
1

SQLskills Immersion Event
IE0: Accidental/Junior DBA

Module 4: Backup and Restore
Erin Stellato

Erin@SQLskills.com

2
© SQLskills, All rights reserved.

https://www.sqlskills.com

Introduction

 One of the most important tasks a DBA has to perform is a database 
backup

 This is a very easy task to automate
 You would be surprised at how often we hear about systems where 

backups are old, or simply don’t exist
 Secondary to backups, but no less important, are restores
 How do you know if you have a successful backup if you’ve never 

restored it?
 How do you know how long it will take to restore a database if you’ve 

never tried it?
 The worst time to test your restore methodology is when there’s a 

problem and your manager is standing right next to you
 This is why we say, “Plan a recovery strategy, not a backup strategy”



2

3
© SQLskills, All rights reserved.

https://www.sqlskills.com

Overview

 The transaction log and database recovery models
 Backup fundamentals
 Restore fundamentals

4
© SQLskills, All rights reserved.

https://www.sqlskills.com

Transaction Log

 The transaction log is a physical file, divided up into chunks called 
virtual log files, or VLFs for short
 VLFs are logically defined within the log file

 A VLF is either wholly active or inactive
 There is always at least one active VLF

 Newly created VLFs are inactive and unused

Active

virtual log file

Inactive/unused 

virtual log file

Inactive/unused 

virtual log file

Inactive/unused 

virtual log file

Inactive/unused

virtual log file

Virtual log file 1 Virtual log file 2 Virtual log file 3 Virtual log file 4 Virtual log file 5



3

5
© SQLskills, All rights reserved.

https://www.sqlskills.com

Transaction Log

 When a transaction modifies the database, a log record is written to 
the transaction log

 The first log record written to a VLF makes the VLF active

Active

virtual log file

Inactive/unused 

virtual log file

Inactive/unused 

virtual log file

Inactive/unused 

virtual log file

Inactive/unused

virtual log file

Virtual log file 1 Virtual log file 2 Virtual log file 3 Virtual log file 4 Virtual log file 5

Active

virtual log file

New 

transaction 

begins

6
© SQLskills, All rights reserved.

https://www.sqlskills.com

Moving Through the Transaction Log

 As more log records are written, more VLFs become active
 SQL Server tracks:

 Which portion of the transaction log is still required
 The start of the oldest uncommitted transaction
 The most recent log record written

 The oldest uncommitted transaction defines the oldest active LSN and 
therefore the oldest active VLF

Active

virtual log file

Active 

virtual log file

Inactive/unused 

virtual log file

Inactive/unused

virtual log file

Virtual log file 1 Virtual log file 2 Virtual log file 3 Virtual log file 4 Virtual log file 5

Min LSN (start of oldest 

uncommitted transaction)

Max LSN (last log 

record written)

Active 

virtual log file



4

7
© SQLskills, All rights reserved.

https://www.sqlskills.com

Transaction Log Clearing

 A VLF can be made inactive once all log records are not required
 This is called clearing (or truncating) the transaction log

 Log clearing is done by a log backup in the FULL or BULK_LOGGED 
recovery models, or by a checkpoint in SIMPLE recovery model
 There are no exceptions to this

 Transaction log backup or checkpoint occurs…

Inactive

virtual log file

Inactive 

virtual log file

Active 

virtual log file

Active 

virtual log file

Inactive/unused

virtual log file

Virtual log file 1 Virtual log file 2 Virtual log file 3 Virtual log file 4 Virtual log file 5

Min LSN (start of oldest 

uncommitted transaction)

Max LSN (last log 

record written)

Active

virtual log file

Active 

virtual log file

8
© SQLskills, All rights reserved.

https://www.sqlskills.com

Transaction Log Clearing

 All that happens is that zero or more VLFs are marked inactive
 Nothing is zeroed, removed, overwritten (“clearing” is a misnomer)
 The transaction log file size does not change (“truncating” is a misnomer)

Inactive

virtual log file

Inactive 

virtual log file

Active 

virtual log file

Active 

virtual log file

Inactive/unused

virtual log file

Virtual log file 1 Virtual log file 2 Virtual log file 3 Virtual log file 4 Virtual log file 5

Min LSN (start of oldest 

uncommitted transaction)

Max LSN (last log 

record written)



5

9
© SQLskills, All rights reserved.

https://www.sqlskills.com

Circular Nature of the Transaction Log

 Once the end of the transaction log is reached, it wants to wrap 
around and start using the first VLF again, as long as log clearing has 
occurred, without having to grow the transaction log file

 The log manager checks the active status of the first VLF in the 
transaction log

Inactive 

virtual log file

Inactive 

virtual log file

Inactive 

virtual log file

Active 

virtual log file

Active 

virtual log file

Virtual log file 1 Virtual log file 2 Virtual log file 3 Virtual log file 4 Virtual log file 5

Min LSN (start of oldest 

uncommitted transaction)

10
© SQLskills, All rights reserved.

https://www.sqlskills.com

Circular Nature of the Transaction Log (2)

 If the first VLF is inactive, the transaction log can wrap
 Note that VLF 1 is reactivated and becomes VLF 6

 Log records continue to be written
 See example in Paul’s post Inside the Storage Engine: More on the 

circular nature of the log
 https://www.sqlskills.com/ie0/tlogcircular

 If log clearing does not occur, the transaction log will grow forever

Active 

virtual log file

Inactive 

virtual log file

Inactive 

virtual log file

Active 

virtual log file

Active 

virtual log file

Virtual log file 6 Virtual log file 2 Virtual log file 3 Virtual log file 4 Virtual log file 5

Min LSN (start of oldest 

uncommitted transaction)
Max LSN (last log 

record written)



6

Demo

Examining VLF usage

12
© SQLskills, All rights reserved.

https://www.sqlskills.com

What is Recovery Model?

 Database property that has 3 options:
 FULL
 BULK_LOGGED
 SIMPLE

 Determines:
 How some transactions are logged
 If backups of the transaction log are required (and even allowed)
 The type of restore operations available

 To determine the best recovery model for a database, you need to 
know the SLA for the corresponding application
 Service Level Agreements (SLAs) are determined by the business

 Each recovery model has pros and cons that you need to understand, 
not just to help you decide the best model, but also because it affects 
what you have to do as the DBA



7

13
© SQLskills, All rights reserved.

https://www.sqlskills.com

Downtime SLA

 Maximum allowable downtime or RTO
 Recovery Time Objective

 Commonly discussed in terms of ‘number of nines’
 5-nines = 99.999% uptime

 Slightly over 5 minutes downtime per year 

 4-nines = 99.99% uptime
 Almost 52.5 minutes downtime per year

 3-nines = 99.9% uptime
 Almost 8.75 hours downtime per year

 Must consider how downtime is defined for you
 Is it 24x7 or, maybe just 9am-5pm weekdays

 Achieving 5-nines of 24x7 operation is very hard
 Management may ask for zero downtime!

 Not technically possible

 You have to know how technologies introduce downtime
 e.g. failover time with an Availability Group

14
© SQLskills, All rights reserved.

https://www.sqlskills.com

Data Loss SLA

 Maximum allowable data loss or RPO
 Recovery Point Objective

 Must consider how data loss is defined for you
 Number of transactions
 Work done in a period of time

 May be different for different tables or databases
 Zero data loss is easier to achieve compared to 5-nines uptime
 Press the business owners for a proper answer
 Management may ask for zero data loss too!

 This IS achievable, but is it absolutely necessary?



8

15
© SQLskills, All rights reserved.

https://www.sqlskills.com

FULL Recovery Model

 Everything is fully logged
 Log truncation usually not possible until log backup
 Operations like creating or rebuilding an index create as much log as the size 

of the index being created/rebuilt

 Requires transaction log backups to prevent the log file from 
continually growing

 Allows for point-in-time recovery 
 Potentially zero data loss in the event of a failure

16
© SQLskills, All rights reserved.

https://www.sqlskills.com

BULK_LOGGED Recovery Model

 Minimal logging for a few things, full logging otherwise
 Log truncation usually not possible until log backup
 The complete list of minimally-logged operations is in the Books Online 

topic The Transaction Log (SQL Server)
 https://bit.ly/35iaUKP

 Requires transaction log backups to prevent the log file from 
continually growing
 Log backups will NOT be smaller than when in FULL!

 Data loss is possible
 Used for more advanced scenarios
 For ease of recovery, do not use unless you’re very familiar with its 

implications



9

17
© SQLskills, All rights reserved.

https://www.sqlskills.com

SIMPLE Recovery Model

 Same logging as for BULK_LOGGED
 Log is cleared/truncated on checkpoint

 Transaction log backups are not possible
 If you have a problem and need to restore a backup, you can only 

restore to the last full backup
 Potential for significant data loss, depending on full backup frequency

18
© SQLskills, All rights reserved.

https://www.sqlskills.com

Recovery Models and Log Backups

 FULL recovery model
 All changes are fully logged therefore log backups will support:

 Up-to-the-minute recovery by backing up the tail-of-the-log
 Point-in-time recovery (requires STOPAT option and either a specific time or 

marked transaction)

 BULK_LOGGED recovery model 
 Bulk operations are minimally logged 

 If the tail-of-the-log contains a minimally-logged operation and the data files are 
unavailable, the tail-of-the-log backup will succeed but will corrupt the database 
when restored

 NO point-in-time recovery possible for the time covered by a log backup 
containing a minimally-logged operation

 SIMPLE recovery model does not support log backups



10

19
© SQLskills, All rights reserved.

https://www.sqlskills.com

Switching Recovery Models

 When switching to FULL for the first time, the database behaves as if it 
in the SIMPLE recovery model until the first full backup is performed
 This is called being in ‘pseudo-SIMPLE’
 The transaction log will clear whenever a checkpoint occurs

 The number one cause of transaction log files growing out of control 
is that a database has been running in pseudo-SIMPLE and then 
someone takes a backup, really switching the database into FULL
 The log will grow forever unless log backups are also being taken, or until it 

runs out of disk space

 Switching between FULL and BULK_LOGGED does NOT break the log 
backup chain, and does not affect log shipping
 This is NOT possible with Database Mirroring or Availability Groups

 Switching to SIMPLE breaks the log backup chain

20
© SQLskills, All rights reserved.

https://www.sqlskills.com

How Does Recovery Model Affect DBA Tasks?

 Each recovery model has pros and cons that you need to understand, 
not just to help you decide the best model, but also because it affects 
what you have to do as the DBA

 Regardless of the recovery model, you need to schedule full backups
 For FULL and BULK_LOGGED, transaction log backups are required
 Only FULL allows point-in-time recovery

 *Can be possible if no minimally-logged operations have occurred

SIMPLE BULK_LOGGED FULL

Full backups 

needed?

YES YES YES

Transaction log 

backups needed?

NO YES YES

Point-in-time 

recovery?

NO NO* YES



11

Demo

Changing recovery model

22
© SQLskills, All rights reserved.

https://www.sqlskills.com

Overview

 The transaction log and database recovery models
 Backup fundamentals
 Restore fundamentals



12

23
© SQLskills, All rights reserved.

https://www.sqlskills.com

Why Take Backups?

 To allow a restore to take place
 Disaster recovery

 DR is not just for hardware failure, it can also be for recovering data that was 
accidentally changed or deleted

 Log shipping
 Initializing Database Mirroring or Availability Groups
 Initializing Replication
 Transferring a database to another environment (e.g. development, test)
 Moving/upgrading a database

 To manage the size of the transaction log
 Just in case…

 Before performing a database repair
 Before performing an upgrade of any kind

 Hardware, OS, SQL Server

24
© SQLskills, All rights reserved.

https://www.sqlskills.com

How to Backup

 Native backups to disk
 Native backups to cloud

 Azure
 Amazon
 Other

 VSS
 Volume Shadow Copy Service
 Framework that contains a set of functions used by third-party applications 

to perform backups

 VDI 
 APIs to hook into SQL Server backups
 e.g. LiteSpeed, Redgate SQL Backup



13

26
© SQLskills, All rights reserved.

https://www.sqlskills.com

Recommended Backup Options

 WITH CHECKSUM
 Tests all page checksums in the database
 Calculates checksum over entire backup and puts it into the backup header
 With this option, you can use RESTORE … WITH VERIFYONLY, CHECKSUM

 Does everything except actually restoring the database
 Read all the pages in the backup and checks any page checksums
 Re-calculates the backup stream checksum and checks against the one in the 

header

 WITH COMPRESSION
 Backup compression sometimes pre-allocates space for the backup for 

performance, which can lead to backup failures when the destination drive 
does not have enough space

 Trace flag 3042 prevents this behavior (2008+, see KB 2001026)

 Either setting can be specified for a backup, or enabled for all backups 
by default (instance settings covered in Module 2)



14

27
© SQLskills, All rights reserved.

https://www.sqlskills.com

Native Backups

 Manually
 Use appropriate BACKUP statement for type of backup performing

 SQL Server Management Studio (SSMS)
 Generate a one-time backup
 Create scheduled backups
 Create a script from which to build a backup

 Database Maintenance Plan Wizard
 SQL Server Management Objects (SMO)
 Ola Hallengren’s scripts
 Create backup devices to simplify naming

 Local: do not use UNC names!
 Network: use FULLY QUALIFIED UNC names

28
© SQLskills, All rights reserved.

https://www.sqlskills.com

Full Database Backups

 Creates image for a possible recovery starting point
 Complete image of all data, etc. (less free space)
 Data is not changed, it’s a straight copy
 Data is read sequentially
 Does not require a backup ‘window’
 Usually NOT used alone as other backups must be used to roll-forward 

to a later point in time
 Exception: SIMPLE recovery model

 Backup image is backup completion, meaning that if restored, the 
image will be the committed changes up to the time that the backup 
finished



15

29
© SQLskills, All rights reserved.

https://www.sqlskills.com

Full Database Backup Only Strategy

 Full backups only provide a single point in time to which the database 
can be restored

 If there is a failure, all work since the last full backup is lost

Primary

Log

Time

D

B

C

R

E

A

T

E

F

u

l

l

D

B

B

a

c

k

u

p

F

u

l

l

D

B

B

a

c

k

u

p

F

u

l

l

D

B

B

a

c

k

u

p

Monday 

9AM

Monday 

10PM

Tuesday

10PM

Wednesday

10PM

Thursday

2PM

30
© SQLskills, All rights reserved.

https://www.sqlskills.com

Transaction Log Backups

 Information about the changes since the last transaction log backup 
(can be described as incremental)

 Taken at frequent intervals therefore usually fairly small
 Once backed up, SQL Server clears the inactive portion (the inactive 

VLFs) of the log, if possible
 This can help to keep the transaction log file small and manageable because 

the file wraps around
 Remember, SQL Server does NOT release the file’s free space

 Key purposes
 Allow roll-forward to point of failure
 Allow recovery to an arbitrary point in time



16

31
© SQLskills, All rights reserved.

https://www.sqlskills.com

Full Database Plus Log Backup Strategy

 Relatively common configuration
 Easy to setup
 Easy to control
 Easy to recover

 Costly to manage
 Takes more time
 Requires more space than just full backups

32
© SQLskills, All rights reserved.

https://www.sqlskills.com

Full Database Backup Plus Log Backups Strategy

 Up-to-point-of-crash recovery is possible with no data loss
 Possible to work around a damaged full backup if prior log backups 

are still available
 Restoring a large number of log backups can take a significant 

amount of time; you may need to include differential backups

Primary

Log

Time

D

B

C

R

E

A

T

E

F

u

l

l

D

B

B

a

c

k

u

p

F

u

l

l

D

B

B

a

c

k

u

p

F

u

l

l

D

B

B

a

c

k

u

p

t2

T

L

O

G

T

L

O

G

t1

T

L

O

G

T

L

O

G

T

L

O

G

t3 t4 t5

T

L

O

G

T

L

O

G

T

L

O

G

t7t6 t8

Monday 

9AM

Monday 

10PM

Tuesday

10PM

Wednesday

10PM

Wednesday

8:07PM



17

33
© SQLskills, All rights reserved.

https://www.sqlskills.com

Differential Database Backups

 Similar to full backup except only includes the extents modified since 
the last full backup
 i.e. differential backups are NOT incremental, they are cumulative

 Time to create the backup is proportional to the number of extents 
modified since last full backup.

 Excellent to reduce roll-forward time on restore
 Faster than restoring the comparable transaction log backups for 

same timeframe
 How big will the next differential backup be?

 https://www.sqlskills.com/ie0/dbchangesincefull

34
© SQLskills, All rights reserved.

https://www.sqlskills.com

t2

Full, Diff Database, and Log Backup Strategy

 Differential database backups are only the extents changed since the 
last full database backup

 Simplifies recovery time by allowing you to recover the database, the 
last differential, and only the logs after that, until the time of the 
disaster

Primary

Log

Time

T

L

O

G

T

L

O

G

t1

D

B

C

R

E

A

T

E

F

u

l

l

D

B

B

a

c

k

u

p

D

I

F

F

T

L

O

G

T

L

O

G

T

L

O

G

D

I

F

F

T

L

O

G

t3 t5t4 t6

T

L

O

G

T

L

O

G

D

I

F

F

T

L

O

G

t8t7 t9

Monday 

9AM

Monday 

10PM
Tuesday

10PM

Wednesday

10PM

Thursday

10PM



18

35
© SQLskills, All rights reserved.

https://www.sqlskills.com

Full Database Backup Concerns 

 Large database
 Time: reading a lot of data takes a lot of time
 Space: wasting space on backup media with data that has not changed

 Solution: partitioning or backup compression

 Cost: in terms of time, space, and media storage

 Log backups do not clear the log during full (or diff) backups
 Log can fill and/or cause significant auto-growth
 Log needs to be as large as space required to hold active transactions during 

full backup
 Longer the full, larger the log

 Log clearing is deferred until the data backup completes
 Note: You can still take transaction log backups during a backup, but the log 

will not clear until the backup finishes

36
© SQLskills, All rights reserved.

https://www.sqlskills.com

The Log Backup Chain

 The log backup chain is a continuous sequence of log backups
 If the log backup chain is not complete (meaning one or more log 

backups are damaged or missing) then complete recovery is not 
possible
 Must have complete chain of log backups from which to restore

 Consider using mirrored backups of the transaction log and/or storing 
them on redundant disks

 What breaks the log chain?
 Clearing the transaction log manually (using WITH TRUNCATE_ONLY or 

WITH NO_LOG in SQL Server 2005 or earlier)
 Changing the database to SIMPLE recovery model (and then changing back)
 Deleting, overwriting, or throwing away a log backup that was not made as 

COPY_ONLY
 Reverting from a database snapshot



19

Demo

Taking full and transaction log backups

38
© SQLskills, All rights reserved.

https://www.sqlskills.com

Tail-Of-The-Log Backups
Up-To-The-Point-Of-Crash Recovery

 This is the best case!
 If the transaction log is accessible and the data portion of the 

database is damaged (in part or entirely) then you might be able to 
back up the transaction log

 If you can backup the transaction log and you have all of the 
transaction log backups since the last full and you’re in FULL recovery 
model (or BULK_LOGGED but no minimally logged operations have 
occurred) then up-to-the-minute recovery is possible and with NO 
DATA LOSS!



20

39
© SQLskills, All rights reserved.

https://www.sqlskills.com

How to Backup the Tail of the Log?

 Use the NO_TRUNCATE clause with the BACKUP LOG command
 BACKUP LOG dbname TO device1 WITH NO_TRUNCATE

 Through SSMS (not recommended)
 Right-click on a working database, choose Tasks, Backup Database… , select 

the damaged database from drop-down
 Choose the Options ‘page’ on backup dialog
 Under the Transaction Log section

 Truncate the transaction log by removing inactive entries
 SELECT THIS ONE >>> Backup the tail of the log, and leave the database in a 

restoring state
 i.e. BACKUP WITH NO_TRUNCATE, NORECOVERY

 Important: If you want to keep your database ‘partially available’ you 
should use the Transact-SQL syntax instead
 You do NOT want your database put into the restoring state

Demo

Tail-of-the-log backups



21

41
© SQLskills, All rights reserved.

https://www.sqlskills.com

Overview

 The transaction log and database recovery models
 Backup fundamentals
 Restore fundamentals

42
© SQLskills, All rights reserved.

https://www.sqlskills.com

How to Restore

 In an emergency, always go to the operations guide/DR 
handbook/run book
 If you don’t have one, it is recommended to create one

 Operations guide should define:
 Location of backups
 How to put together the restore sequence, depending on what is damaged
 Commands or scripts to use
 Amount of time expected per step during restore process

 Recommended to NOT use SSMS when recovering from disaster: you 
want to see what’s happening

 Make sure to use the correct RESTORE options
 Always want to restore the fewest backups possible to reduce 

downtime
 This is one of the most important things to practice as a DBA



22

43
© SQLskills, All rights reserved.

https://www.sqlskills.com

Recovery with Full, Diff, Log

 Full backup on Monday, differential backups on Tuesday and Wednesday
 In the event of failure at time x on Thursday…

 Backup “tail” of log
 Restore Monday full, Wednesday differential, and all log backups up to the point 

of the failure

t2

Primary

File1

File2

File3

Log

Time

T

L

O

G

T

L

O

G

t1

F
ile

g
ro

u
p

T

L

O

G

T

L

O

G

T

L

O

G

T

L

O

G

t3 t5t4 t6

T

L

O

G

T

A

I

L

t8t7 x
Includes changes from 

t7 up to the time of 

the disaster.

D

B

C

R

E

A

T

E

Disaster


F

u

l

l

D

B

B

a

c

k

u

p

D

I

F

F

D

I

F

F

Monday 

9AM

Monday 

10PM
Tuesday

10PM

Wed

10PM

44
© SQLskills, All rights reserved.

https://www.sqlskills.com

Falling Back on Log Backups

 What if the differential backup from Wednesday was bad?
 Restore Monday’s full, latest working differential (Tuesday) and all log 

backups up to the point of the failure (t4 through t7) and finally the 
tail of the log (t8)

 Begs question of how long to keep backups?

t2

Primary

File1

File2

File3

Log

Time

T

L

O

G

T

L

O

G

t1

D

B

C

R

E

A

T

E

F
ile

g
ro

u
p

T

L

O

G

T

L

O

G

T

L

O

G

T

L

O

G

t3 t5t4 t6

T

L

O

G

t8t7 x

x

Disaster


T

A

I

L

Includes changes from 

t7 up to the time of 

the disaster.
F

u

l

l

D

B

B

a

c

k

u

p

D

I

F

F

D

I

F

F

Monday 

9AM

Monday 

10PM
Tuesday

10PM

Wed

10PM



23

45
© SQLskills, All rights reserved.

https://www.sqlskills.com

Recovery Completion State: RECOVERY 

 RESTORE … WITH RECOVERY

 This is the default – catches a lot of people out

 Using WITH RECOVERY leaves the database operational and no
additional backups (differential or log) can be restored

 Active transactions at the time the backup completed are rolled back
 i.e. the UNDO portion of recovery is run, which generates log records to 

affect the rolling back of active transactions
 As the database has generated new transaction log records, no additional 

backups can be restored

 The restored database is left in a transactionally consistent state and 
the restore sequence is completed

46
© SQLskills, All rights reserved.

https://www.sqlskills.com

Recovery Completion State: NORECOVERY

 RESTORE … WITH NORECOVERY

 Using WITH NORECOVERY does not leave the database operational 
and additional backups (differential or log) can be restored

 Active transactions at the time the backup completed are not rolled 
back

 The database remains inaccessible and in the RESTORING state until 
recovery is manually completed or another backup is restored

 The REDO part of recovery will have been performed
 Slightly confusing, but REDO is done on each backup that is restored as it 

does not affect whether more backups can be restored



24

47
© SQLskills, All rights reserved.

https://www.sqlskills.com

Recovery Completion State
Important Points

 RECOVERY is the default
 Use NORECOVERY for safety and make it your default for all restore 

operations in the restore sequence
 If you make a mistake, you’re back to square one
 Required when setting up database mirroring or log shipping on the initial 

restore of the full database backup 

 Use RESTORE DATABASE … WITH RECOVERY to complete the restore 
sequence and bring the database online

48
© SQLskills, All rights reserved.

https://www.sqlskills.com

Restoring an Entire Database to a Point in Time

 Common example: restore a database to the state it was in before a 
user or application error occurred (e.g. dropping a table)

 Start with most recent full backup and proceed with smallest set of 
backups to the desired point

 Best practice is to use WITH STOPAT on all operations in the restore 
sequence
 Date and time specific
 Transaction name (i.e. marked transaction)
 LSN

 Note: All work after the stop point is lost



25

Demo

Restore from backup, recovery options, and point-in-time restore

50
© SQLskills, All rights reserved.

https://www.sqlskills.com

Continuity of the Log Chain in P.I.T.

 Updating a database after point-in-time restore creates a new 
recovery path

 Follow point-in-time restore with a new full backup to avoid having to 
point-in-time restore again if another disaster occurs

 The log backups taken after the database was recovered are only 
useful if the exact same recovery path is followed
 Log backup #3 ends the first recovery path

Log3

Time

Log4 Log5 Log6

Log2Log1

DB Backup

At 12 noon, the database is restored and recovered to 11:00 AM

12 PM11 AM



26

51
© SQLskills, All rights reserved.

https://www.sqlskills.com

Restore Sequence: Media Failure

 Backup the tail of the log
 Identify damaged devices (i.e. what needs to be restored?)
 Verify backups (location and existence)
 Provision undamaged location to restore to
 Decide the SMALLEST restore possible: page, file, filegroup, multiple 

filegroups, database…
 Restore (all WITH NORECOVERY):

 Full database backup
 Optionally, restore differentials
 All required log backups
 Tail-of-the-log backup

 Finish recovering the database
 RESTORE DATABASE … WITH RECOVERY

52
© SQLskills, All rights reserved.

https://www.sqlskills.com

Restore Sequence: Human Error

 Investigate nature of problem: do you know what the error was, and 
when it occurred?
 Excellent if you do know, not so good if you don’t
 Are you auditing? Can you look in audit logs? Default trace?
 Can you restore to other location and attempt to find when data changed?

 PAINFULLY time consuming
 RESTORE … WITH STANDBY and slowly query the database

 Third-party products can help (but beware, not infallible!)

 Possibly take damaged component offline
 Choose a restore location

 In place or alternate location

 Begin restore sequence as for media failure
 Possibly merge in damaged data to existing database



27

53
© SQLskills, All rights reserved.

https://www.sqlskills.com

Restore in Place

 All application dependent information is already on the server (i.e. the 
application ecosystem)

 Replaces current database
 Must replace damaged devices first or use WITH MOVE to restore on 

stable media
 Restore based on backup strategy
 No further steps necessary as everything required is already there

 Easiest restore location by far!

54
© SQLskills, All rights reserved.

https://www.sqlskills.com

Restoring to Alternate Location

 Same instance, different name – relatively easy!
 Consider name changes to jobs and SQLIS packages, and anything that 

connects directly
 Client connectivity issues

 Different instance on same server (includes all of the above)
 Different logins
 Different msdb (Agent Jobs/SSIS packages)
 Different service accounts (mail profiles)
 Different master (user-defined SPs do not exist)
 Different servername (client connectivity)

 Physically different server (includes all of the above) 
 Any external dependencies? (batch files, email…)
 Local Windows authentication accounts may not exist

 KB 246133 on migrating logins between servers



28

55
© SQLskills, All rights reserved.

https://www.sqlskills.com

Restoring to Non-Enterprise

 SQL Server 2005 will not allow a database that contains table/index 
partitioning to restore on any Edition except Enterprise and 
Developer

 SQL Server 2008+ expands this list to also include:
 Change data capture
 Data compression
 Transparent data encryption

 All of these require elevated privileges except data compression, 
which only requires ALTER TABLE

 This can be disastrous in a disaster recovery situation as the database 
must be restored BEFORE the server can tell whether any of these are 
present

 Use sys.dm_db_persisted_sku_features to check

56
© SQLskills, All rights reserved.

https://www.sqlskills.com

Restoring to Non-Enterprise in SQL Server 2016 SP1

 Select features that were previously Enterprise-only are available in 
Standard Edition of SQL Server 2016 SP1 and higher, for example:
 Columnstore
 Partitioning
 Compression
 In-Memory OLTP

 There are limitations with these features in Standard Edition
 It may be possible to restore a database previously running on 

Enterprise to Standard Edition
 Best practice: stay with the original edition



29

57
© SQLskills, All rights reserved.

https://www.sqlskills.com

Data Encryption

 When restoring a database that contains encrypted data there are 
multiple possibilities:
 Same server/instance – no troubles
 Different instance or different server – different service master key

 Must open up the database master key and RE-encrypt the data using the new 
instance’s service master key – EASY if you know to do it and you have the 
password with which the original database master key was created

 Especially important in SQL Server 2008+ with Transparent Data 
Encryption
 Encrypted database cannot be restored without the encryption key

58
© SQLskills, All rights reserved.

https://www.sqlskills.com

VLDB Concerns when Restoring 

 Restoring whole database can take a lot of time
 Media failure

 If isolated corruption can restore the file or filegroup from a full backup
 Must go up-to-the-point-of-the-crash and only if piecemeal restore is an 

option

 User error
 Best choice is a secondary server that’s not quite up to date, e.g. log 

shipping with a load delay!

 VLDB backup and restore is very challenging
 Do as much as possible to speed things up
 Compression, striping, partitioning, granular backups



30

59
© SQLskills, All rights reserved.

https://www.sqlskills.com

Restoring System Databases

 System databases can only restore from backups of the same SP level as the 
server (for example, an RTM backup of msdb will not restore on SP1)

 master
 Requires the instance to be in single-user mode, restore using WITH REPLACE

 model
 Restore in same way as for user databases

 msdb
 Restore in same way as for user databases
 Stop SQL Server Agent before restoring
 Make sure to set the recovery model to FULL if msdb was rebuilt

 resourcedb
 Cannot be backed up or restored
 Use file-system copy operations but be careful not to overwrite resourcedb with an 

older version

 tempdb
 Cannot be backed up or restored

60
© SQLskills, All rights reserved.

https://www.sqlskills.com

Key Takeaways

 Backups are one of the most essential tasks you must perform as a 
DBA

 Recovery model affects whether you need to also take transaction log 
backups
 Understand the difference between FULL and SIMPLE and how that affects 

the transaction log and recovery

 Develop a restore strategy (not a backup strategy) based on RTO and 
RPO for the database(s)

 Restore your backups on a regular basis, and practice disaster 
recovery scenarios



31

© SQLskills, All rights reserved.
https://www.sqlskills.com 61

© SQLskills, All rights reserved.
https://www.sqlskills.com

Resources (1)

 Posts:
 SQLskills Accidental DBA Series

 https://www.sqlskills.com/help/accidental-dba/

 Kimberly’s Backup and Restore Category
 https://www.sqlskills.com/ie0/backuprestorekt

 Paul’s Backup and Restore Category
 https://www.sqlskills.com/ie0/backuprestorepr

 A SQL Server DBA myth a day: (30/30) backup myths
 https://www.sqlskills.com/ie0/backupmyths

 Disaster recovery 101: backing up the tail of the log
 https://www.sqlskills.com/ie0/backuptaillog

© SQLskills, All rights reserved.
https://www.sqlskills.com 62

© SQLskills, All rights reserved.
https://www.sqlskills.com

Resources (2)

 Articles:
 TechNet Magazine : Understanding SQL Server Backups

 http://technet.microsoft.com/en-us/magazine/dd822915.aspx

 TechNet Magazine: Recovering from Disasters using Backups
 http://technet.microsoft.com/en-us/magazine/ee677581.aspx

 SQL Server Magazine: Advanced Backup/Restore Options
 https://www.itprotoday.com/sql-server/advanced-backup-and-restore-options

 INF: Space requirements for backup devices in SQL Server
 http://support.microsoft.com/kb/2001026

 SQL Server Central: Backup Monitoring and Reporting
 http://www.sqlservercentral.com/articles/Backup+%2f+Restore/66564/



32

© SQLskills, All rights reserved.
https://www.sqlskills.com 63

© SQLskills, All rights reserved.
https://www.sqlskills.com

Resources (3)

 Articles:
 How to transfer logins and passwords between instance of SQL Server

 http://support.microsoft.com/kb/246133

 Pluralsight:
 SQL Server: Logging, Recovery, and the Transaction Log

 https://www.pluralsight.com/courses/sqlserver-logging


