation on

optimization, availability and recoverability. Not surprisingly, Erin’s interests include

Internals, Performance Tuning, High Availability and Disaster Recovery. More than

anything though, she likes to know how SQL Server works, so she can fix it when it

breaks.

Erin is an active member of the SQL Server community. She currently runs the

PASS Performance Virtual Chapter and is involved in the Ohio North SQL Server

User Group. She also presents at user groups, SQLSaturdays and the PASS

Summit, and blogs about her experiences at SQLskills.

http://www.sqlskills.com/
http://www.sqlskills.com/blogs/erin/

SQL Server performance tuning using wait statistics: a beginner’s guide

43

Jonathan Kehayias is a Principal Consultant and Trainer for SQLskills, one of the

most well-known and respected SQL Server training and consulting companies in

the world. Jonathan is a SQL Server MVP and one of the few Microsoft Certified

Masters for SQL Server 2008 outside of Microsoft. Jonathan frequently blogs about

SQL Server, presents sessions at PASS Summit, SQLBits, SQL Connections and

local SQL Saturday events, and has remained a top answerer of questions on the

MSDN SQL Server Database Engine forum since 2007. He is also author of the

book Troubleshooting SQL Server: A Guide for the Accidental DBA.

Jonathan is a performance tuning expert, for both SQL Server and hardware, and

has architected complex systems as a developer, business analyst, and DBA.

Jonathan also has extensive development (T-SQL, C#, and ASP.Net), hardware and

virtualization design expertise, Windows expertise, Active Directory experience, and

IIS administration experience.

Outside of SQL Server, Jonathan is also a Drill Sergeant in the U.S. Army Reserves

and is married with two young children. On most nights he can be found at the

playground, in a swimming pool, or at the beach with his kids.

http://www.sqlskills.com/
https://www.simple-talk.com/books/sql-books/troubleshooting-sql-server-a-guide-for-the-accidental-dba/

SQL Server performance tuning using wait statistics: a beginner’s guide

44

About the technical editor

Tony Davis is a highly-experienced technical editor at Red Gate Software, based

in Cambridge (UK). He specializes in databases, and especially SQL Server. He

edits and writes for both the Simple-talk.com and SQLServerCentral.com websites

and newsletters, with a combined audience of over 1.5 million subscribers.

You can sample his short-form writing at either his Simple-Talk.com blog or his

SQLServerCentral.com author page.

As the editor behind most of the SQL Server books published by Red Gate, he

spends much of his time helping others express what they know about SQL Server,

but is also the lead author of the book, SQL Server Transaction Log Management.

In his spare time, he enjoys running, football, contemporary fiction and real ale.

http://www.red-gate.com/
https://www.simple-talk.com/blogs/author/2130-tony-davis/
http://www.sqlservercentral.com/Authors/Articles/Tony_Davis/295097/
https://www.simple-talk.com/books/sql-books/sql-server-transaction-log-management-by-tony-davis-and-gail-shaw/

