SQLskills Immersion Event

IEPTO1: Performance Tuning and Optimization

Kimberly’s Whiteboard Drawings and Annotations
From IEPTO1: week of October 7, 2019

Kimberly L. Tripp
Kimberly@SQLskills.com

Plus drawings from other classes

(that were better) or just had info
SQLSK! u-s we may not have covered!
Iimmerse yourselr in sql server Have .Fun!

-k

Session Settings and Client Connectivity

Default
OLEDBand | DB-Library
ODBC Value Value

SET Options

Required
for Perf
Features

SSMS

SQLCMD

From Pluralsight course,
Optimizing Stored
Procedures - Part 2

Default

ANSI_DEFAULTS?
ANSI_NULL_DFLT_ON?
ANSI_NULLS "3
ANSI_PADDING %3
ANSI_WARNINGS 2
ARITHABORT ?
CONCAT_NULL_YIELDS_NULL? 3
NUMERIC_ROUNDABORT ?
QUOTED_IDENTIFIER

NO
NO
YES =ON
YES = ON
YES = ON
YES =ON
YES =ON
YES = OFF
YES = ON

OFF
OFF
OFF
ON
OFF
ON
OFF
OFF
OFF

OFF
ON
ON
ON
ON
ON
ON
OFF
ON

OFF
ON
ON
ON
ON
OFF
ON
OFF
OFF

OFF
ON
ON
ON
ON
OFF
ON
OFF
OFF

OFF
ON
ON
ON
ON
OFF
ON
OFF
ON

OFF ?
OFF ?
OFF ?
OFF ?
OFF ?
OFF ?
OFF ?
OFF ?
OFF ?

(1) The only state that's important is how it's set when the stored procedure is CREATED; the runtime setting is irrelevant.

(2) If different than existing plan in cache, will be recompiled and added to the plan cache; performance may vary at execution.

(3) In a future version of SQL Server, these options will always be ON and any applications that explicitly set the option to OFF will
produce an error. Avoid using this feature in new development work and plan to modify applications that currently use this

feature.

SQLskills Immersion Event

IEPTO1: Performance Tuning and Optimization

General Internals

Kimberly L. Tripp
Kimberly@SQLskills.com

Lskills

immerse yourself in sgl server

SQO
o
o NOTE: On some tangents, | often discuss internals;

this first section is from these drawings.

One of the problems in allowing files
to be added to the primary filegroup
is that is makes it more vulnerable to
downtime. SQL Server’s Partial
Database Availability feature ONLY
works when both the primary
filegroup AND the log are available. If
the primary filegroup has multiple
files and one of those files fails - the
entire database will be offline until
restored.

For VLDBs, you want to isolate the
primary filegroup and dedicate it only
to system tables. Then, place it on
redundant disks.

Secondary, non-primary filegroups
are where you'll store data.

(see the next drawing)

\k L-:] md (?V\NM Aa‘}a 1(:1(9.>

maw data e

—?ﬂ“‘mo oP¥

D nd ¢
1;__7 nd

(7ndC

FeL defarndt "

¢ agrop

v Sen J,e,?w»b £4¢<

X 78 ldf

¥ Ponhal DB Nel
ET sl

By dedicating only the system
objects to the primary filegroup (and
limiting this to only one, relatively-
small mdf, you reduce the potential
for downtime.

If a file does become damaged then
the database can remain online and
available (PDA). And, then, using
Online Piecemeal Restores, you can
keep your database online for most
of the recovery process.

NOTE: There is one caveat. To take a
file offline (in order to begin the
restore process), you must take the
filegroup of which it's a member
offline. This is NOT an online
operation (because SQL Server does
not track transactions at the
filegroup level). So, all connections
to the database are terminated when
you take a filegroup offline.

D

STANDARD
\\‘)
PR\mMaR vy
Zo18F ¢

LoG

OhLINE T
ResToer

OKIVE duruwp

Veshere
Ol IVE A€TZQ

OMLINE.

€
0’
@) PR m

2 ovunve PlEcemey,

Re&ITONE
2018 €G-

Even Standard Edition
supports partial
restores — however,
once restored and
brought online
partially - subsequent
restores must be done
with the database
offline!

You can continue to
restore partially and
keep bringing the
database online
partially... but,
remember that the log
always has to be
restored to bring the
database to “current”

-
-]

—

\

~)

all ocahm

After eight 8KB pages have been allocated to
a table, SQL Server does extent-based
allocations. These allocations are done file by
file. Or, in other words, SQL Server round-
robins extent allocations from the files in the
filegroup.

This helps to reduce 10 contention and also
contention on the system allocation pages
(GAM pages are used for extent allocations)
themselves.

To the left - the first 4 pages in afile are:
Header (0)

PFS: Page Free Space (1)

GAM: Global Allocation Map (2)

SGAM: Shared Global Allocation Map (3)

While GAM pages track extent usage within

IAM Pages the database, IAM pages track a table’s

allocated extents within a GAM interval (a 4GB
chunk of the file). GAM page and IAM pages

O I 2 % q_ q (O can track 4GB because they use a bitmap

structure on the 8KB page.

LY ¢t el &+ oY W 49 8KB = 8192 bytes = 65536 bits
D) |2)+ | . .
) . With roughly 64000 bits each tracking an
+ extent (64KB), you can see how they can track

a 4GB chunk of the file.

%Iw 8122 bk
Eer g Lﬁf S5k ot

2 bl K3 (“&)M

=4cB

68

From the

Heap DEMO
D

—IE|E

glLQ Page. <ht ——

In my heap demo, we added a bunch of rows to the
table. All of the rows were fixed-width and column 7
had only 11 bytes per row. SQL Server filled the pages
as fast as they could...

Then, | went and updated col7 [varchar(200)] to be
larger. This created forwarded rows. The original
location for insert holds a forwarding pointer and that
points to the new/final location of the record.

For more info: here’s a detailed post that Paul did on
this: http://www.sqlskills.com/blogs/paul/forwarding-
and-forwarded-records-and-the-back-pointer-size/

\’)
2412

2l

http://www.sqlskills.com/blogs/paul/forwarding-and-forwarded-records-and-the-back-pointer-size/

Inserts on a page (1 of 2)

——

SQL Server does not rearrange the
records on a page - unless it needs to.

If there are two records on a page but
there’s a gap large enough to fit the
record being inserted, then SQL Server

will put the record wherever it fits.
— i
On a heap, it will receive the next slot

=

available. On an indexed page, the slots
will be ordered by the index key.

& (nseat 1.500

«

I meeat 2000

SQL Server does not rearrange the

Inserts on a page (2 of 2) records on a page - unless it needs to.

The same holds for an update. If the first
record is being updated and there’s not
enough room without rearranging the
page then SQL Server will rearrange.

If the record moves then the slot doesn’t
— S change but the offset will get updated.

'\ UP(J@+Q %OOO

Record Structures (1 of 2)

In_vowo Lived wd

Ove M,

—_

w

ML wchaes f < K060

hote ' Newey S
Nmu]s lf:”\caﬁigu

ltt:ver,d Ve Cds
Short |-08S

R row Szt S 000 Hhum
[+ egly Youenfla)

Every table/index can have up to 3 data
structures associated with it:

* In_row - every row has an in_row_data
structure. This cannot exceed 8060 bytes and
must exist as a single, contiguous structure on -
at most — one page. If a row has limited variable
columns [varchar(n), nvarchar(n) or
varbinary(n)] or LOB types [new LOB types:
varchar(max), nvarchar(max) or varbinary(max);
Legacy LOB types: text, ntext, image; XML] then
you might have additional structures.

* Overflow - Overflow is only for limited
variable columns (often called SLOBs for short
LOBs). A row will ONLY overflow to the overflow
structure IF the row is over 8060 bytes AND only
these limited LOBs will overflow to the overflow
structure. Fixed-width columns will NOT
overflow. An overflowed column will always
overflow as a unit and the column(s) that
overflows is not easily predictable.

* LOB - explained on next page.

Record Structures (2 of 2)

Inrow |
ot ygm P
Slze 1024
1032 vfve fupaf? poye

* LOB - There are 8 LOB types in SQL Server:
* New LOB types

e varchar(max)

* nvarchar(max)

* varbinary(max)

« XML

* User-defined SQLCLR types
* Legacy LOB types

e text
* ntext
* Image

The initial location of the LOB (on insert) will
depend on the LOB data type you've used. The

. default behavior to legacy LOB was to push them
1 f~off row - regardless of size. For the new LOB

onless Gou dwngg t
SP. “‘3\0‘(%ﬂ'\
fert n o)

types they will put them in_row only if they fit.

You can control these options by using
sp_tableoption for every table change.

For legacy LOB you can control the maximum
byte length for in_row LOBs. For new LOB types
they either go in_row if they fit (default) OR you
can say they go off-page no matter what.

To create a clustered index, SQL Server needs to copy the
. data (in the filegroup that is the destination) as well as use
Th e COSt Of Creatl n g a sort space to order the data (also in the destination). For a
. 10GB table this requires 10GB for the copy and ~25% for the
CI USte rEd |ndex sort space. Then, there’s logging - in a fully logged database

(the default), this is essentially a “size of data” operation. So,

for a 10GB table, this is a 10GB operation in the log. The total
size for a create or rebuild in a fully logged database is 3.25x
the table size.

D \(.o@(5@ Bo. I Q.

- 85

L\ bee J 225

Clustering for ranges

(looks good on paper)

If | show you a clustered structure and talk ONLY about
querying for ranges, | can convince you that you should
create a clustered index on something like Lastname,
Firstname, Middleinitial

And, while this looks good on paper, it doesn’t last very long.
As soon as inserts/updates occur, this table will become very
fragmented. This fragmentation will offset (and begin to
overshadow) the apparent benefits of having chosen that
order.

And, | haven't even mentioned the expense of a wide
clustering key in the nonclustered indexes.

SQLskills Immersion Event

IEPTO1: Performance Tuning and Optimization

Module 3: Locking and Blocking

Kimberly L. Tripp
Kimberly@SQLskills.com

SgLskills

immerse yourself in sgl server

/_LmPhe,Lf‘\ﬁA)‘Fv Comim + o <-
\

Set cme\\.e U _tromraetron <

U?éafz, ’\C(P]‘C/d’
(VN

ACID properties and transaction definition
While discussing locking basics, we talked about ACID properties.
We also started to discuss transactions:

* Implicit is now auto-commit. In most people’s minds implicit used to mean that SQL Server implicitly treats your
statements as a transaction. However, Oracle’s implicit mode begins a transaction for you “implicitly” and so these
should no be confused. To reduce confusion, use the term auto-commit instead.

* Explicit are user-defined transactions where you’ve explicitly defined the begin/commit.

Pt Scherna Al e thlcx c = \o caHhnis

This is from the partition-level lock escalation demo

This is from the lock escalation demo. This picture shows how the boundaries define the logical placement of data within

the 3 partitions. All this pic is describing (briefly) is that the two RIGHT boundary points of 8000 and 16000 define the
breakdown as follows:

—00 to 7999 | 8000 to 15999 | 16000 to OO
Partition 1 | Partition 2 | Partition 3

To highlight what impacts escalation, | used multiple transactions. The 1st affected only rows under 1K. The 2" affected

rows 2500-7600. The 3™ affected 7500-13000. And, the 4t was all under 16K. But, none of them (individually) required
~5000 locks so none escalated.

Lock starvation vs. relaxed FIFO locking

This was just a further discussion about the process that occurs when the update lock is converted to
an exclusive lock. The discussion really focused back on the anatomy of a data modification. The
conversion does not occur until SQL Server has to process the row. So, in a large/longer running
transaction.you might have many update locks acquired and then as the data is processed, the rows
are converted. Until the conversion is requested, shared locks are also allowed on these rows (even
while the update lock is waiting) because of relaxed FIFO. However, once the conversion is requested
then ALL locks will wait.

T R
Opd SaVwe Op Check

UQA Clre el >< OP S&umf

Opd clheale o check O
e <aun v o SR

Reducing deadlocks programmatically by changing access pattern

Deadlocks often occur when resource patterns are interleaved. Where possible, rewriting code can be
really helpful. A simple example is “the banking transaction” where one user is moving money from
checking to savings and the other from savings to checking. This “crisscross” of activity will be more
prone to deadlocking. One option (because this is a transaction) is to reorder the statements of the
transactions to always access the tables in a particular order. If this were the case then these deadlocks
would be removed and replaced with blocking (not deadlocks).

llows o Locke gl Ut

s Ao ?cg [ock=< N veovs

I)(./ ﬂ
=<
(ne c = k ne <43
Lpedavr= <l{_+/up;i
Set+ col 3 % S c3 —

-— T —_—

Deadlocks in an Index
This picture described a deadlock that can occur when multiple indexes exist on a single table and they INCLUDE columns that are being
updated.
CL = clustered table
Left side = index on coll INCLUDE (col4)
Right side = index on col2 INCLUDE (col4)
Imagine an update to col4 that uses WHERE coll =Y running at the same time as an update to col4 that uses WHERE col2 = X

These updates are MUCH more likely to create deadlocks because of how locking works within indexes. To reduce the potential here — |
often use DISALLOWPAGLOCKS and ALLOWROWLOCKS.

BT
Select
vpdste — Lails due “uveen def ! con ran—

Ledate %‘SS";"‘ f ol
, ON Se Hu ﬁ
) aect_o OV"‘-

. R
Froams e et vallea

volled oa el
bac e trang state
\A’\d

User-defined Errors in Transactions —_
If you hit a resource error, SQL Server will definitely rollback. However, if you hit a user-defined error condition (for
example a constraint violation or a lock timeout), then the DEFAULT behavior is that YOU have to [programmatically]
decide what to do. This requires GOOD error handling.

If you change the setting for XACT_ABORT (off by default) then ALL errors will cause a transaction to rollback.

For Developers

Savepoints (SAVE TRANSACTION)
are a “stack” even when in the
bounds of a stored procedure. The
only “scope” for these is the “one”
transaction in which they are a

For Developers (Transaction Madness)
The key points are:

BEGIN TRANSACTION

- Increments @ @trancount

COMMIT TRANSACTION Sg

- Decrements @ @trancount I

ROLLBACK TRANSACTION

- When used with a transaction name OR without a
name at all — always resets @@trancount to 0 and

cancels ALL pending transactions — no matter how

deeply nested.

A transaction is NOT committed until @ @trancount =
0. When transactions are nested you MUST COMMIT
for every BEGIN

Savepoints (SAVE TRANSACTION NAME) do NOT
affect @@trancount and can be rolled back to safely
without affecting @ @trancount.

B

A stored procedure is NOT a transaction in and of
itself. You MUST use BEGIN/COMMIT to engage the
ACID properties of the statements of a stored
procedure.

-
IR pik 0
Pollback Collbacle +1

oN—

T

Be sure to go through the demo scripts if you need
more insight into transactions!

—u N
N _vollbadl traw 1

Cv

For Developers

Savepoints (SAVE TRANSACTION) are a “stack”
even when in the bounds of a stored
procedure. The only “scope” for these is the
“one” transaction in which they are a member.

=2

The rollback that’s below actually rolls
— ’l back to the LAST savepoint (t1) in the
= stack. You’ll want to make sure that
every save point is unique and well-
named.

0 d Commt

BT (6@ TeaconT:))

eé\ec f\)\rd C

;

i —

—tPoubAck TR
- Comm7 TRV

Goold

gD
2T (s@TC=2) L) et
S SpE Tewy pAC P10 ——

TC :0)

Naming savepoints

Because “nested transactions”
do not exist (instead there is only
ONE transaction) — you need to
be careful when using (and
specifically in naming)
savepoints. Since these are just a
stack — the “last” save point is
used in a rollback — even if it’s
not contextually within the code
that’s rolling back to it.

See the next image if you've
named your save points with
“simple” names

A GOQOD save point name is one
that reflects the procedure and

the state with a bit of detail.

Procl_ StateX PointY

BT (0@ TeavcounT))

5S¢

% SAVE TRAM SPT

e\ec vo
P B Ra
% (dé“"ﬁ(vt
2 T (@@TC =2) BA
/) ey
N _V'SAue Teryu pare SPL —
L R

—— RoLBACK TRAN €€ TC - O)

e —

nSS T TRAV

(ST 00

B T
S Select

Opdfe S 0CcegsS
Uy dato Succen- s Hroms €
LUp date Sexsin Settus

T s
~)
- CoONS Frrecr -

¥loclk FvymacuLtE + —— =
back ey

User-defined transactiops’and user-defined errors &Oé
If a statement of a transaction hits a USER-DEFINED error — what happens?

It’s up to the application to determine the fate of the transaction.

In this case, if the 3" statement errors with Error 1222 (Lock request time out period exceeded.) then the statement will
be rolled back but the transaction will be pending.

This is the default behavior when SET XACT_ABORT is not on.

Having better error handling — writing code within TRY/CATCH blocks is essential for reducing errors and increasing data
integrity.

SQLskills Immersion Event

IEPTO1: Performance Tuning and Optimization

Module 4: Versioning

Kimberly L. Tripp
Kimberly@SQLskills.com

SgLskills

immerse yourself in sgl server

ol “blocke!
vplete

US> e dhficahna

Demo: Non-repeatable reads (Inconsistent Analysis)

This is showing how an update to a CL key value that causes record relocation (after another query has
already read [and released the lock on] the row) allows the reader to read the row TWICE (non-repeatedly).

This is from the demo on non-repeatable reads and shows what | called the “anderson-zembrowsky”
problem. ©

B
LM
f—
s<s
| *)
S\\N\‘.A lveke. raLe AWM &qu resd

VeadsS @jﬁ.@.ﬁi‘f

vpdate 1s Hooke

Demo: Why does RC (read committed) have non-repeatable reads?
Because the row-level shared locks are released immediately after the row is read.

Increasing your isolation level to repeatable reads gets rid of this problem by LEAVING the row-level shared
locks for the life of the transaction. Guaranteeing that once a row has been read — it will not be able to be
changed by another transaction/user.

Discussion: Phantoms (Inconsistent Analysis)

What is correct? Are we talking about row-consistency or statement-level consistency? The
standards only define the state of the row at the time that the row is accessed. There is
NOTHING that ties together the state of those rows at the time the query is accessed
(unless you use versioning). So, here | was discussing the fact that NEW rows that are
coming into the set will be visible in all isolation levels (except serializable). | always think of
this scenario like a dog chasing its tail. ©

DITILTYESEA

/

E

—\
% -

/ \

—_—)

SSSSSS‘%“/\SQ
T\ \ 6 D oL

Discussion: How does repeatable read prevent the Anderson/Zembrowsky problem?

As rows are read, the shared locks used to read them are left behind to protect the rows.
The rows cannot be read again in any other state because the shared locks will prevent

other users from modifying the rows.

X‘zf__ — %5/‘ "] 37 “‘?i/}zu
- Age- A1,A i <k
> AN R I

Key-range locking (Serializable transactions)
See the next two drawings/notes for more information on this.

(v QUSA }\\ . ‘u,f

iﬁ%

This picture describes key range locking in an index. When a query runs, the isolation level dlctates the state of the data
(even in the bounds of a transaction) that can be seen. In a serializable transaction the data is isolated at the time the
statement runs. As a result, data must be locked to prevent anomalies. To prevent new rows from coming into the set,
SQL Server will lock the “range” of rows affected by the query. If a good index exists then SQL Server can lock within the
index (it’s in the first intermediate level — the level above the leaf level). If a good index does not exist then SQL Server
must do table-level locking. This example was showing key-range locking in an index for the “country” set. In the end, we
might end up locking more data than just that country but only a small amount of data that surrounds the value(s) of
interest.

Key-range locking (Serializable transactions)

; NC
{2 Coone
data T

Key-range locking (Serializable transactions)

This picture described key range locking in an index. When a query runs the isolation level dictates the state of the
data (even in the bounds of a transaction) that we should see. In a serializable transaction the data is isolated at the
time the statement runs. As a result, data must be locked at that time. To prevent new rows from coming into the set,
SQL Server will lock the “range” of rows affected by the query. If a good index exists then SQL Server can lock within
the index (it’s in the first intermediate level —the level above the leaf level). If a good index does not exist then SQL
Server must do table-level locking.

Ve

% (Snapshot Isolation vs. Serializable transactions

1[' Sometimes | like to say that transaction-level read
1 consistency = Snapshot Isolation (using versioning)

- Tsmore serializable than the locking based
(’ Z serializable transaction isolation level is. The

— reason why —S.I. defines the point to which all
{' 2 statements reconcile as the BEGINNING of the
transaction. All statements in the transaction
reconcile to EXACTLY that same point in time
(defined by an LSN). However, serializable can only
lock resources AS it requests them (statement by
— statement). In this pictur?, | drew that distinction —
each statement locks AS it executes. So, the 2" and
3rd statements reconcile to t2 (time 2) and t3 (time
3). Where as a snapshot isolation-based
transaction would always reconcile to t1.

—_—

Wol oex
y LN

Sd\-f E 8= i
Y
- X

—
P
—r
x‘
/
P
|
\

Y ——J\M\;-‘

N

See notes on next page

The prior slide showed a table vertically as a set of pages. The idea was to compare/contrast the behaviors between:

(1) The default - READ COMMITTED (using locking)

The key things to remember from the picture is that (1) has “hiccups” along the way as they encounter rows that are
locked. They read... wait... read... wait. This is partially what slows down a statement. However, it’s worse that this. It’s
possible that AFTER a row is read, it will appear again (if the record is relocated) and we will read it twice (non-
repeatable reads). Also, it’s possible that another transaction would modify a row that we’ve NOT yet seen (before we
get there) as well as a row that we have seen (after we’ve read it) such that the end result of our statement has rows
that aren’t really transactionally consistent (with another multi-statement transaction). This is also a problem... The
default (1) environment is prone to a few inconsistencies (aka. Inconsistent analysis). Only way to solve — increase
isolation (or [as of 2005] consider using versioning).

(2) A forced NOLOCK

The key thing to remember here is that nolock allows the reader to read quickly — not stopping for locked rows.
However, these rows may be “in-flight” and their modified data might end up getting rolled back or even be in a mid-
flight state. If you’re looking for only an estimate — this might be fine.

(3) Versioning (and it was implied that it was statement-level)

When a versioned query runs the reader will not stop but will have to go to the version store for any row that’s in flight.
This is a tiny bit slower but guarantees consistency of the ENTIRE read to the point in time when the statement started.
This gives you better concurrency as well as a definable point in time to which your statement reconciles. Of course, it
isn’t free — the overhead of versioning is for every writer and it occurs within tempdb.

ouTt
Poo NGy Ry

b

\[\M%L Verli vaj
g (?lT- e.ZPD'/‘t’."‘C? (Point in time)

An ideal use for Snapshot Isolation

Suo

The idea is that you don’t want to impact your production OLTP environment with READERs or with
versioning so instead, you replicate to subscribers and use read committed snapshot there!

*B‘Gg =
/ m \Vens W

Reg\ W T Sanalola

-

A) ., VoA S \Skw\g
_‘_QtL:: (?ead_ QMW\'L).ed —_

pont +abbo Snepstd)

Versioning is a great feature! VO W BT S
AGs use part of versioning on the primary so that the read-only secondaries can support versioning as changing are sent.

If you use replication, definitely consider setting up versioning (read_committed_snapshot) so that reporting users don’t block replication AND
replication doesn’t block the reporting users!

Check out my whitepaper on versioning: https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-
2005/administrator/ms345124(v=sql.90)

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2005/administrator/ms345124(v=sql.90)

ia ?VV\—\L 1 T

CL MU U Qlae
LN
f\ Smdle (f(”i
) 4

SV

—

The key reason that the clustering key must be unique is because of the lookup that must be

(The Clustering key MUST be unique
rformed when looking up a corresponding row from a nonclustered index request.

The uniquifiers are unique per duplicate key value

L U The FIRST Smith that is inserted is unique — so no uniquifier
The second Smith goes in and it becomes Smith 1

The FIRST Jones that is inserted is unique — so no uniquifier
The second Jones goes in and it becomes Jones 1

Wy 2 17 b

o

e

A clustering key should be unique by definition. However, if the CL key is NOT unique then SQL Server will uniquify it. And,

this process of uniquification can be expensive because the next uniquifier value is unknown (they must scan the last page
of values in that duplicate range).

Each duplicate group can support 231-1 duplicates. What happens if you put a CL index on Lastname and then have 2 billion
rows with a value of Smith? Error 666.

Error 666: The maximum system-generated unique value for a duplicate group was exceeded for index with partition ID
%|64d. Dropping and re-creating the index may resolve this; otherwise, use another clustering key.

Shbters QO Lo ++ #
q

Another negative associated with the uniquifier value is finding it. Remember, each duplicate has a uniquifier that’s tied
only to it. On insert, SQL Server will have to scan the last page to find the maximum current value for the uniquifier for that
“group.” If you have something like a DATE (not datetime/datetime2) then you’re likely to have an impact from the
generation of the uniquifier. It’s often better to use something like an invoice number to uniquify the rows. And, secondarily
this should also save time. Because the uniquifier has to live in the variable block it requires at least 6 bytes and possibly 8.
These additional bytes are in the data rows and in ALL indexes. If 90% of your data rows include the uniquifier AND many of
your nonclustered indexes include the invoice number then you’re going to be require less storage with an int and probably
even still with a bigint given that the table won’t need the uniquifier and many indexes [probably] already have the invoice
number.

Forwarding pointers and back pointers (HEAPs ONLY)

This picture shows the overhead needed (in terms of bytes) for
forwarding records. On the page where the record was
inserted originally (to which ALL indexes will always point — as
it’s our “fixed RID”) will still have the header, the RID and the
slot in the slot array (11 bytes). On the page where the row has
been forwarded — you’ll have a back pointer. This back pointer
is 8 bytes but it lives in the variable block in the row so it
requires an additional 2 bytes. Total space wasted is 21 bytes.

Data Loading Performance Guide
LO -\ﬁ D ucpé http://msdn.microsoft.com/en-

us/Ilbrary/dd425070 aspx

(
__los®
C}\K/W\A\)
V'\O;z- S (

High Performance Loadmgﬁuismn
Some really good questions about “high performance loading” that lead to a discussion around these key

things:

* Loading into a HEAP — typically this is best when you don’t have an ordered file *and™* when you can performance
parallel load and parallel index creation.

* Loading into a Clustered Table with an Ordered Load — typically this is best when you have an ordered file and you
cannot perform a parallel load and/or parallel index creation.

* Loading into a Clustered Table with all nonclustered indexes pre-created — this is almost NEVER a good idea unless
you’re loading only a small amount of data into an existing table. Typically less than 10% new data.

http://msdn.microsoft.com/en-us/library/dd425070.aspx

Clustering for range queries looks GREAT on paper... until modifications occur!

This was just reminding you that when folks tell you that the clustered index should be DESIGNED to
support range queries you need to remind them of what the table is going to look like when there are
modifications. What sounded good (the data is all together) doesn’t stay that way...

* INSERTs/UPDATEs are slower due to the splits
* This wastes disk space AND memory because of the fragmentation caused.
* And the range query is no longer left-right ordered but instead very out of order (fragmentation)

SQL Server 7.0’s storage engine was almost a completeTewrite. A major change in the_.engine aroun od used from
nonclustered indexes to lookup the corresponding row in the table (heap or clustered). In 7.0 and higher, SQL Server uses a

FIXED RID (for heaps) and the clustering key (for tables with a clustered index). In 6.x, SQL Server used a volatile RID for ALL
tables (regardless of whether they were clustered or not).

~ TR S T 5

_EQJD /\(; ©
CL %

Even if your “primary” table uses a GUID for inSerts— i to use an IDENTITY column as your foreign key.
This takes less data space, less index space and results in a less expensive join. And, this might be an easier “conversion”
to make for your application. You can potentially make it over time and through changes to some tables, some procs and
then some code. Then, more tables, more procs and other code, etc. Slowly you can remove the old GUID columns and
eventually become free of GUIDs as clustering keys and GUIDs for joins! You might still have a GUID on that initial table
but only as a nonclustered PK. ©

l\ 2 Taka oCE! e

[DROP FKe<
| Deor s
D (Pe | Bror cu\Pr
CL?oclb Add necd eDlomn
e CR L
\ CR Pr NC_
Cr NCg
\ CR FKg
k Breng Onlea

What does it take to change a CL PK?

Unfortunately, A LOT. And, because of the lack of indexes and foreign keys — the entire process is OFFLINE.
This is why this is such an important decision to make early!

v

Y \ 8)

N A T
DeP PR \ ’Pwa]

Deor e —~

PRo? C o
C SD C@ C\ R o
\

TR P

Again, discussions about converti

er time. as A
Phase I: >y§ O Cd
Add an identity column and cluster it (whichincludes (1) taking the database offline (2) dropping FKs romeKCs and

finally, dropping the CL. (3) Add the identity column and cluster it. (4) Create the PK as NC. (5) Add back the other NCs.
(6) Add back the FKs.

Phase Il (you can do this for a subset of tables at a time, repeat until all are gone):

Migrate the related tables to use the Identity column for joins instead of the GUID-based FK. Slowly change code and
eventually drop the GUID-based FK leaving ONLY the int-based FKs.

If you have only one file in a read-write
filegroup you can potentially end up
with contention on the system
resources (PFS, GAM and SGAM). By
having multiple files within the
filegroup you can better handle
contention.

Generally, | recommend 2-4 filesin a
read-write filegroup. You do NOT need
1 per core.

Non-unique nonclustered indexes
MUST have the lookup key (the
Heap’s RID or the clustered table’s
clustering key) pushed up the tree.
The reason stems from the fact that
the rows would NOT be able to be
found on a delete. And, it
—guarantees their position on an

insert.

Fixing GUIDs

This scenario was from a question
regarding the conversion of a database
that uses GUIDs everywhere.

Completing eliminating GUIDs is tough to
do. What you might do it something more
gradual. Allow the application/user to
continue to use the GUID as a
nonclustered PK and then add a clustered
identity. Slowly convert the related tables
over by adding the identity column (as a
FK back to the primary table) and then
slowly remove this column altogether.

“Lade CL ow Zampl D %@

Kea SSIJ Kz», S<SJ
we LnJ LeaC SSN, EvplD Lk\]/ :&LQ(

—

NON —LNL]UNL wé,o.»c AV Phovk

Keg phova Koy Phova, Enp/D
e LN Leal phove, SmpD L

Where does the CL key go?
If the index is unique — then the CL is added only to the leaf-level.

If the nonclustered is non-unique — then the CL is added to leaf level as well as up the tree.
Specifically, it’s added immediately after the key; included columns are added after that.

table'c nsedt

CL' / \
¢\, \O
“Zf P 1 |

Tangent on hash-based partitioning

induy /es

In e

Migned Onaligidd
+ 6t | e (ast
Swit Ufg SWLW

Whd / \
PT (L)

This is a perfect context where unaligned

indexes make sense.

SQLskills Immersion Event

IEPTO1: Performance Tuning and Optimization

Module 8: Internals and Data Access

Kimberly L. Tripp
Kimberly@SQLskills.com

SgLskills

immerse yourself in sgl server

Iﬂl-‘l}ﬂ- =% ™ 220 AN
‘62—-) S n v "\"

See additional diagram on the prior slide and notes on the next slide

Question/Discussion
The two previous diagrams were discussing the costs (of 10s) for lookups — between a heap and clustered

table.

It *looks* like the CL index is worse:
Using a nonclustered to do a lookup (= 3 10s), then — using the CL to lookup the data row = 3 more
|Os for a total of 6 I0s
Whereas the heap seems to require fewer 10s. Using the nonclustered is about the same (=3 10s), then —
using the Heap to access the data row is 1 (possibly 2 if there’s been record relocation / forwarding) for a
total of 4-5 10s.

The long story short is that 4-5 10s is less than 6 10s. That seems better. Yes, the number is lower but the
|0s are potentially more expensive. The yellow highlighting shows where the less expensive |0s are going
to be performed (which is predominantly in the non-leaf structures).

As a result, a bookmark lookup from a NC to a clustered has 2 potentially physical 10s.
The lookup from a NC to a heap has potentially 2-3 physical IOs.

While many lookups might be the same — there are still OTHER reasons for why heaps are not ideal. This is
just yet-another-one. ©

\ \ 00D

Clustered Index Seek vs. Nonclustged Scan

Costing I0s for different indexes for the query on this slide.
The clustered is 1/8 of 4000 pages or 500 |10

The nonclustered index on SSN has to do a scan

But, a nonclustered covering index that was ordered EmpID then SSN (S17) would be a seekable
nonclustered covering index with the fewest 10s as SQL Server would only have to read 1/8 of the 179
pages.

B (C)= SCIenee D

RN
(_ V6N, M) p |

V=N N L L,L) =V
Lo PN, M et LN AN M
Lutw'w)op \/W\W\ M“an

Lo Fn P\l‘?'w\hb

Module 8, Slide 29
For the member table (in the Credit sample database), the clustered index key is on member_no. To save space, I'm listing

that as mno.
If this were a question on a test — the answer to “which index is best?” would be

Ais useless (it’s NOT selective enough)
B = C =D for THIS query and in terms of I/O but C is best as it’s ALL that’s required. You do NOT need more in the key for

THIS query. D is the “art” of indexing as it’s likely the result of consolidating this index with an existing index.

ll ”

CREATE INDEX NCICovers4cCols CREATE INDEX NCILNinKeyInc3Cols CREATE INDEX NCICovers4Cols

ON dbo.member ON dbo.member(Tastname) ON dbo.member
(Tastnhame, fi INCLUDE (firstname, (Tastnhameyfirstname,
middleinitjal, middleinitial, phone_no) middlednitya phone_no)

//b\\ /\/

uo&n‘a}d\ EplD| = Ml
u o\ S Y AR

Module 8, Slide 29 — Same concept with Keys and INCLUDE
In the first example all of the columns are in the key. The clustering key is added to the leaf-level and then all 5 columns

go up the tree. (NOTE: The CL Key is an ID... member_no is the actual column but this pic says EmpID as a generic “key”)

In the second example only lastname is in the key. The clustering key is added immediately after that (in the leaf-level)
and then the included columns are added to the leaf-level. Then, only lastname and EmpID go up the tree. This is the best
index for this query (if we were to tune query-by-query, which is completely unrealistic).

In the final example phone is the only include. The clustering key is added immediately after LN, FN, Ml (in the leaf-level)
and then phone is added. LN, FN, MI, EmpID go up the tree. This last example is the most realistic index but only after
consolidation warrants it.

SELECT ... FROM member
WHERE Lastname = "Tripp' AND Firstname LIKE 'K%'

AND M| ="l
Index 1 Index 2
Lasthame Firstname Ml Lasthame MI Firsthame
Tripp Andrea L Tripp A Lisa
Tripp Catherine S Tripp L Andrea
Tripp Kimberly L Tripp L Kimberly
Tripp Lisa A Tripp L Zachary
Tripp Zachary L Tripp S Catherine

Which index order is better for this query?
Definitely the second one (index 2) because the criteria against firstname is “range-based”
while the condition against Ml is equality-based.

S\ o

1\ | | | T =

1

Solving an application problem with a filtered index

Somewhat recently | worked with an application that had a habit of adding % to the start/end of a queried
value but only for a subset of data. However, that subset was not selective enough to use an nonclustered
index. So, the query would do a complete table scan. This was causing huge performance problems... enter,
filtered index!

We could cover the request but only where REGION = ‘subset’ so only that data would be scanned. OK, no, |
didn’t like the %value% search either but at least | could reduce the impact of it by using filtered indexes!
The negative — consistent session settings are required AND procedures must do a recompile to ensure that
they will pick up the filtered index.

Q __— Pt
&S
\CKQU[) Oniqua_ :ﬁxco..pf' E -Q(-{-.o\m/_,ﬂ

S (N)
() oNngura_ ce((S gu)un(g @
ncloae CC D) :
—— =/ Wlhens SS 5 nof
n o/
A foreign key can be used to reference any column (or list of columns) that has a unique index — as long as it’s not

filtered.

In an index consolidation scenario, if you already have a constraint on SSN and you NEED an index on SSN include

(LastName) you’d end up with a “redundant” index (if SQL required a constraint-based index for foreign keys).
Instead, you can drop the constraint on SSN and instead create:

CREATE UNIQUE NONCLUSTERED INDEX SSN_Inc_LN ON Member (SSN)
INCLUDE (LastName)

Foreign Keys can reference UNIQUE indexes (without constraints)

http://www.sqlskills.com/BLOGS/KIMBERLY/post/Foreign-Keys-can-reference-UNIQUE-indexes-(without-
constraints).aspx

http://www.sqlskills.com/BLOGS/KIMBERLY/post/Foreign-Keys-can-reference-UNIQUE-indexes-(without-constraints).aspx

SQLskills Immersion Event

IEPTO1: Performance Tuning and Optimization

Module 9: Statistics — Internals and Updates

Kimberly L. Tripp
Kimberly@SQLskills.com

SgLskills

immerse yourself in sgl serve

Data selectivity and “need” for additional columns in the key - from left-based density
subsets...

If the distribution of the data is unique at the combination of the first and second columns
then the third, forth, etc. do not provide any use in terms of seeking (JUST in terms of
seeking). However, they might provide use for sorting.

But, it MIGHT be possible to consolidate another index with this one IF you really don’t
need those extra columns in the key. Something to consider!

Multiple — all density * rows and if unique (= 1 or very close to one) then you can consider
consolidation with other similar indexes!

gk

gy

’Wu (<\lea...

Phro A b
sl xKonm

Column-level distribution from left-based density subsets...

This relates to the query on slide 10 and the idea that | was trying to show here is that even though the
left-based density shows that last names are horribly NOT unique and the combination of last name & first
name IS almost unique — that doesn’t imply anything about first names alone. | could have created a data
set of firstnames of Kima, Kimb, Kimc and then multiplied that with last names (Tripp, Randal, Smith) and |
would have had similar statistics for last name alone and for the combination of last name, first name. SQL
Server does NOT gamble on this — SQL Server creates column level statistics on first name.

Y\ D T

7 1
P

f \ =L\ s

Yy M{%W oo

We are NOT invalidating soon enough()& I)we column modification counter?

This shows how relatively distributed modifications effect each column with a small percentage of the

modifications but when they add up to 20% ALL columns become invalidated (this was the PRE-2005 way of

doing it):

* The pro was that each column had a reasonable (but lower) percentage of rows modified and the stats
were invalidated

* The conis that a single overly volatile column would cause ALL statistics to be invalidated (which was
overkill).

e

\)<

SQLskills Immersion Event

IEPTO1: Performance Tuning and Optimization

Module 10: Indexing Strategies

Kimberly L. Tripp
Kimberly@SQLskills.com

SgLskills

immerse yourself in sgl server

(_;V\\Ll/\ %\\\
avd N =S

G

e—

\‘ Kahe S—m Indexing for AND

](a—\—;e, U ——— If the columns are doing range-based searching then the order
- of the secondary columns of the index might not be relevant

or even required in the key).

K lera — ired in the key)

K \eve -—r " This case was shown around the conditions:
Kl WHERE firstname LIKE ‘k%’

AND region_no > 6

AND member_no < 5000

\/ Really, it doesn’t matter what follows firstname because the
entire set of firstnames will need to be scanned.

Here we started to talk about how LOOP joins are an iterative

LO O p J O | n S process. The driver (the outer/first table) is typically chosen because

it has the most selective set. Any of the tables that have a highly

l selective search argument are more likely to be chosen as the driver.
m An index that aids in efficiently finding those rows is REALLY helpful!
/]
4 Cost can be calculated as:
\ Number of 10s required for first table +

Number of resulting rows in first table * the cost for each lookup
(ideally with an index on the join condition)

Cltes mateh — tF—‘

e Saocl tndence g In the worst case scenario
€ SQL HA O I» the costing of this iterative
~ =

process can be very

0‘1) /00}9 high/expensive.

Instead of doing this, SQL

Server is much more likely
(O + /DO X /o to do a loop join.

Loop Joins continued
If our query was:

SELECT columns (irrelevant here)
FROM Employee AS E
JOIN Department AS D
ON E.DID = D.DID
WHERE D.city = ‘Redmond’

And, there were only 1 or 2 rows for Redmond in the
Departments table then that’s more likely to be
positioned as the driver in the join.

Once we know the DIDs then we’re going to need to find
all of the employees IN that department. We'll need to

search against the DID column in the Employee table.

Key question:

\Do you have an index on the f05eign key column?

|

Joins
Merge joins leverage “suitably sorted

a Lg%s J

More specifically, merge leverages

[/'

0

[/]

indexes whose leading keys are on
the same column.

Key question:
What columns do these two tables

have in common?

The join column..

Corollary question:
Do you have indexes on EACH of the

NC N
" N

vV

columns (in each table)? The one
that’s often missing: the join column
that’s the foreign key.

Two very good resources:

Hash joins and hash teams in Microsoft SQL Server
by Goetz Graefe, Ross Bunker, Shaun Shaun Cooper
(http://bit.ly/1GVIInn)

_
Query Evaluation Techniques for Large Databases

by Goetz Graefe
(http://bit.ly/1bX84f3)

Hash Joins

Hash are a little more complicated.
There are multiple hash types
available in SQL Server and each
provide different benefits. The
general purpose of a hash join is to
significantly reduce the number of
rows that have to be processed.

More specifically, there are two
phases:

BUILD phase

PROBE phase

The build phase is used to create a
small structure into which the larger
set can probe to determine if there’s
the possibility of a matching row.

http://t.co/KuH8gq3u
http://bit.ly/1GVJJnn
http://www.csd.uoc.gr/~hy460/pdf/query.pdf
http://bit.ly/1bX84f3

\
\{67 X X 7 Q\Obﬂ

O " Try to find your:

. I * problem Child Table

f@) 'Q i | (the table with the highest cost)
ZZ ‘;3 * Problem Child Joi
- [;4\, roblem Child Join

L (the join — typically downstream
— from the table — with the highest

[O ?) cost)
Tuning Joins

Tuning a large complex join takes breaking it down into smaller chunks. The things that you consider are
the costs of the tables (the outer most events) and the costs of the joins. And, typically, the most
expensive join is downstream from the most expensive table.

Jee

Indexing Foreign Keys
An index on a join column (the foreign key) helps the performance for the referential integrity as well as

some joins. A narrow index on the join column helps but is often superseded by wider indexes; it’s still a

good start. (hence the phase — phase 1)
This is the most ideal for (but not limited to) a loop join.

2 r
\ O)
— sa\ﬁwj

Changing Join Order based on SARGs

An index on a join column (the foreign key) helps the performance for the referential integrity as well as

some joins because your more selective criteria might be on the referencing table rather than the
referenced.

\ quf
(P
|7 =S
| /i\‘
LN Ua
Oniqua (ndey where SH 15 N0 nof
A Foreign Key can reference _)]
« Primary Key Blog Post: http://www.sqlskills.com/blogs/kimberly/foreign-keys-
« Unique Key can-reference-unique-indexes-without-constraints/

* Any unique index (even with INCLUDE but not with filters [bummer!])

http://www.sqlskills.com/blogs/kimberly/foreign-keys-can-reference-unique-indexes-without-constraints/

Two prass_
SJ-o? |
£ go bo/ L/

boild Sorobe /@_&U = Qg —

.
’ e

| I |

I

e

‘ i g&/g

Hash Joins are “stop and go” operations (or two-phase operations)

Phase | — Build (this is the phase where they build a table to fit in cache)
Phase Il — Probe (this is where the larger set uses the join condition to “probe” into the build/temp

table to output matches). Probe cannot “go” until after build completes (hence the term — stop and go)

J

CROfC\L (ND CGB
o v\%wi,) kb

AN

[, ca&

Indexed Views
esults sets defined by a view and materialized into

the leaf level of the UNIQUE CLUSTERED INDEX that’s
defined on the view.

Couv f

") (\(52@03 \%2\

_J

_}

Indexed Views and view maintenance

The reason that COUNT_BIG(*) over the GROUP BY class is
needed is because they need the count to determine
when the row within the indexed view should be deleted.

A zero sum is not enough.

Hot Row

If your aggregate is too small then you can have a HOT
ROW problem where all modifications are blocked trying
to write to the aggregate. You'll serialize your inserts by
country here... CAN, MEX, USA are the only countries with
whom you do business — all US rows will have to wait as
each new sale has to update the sum for that country. This
will become a terrible bottleneck.

e e B \ S

cL \
Partition-aligned indexed views

If you create a partition aligned indexed view and then request something like the sum(s'\i)lfs ?rv
customer #1 then SQL Server can aggregate the aggregates!

On SQL Server 2005, indexed views had to be dropped before fast-switching.

On SQL Server 2008+, when you’re switching in — you must defined the Views and IVs in order to
successfully switch in.

SQLskills Immersion Event

IEPTO1: Performance Tuning and Optimization

Module 11: Cardinality Estimation Issues

Kimberly L. Tripp
Kimberly@SQLskills.com

SgLskills

immerse yourself in sgl serve

(O] .
200 (250K | 5 / }741:3 FOK.

WS 125

This was around our discussion about the limitation of SQL Server’s knowledge of the data
with gaps in the step values.

If the step describes the range from 101 to 200 (not including those values)

* There are 250K rows over that range

* There are 5 distinct values

The average will show 50K and EVERY value supplied between 101 and 200 will get an
estimate of 50K. There’s no way for SQL Server to know WHICH values actually exist.

T RYR elats

Filtered Statistics

Filtered statistics can be created for specific values but depending on your data distribution — you might want to divide the
data into buckets and then create a [filtered] statistic for each of those buckets.

The example was 31 million sales over ~18K customers. By creating a statistic for each 1K customers you have statistics that
are effectively 19x more detailed. Even adding only 10 filtered stats gives you 10 times more detail. However, it still might
not be detailed enough. You’ll need to test it and check the histogram. Because of potential interval subsumption* issues—
some have asked if it would be beneficial to create additional stats at different intervals... you could but it would really
depend on the queries. Having said that — the bigger the range that the query is interested the more the averages just
average out. So, really, this issue is to significantly help queries that are more targeted (where the stats just weren’t good).
* The optimizer can detect whether interval conditions in a filtered index cover, or "subsume" interval conditions of a query.

Vo K dBf2 \ZOSR Cosh 0K
e e

\ (lOKl 20 30 0
Jok. | 201 Kl

Creating FiIJered Stats

The idea is to just have better statistics than what you have currently. To do this you can divide
the range into 10-20 buckets. This will give you 10 times (or 20 times) better information in
terms of statistics.

You WILL need to regularly/automatically review the values/ranges and add more or divide
them up again to ensure that the statistics are good (and stay good)!

/ \ DR opf

onSake. StmpLe (et

(YV\aJ)
WYPRSTYIN
50 u/vd'D calle 4 Clipl

—_—

UKPMMMJL{A(M\ . ‘

_

_—

Simple vs. Forced Parameterization
The general process is that SQL Server analyzes a query to determine if it’s safe or not (the majority of
them will NOT be safe). If it’s safe then it can get parameterized and reused. If it’s unsafe then it goes into
memory as an individual query (and it’s harder to determine the cumulative effect of these queries).
Check out the query_hash and query_plan_hash.

(j Shafus = | Q"Q/\'Vl

B Colbw =1 o)

— Uohore Safus = |

‘. M,O‘ e
w C»lZL @, H/\.i.Q_,(

Filtered Stats and Forced Param }
The bad news... there’s always bad news. 4 S l—a_j—u S = [
Forced parameterization: even when SQL Serv d NOT have parameterized the statement (because

it had deemed the statement’s plan as “unsafe” to re-use), forced param will force it. In systems where
plans are very stable (but A LOT of adhoc) then this could be great. However, the example of status =1 (in
your query) is converted to status = @1 so the filtered index/filtered stat cannot be used.

| £

N
(M\-L
— not
S]fod_\)% — \ QU Pl.a"’\

forcen
Sratus =@ |

Filtered indexes and filtered stats — Auto update

The bad news... there’s always bad news.

For Updates:
statistics for a filtered index OR a filtered stat — do NOT get updated until that column’s statistics
get updated (which is when the colmodctr) is reached

O
—

—
E\

Database option: FORCED parameterization

Because of how forced parameterization changes each variable to a parameter — the value of that
parameter is unknown. As a result, a filtered index (for example, WHERE status = 1) cannot be used
when a query has been parameterized to status = @1. There’s no guarantee that the value their

searching on is 1.

—

End result. You will NOT have good results with filtered indexes IF you use FORCED parameterization.
The good news: This is NOT on by default and not likely to be on in most environments.

DEMO
This was the demo on uneven distribution.

’& . FactinternetSales2 A table scan is always an option.

With narrow indexes, SQL Server does not understand
the correlation between these columns. As a result,

their estimates are goin% to assume even distribution.

—=| Soer:
P

NC-.
" Index on ShippedDate

i

\

when wll T
a Nulo
‘ 254 -
[o33 237

“\\\W 3D

D. OD

2541

DEMO

This was the suggested index from the
green hint in showplan and while it does
make this query faster (and with fewer
|/Os) it’s not the best index that’s possible.

w Key point, the missing index DMVs (which is

where the green hint gets its information
[from) — gives you good suggestions but not
always the best suggestion.

D od

@D.OQ (

Eurthermore, this is the same index that’s
recommended by DTA. So... sometimes it
does take *manually* defining/choosing

DEMO the index.
This was the index that | suggested (putting OrderDateKey in the key)

as a combination of:

ShipDateKey, OrderDateKey
The first record on the first page will be the minimum OrderDateKey
where ShipDateKey IS NULL.

Veior Mans L

CDU'Pc\a\ie sl <
QBUIMCLUQ/)
=10
OLTP — B3R ~bpdaiz—SteAs <

Poor Man’s Datawarehousing S&wupld\f f
Setting a database to RO (read-only) can be a

good idea when you plan to use it solely for reads. @ SP. Creote <afs

However, how does SQL Server update statistics or (WA M
add statistics? @ 1 o
Really, it can’t. WSeamn. — 7

So, the main point... if you’re going to move a

backup to another server for read-only access — :E PO 00\) L/T)

you should automate some basic optimizations
before setting it to RO.

SQLskills Immersion Event

IEPTO1: Performance Tuning and Optimization

Discussion: Table Design Strategies

Kimberly L. Tripp
Kimberly@SQLskills.com

SgLskills

immerse yourself in sgl server

S~—

|

Considering a schema change to allow

joins to be removed from common queries

can make a huge difference in join

performance. If you do add that column also be

- FROM orders AS o
JOIN titles AS t
ON o.tid = t.tid
JOIN publishers AS p
ON t.pid = p.pid
AND o.pid = p.pid

sure to always state it in joins. You'll give the
optimizer more chances for tuning the join.

NN

{2

OO

This was a reminder that when you’re calculating
row size (as well as page density) that you can
use 8096 for data rows. Every row requires 2
bytes in the slot array so two rows could each be
4046. However, a single row cannot be more than
8060. The 8060 comes from:

8192 bytes (page size)

- 96 bytes in the header

= 8096 as the maximum amount of space for data
A row must have a header of 4 bytes

= 8092 and the SQL team took “32 bytes” for
future growth.

Some of which they’re already using in SQL
Server 2005 and higher. For row versioning, each
versioned row requires a 14 byte offset. If they
had allowed a row to be 8096 — where would
they have put the offset?

2 2
NC yC vl NVC VUC JC

X e \C 2 2
- Y X 2
X X 2 2

Column order does not matter... it depends!

OK, this diagram should remind you that leaving the columns that are most likely to be null — at the
end of the row definition COULD save some space.

Blog post: Column order doesn't matter... generally, but - IT DEPENDS!

http://www.sqlskills.com/BLOGS/KIMBERLY/post/Column-order-doesnt-matter-generally-but-IT-
DEPENDS!.aspx

http://www.sqlskills.com/BLOGS/KIMBERLY/post/Column-order-doesnt-matter-generally-but-IT-DEPENDS!.aspx

L 03

[00— 0D
lob‘l'w M~B

M@Jo*" %7
< ZOOO bL,]fM

Default behavior of a *new* LOB
(max or XML) is that they will be
put “in_row” if they fit (if the
total row size is under 8060).

If you have a lot of small LOBs
(for example 2K LOBs) then all of
your rows will be really wide. If
you’re doing a lot of scans and
NOT interested in always
returning the LOBs then you’re
going to waste a lot of pages/IOs
to get the LOBs into cache when
you don’t really need them.

Consider pushing these small
LOBs off-page instead!

Implicit Conversions
When a predicate is being evaluated there are two sides to the equation:
The column expression & The variable expression

When one of the expressions has a higher data type AND they’re implicitly
compatible then SQL Server will need to bring the other expression UP to the
same type.

If the variable expression is the LOWER type then it’s easy, only that variable
has to be converted.

The problem starts when the column expression is the lower type — then the
column has to be converted. This results in a scan of that column (could be an
index scan but if a good index doesn’t exist then it might be a table scan).

You can see implicit conversions in cache — check out Jonathan Kehayias’ blog
post on this:

Finding Implicit Column Conversions in the Plan Cache
http://sqlblog.com/blogs/jonathan kehayias/archive/2010/01/08/finding-
implicit-column-conversions-in-the-plan-cache.aspx

http://sqlblog.com/blogs/jonathan_kehayias/archive/2010/01/08/finding-implicit-column-conversions-in-the-plan-cache.aspx

qlqco. [/VD[CL/\ Pouwss

Ount — %10 @%vc\/c_

(P(
C _ _
— i]l
- = =
C—\ ;ﬁ‘
—

—

I

)

——

\/\)\W . Lo} \ Vo able
Lnd Clack <vr = Pheddesum (52

This was a tangent where we talked about a way to optimize lookups for LOB data.
One of the things that always causes people grief is that columns over 900 bytes cannot be indexed. So, if you have a
WHERE clause like this:

WHERE lobcolumn = ‘lob value.........ccecueeneneee. '
SQL Server has to do a table scan to get all of this data.
Another trick is:
Add a CHECKSUM column that checksums a particularly large column (note: legacy LOB column types: (n)text, image AND
XML are not supported — see this link: http://msdn.microsoft.com/en-us/library/ms189788(v=sgl.105).aspx) and then
rewrite your queries to be this:

WHERE lobcolumn = ‘lob value.........ccccueennen.ee. '

AND checksumcol = CHECKSUM(‘lob value.........ccccceeueeueennns ')

http://msdn.microsoft.com/en-us/library/ms189788(v=sql.105).aspx)

30

g

Y
3
fa
Jﬁﬂ\
20
<
|
|
9

I

Name_ 4%\24 \ 1 st
5 o o ~ ‘
> ~J ~ -
- - - >
-> hd = ~

VAMNNN’\” -e - =

| *F\ L \
nd . - —
wWhoy ! 1s nek nol\

Sparse Columns — It only makes sense to use sparse Eolumns when you have multiple columns that will be sparsely

populated. How sparsely populated? That depends on the data type. Check out the BOL for the percentage (per type) that
needs to be NULL in order to save 40% space.

LINK: http://technet.microsoft.com/en-us/library/cc280604.aspx (topic: Estimated Space Savings by Data Type)

http://technet.microsoft.com/en-us/library/cc280604.aspx

SQLskills Immersion Event

IEPTO1: Performance Tuning and Optimization

Discussions / drawings around VLDB
and “partitioning” large data sets (VLTs)

Kimberly L. Tripp
Kimberly@SQLskills.com

SgLskills

immerse yourself in sgl server

Partitioning: PVs vs. PTs

Partitioned views Partitioned tables
* Anyedition * Enterprise Edition only
* Lots of tables to administer * Only 1 table to administer
— Must create/drop indexes on all base tables — Only 1 table to create/drop indexes
* Can have different indexes » All partitions have same indexes (which is easier
+ Harder for the optimizer to optimize with so for the optimizer to optimize)
many indexes * Can create different indexes with filtered indexes
— Must verify business logic so that there are no — No possibility of errors (or gaps or overlapping
gaps or overlapping values values)
— Each table has [potentially] better statistics as — Table-level statistics can be less accurate for very
the tables are smaller large tables when there’s a lot of skew to the data
« Can rebuild any of the tables ONLINE (if using * Partition-level rebuilds are offline but can rebuild
EE) the ENTIRE table online (not desirable)
* Can support multiple constraints on one or * Canonly support partitioning over a single
more columns column

© SQLskills, All rights reserved.

http://www.SQLskills.com

~ 14 ~ Sales VIEW
Functionally Partitioning Data
Use UNION ALL to bring data togetherinto a
single View.
Sales2012 Solves many problems:
) * Tables can be isolated (LUNs
Sales2013Q11 Table e (LUN2)
Tables can be on RO FGs
ales201 502 Sales2013 * [Table-level] Statistics are more accurate on
ales -
Sales2013Q3
Partitioned Tale «— | omallertables
Sales2013G4 * Limitations in PTs are removed: partition-level
Sales2014 rebuilds aren’t needed (RW data is in a separate
Partitioned Tabl table(s))
artitioned lavle *Lock escalation is reduced naturally (partition-
(RO) level was added in 2008)
ﬁﬁ
t © /

Sales201403

Sales20140

Sales201406
Sales201407
Sales2014086

Sales201401
| Sales201402

1 Sales20140

Sales201409 Sales201410
Standalone Table Standalone Table
(RW) (RW)

These will be switched in
shortly after next month
becomes current month

Sharding/Scale-out — also, often called
Service-oriented Database Architectures

(SODA)

Partitioning in our workshop was all within a single
database. However, we had a side/note about sharding
and scale-out design. The most important thing that |
can highlight is that scaling out is most ideal through
middle-tier DDR (data-driven routing) where the
applications are directed to the appropriate server. If
every user randomly goes to any of these instances
and all requests go through [distributed partitioned]
views then performance will likely be worse!

Check out the whitepapers on SODA (service-oriented
database architectures)

/

\
\/3 \/,; /?

|

' s
%—‘:@

—_—

e

N

From https://www.sqlskills.com/sqgl-server-resources/sqgl-server-whitepapers/

« SODA: Service Oriented Database Architecture: App Server-Lite?

e SODA: How SOL Server 2005 Enables Service Oriented Database Architectures

« Scalability: Planning, Implementing, and Administering Scaleout Solutions with SOL Server 2005

» Scalability: Solutions for Highly Scalable Database Applications: An analysis of architectures and technologies

https://www.sqlskills.com/sql-server-resources/sql-server-whitepapers/
http://research.microsoft.com/apps/pubs/default.aspx?id=70220
http://www.microsoft.com/technet/prodtechnol/sql/2005/sqlsoda.mspx
http://www.microsoft.com/technet/prodtechnol/sql/2005/implementingscaleout.mspx
http://download.microsoft.com/download/a/4/7/a47b7b0e-976d-4f49-b15d-f02ade638ebe/OracleRAC.pdf

Scalable Shared Databases
Partitioning in our workshop was
all within a single database.
However, SQL Server (2005 +
2008 + 2008R2) does support
Scalable Shared Databases.
These are RO databases that
are attached to multiple servers
and then balanced through
WLBS (Windows Load
Balancing Services).

Scalable Shared Databases
https://msdn.microsoft.com/en-
us/library/ms345392(v=sql.105).

aSpXx

https://msdn.microsoft.com/en-us/library/ms345392(v=sql.105).aspx

= B osE
Trhset + RN <2 w"‘_(
2 S

Application Directed Inserts (DSE)

Even with updateable partitioned views, | usually use application directed inserts. If you're
concerned about dynamic string execution check out the Little Bobby Tables blog post:

http://www.sglskills.com/BLOGS/KIMBERLY/post/Little-Bobby-Tables-SOL-Injection-and-
EXECUTE-AS.aspx

http://www.sqlskills.com/BLOGS/KIMBERLY/post/Little-Bobby-Tables-SQL-Injection-and-EXECUTE-AS.aspx

O’P\/ Optimizing VLTs (Very Large

Table)
A very large table has many
or g “problems”... to reduce those — don’t

have just ONE VLT — have smaller

W ~—A—
mUz;ij::l:;l :Yune(F‘r"‘ﬂ ' lAU% (I_F)-] ’E;Og«ﬂ tables that are unioned (using

UNION ALL) into a view. If you also

lormn must be \ / have restrictive constraints (CHECK
leadvwy <ol o ' — ““““4_5{ ~ constraints) across all of the base
. Pk tables this combination is called
Y Pemaer” Partitioned Views. You get numerous
Check cownsty. M o benefits with this architecture
G Qleag™ - - 2Mmi-3m Bnl-Ym including: better control /
N — — o - manageability, better statistics on
Sectf::f::?*s done Joly AP &Pf each table, online operations, and
<or G-‘l+-¢n-)v3 _ — the reduction of some 'operatlons all
together-(on-the-historical data).
Trdexed] Tone. oy e Indexed views are created on the
Views o < Z| < PN ﬁ base tgble (nqt_the par'tltloned view).
on bace tabl ~an 2\s D Siany And, with partitioned views, you can

not PV 2 2 have secondary filtering criteria (with
s (Li i additionally created constraints).

With PVs
If you want to

P \/ < create indexed
views, you must
create them
individually per
table (for the
tables that
eV RV CRM underpin the PV).

If you’re not on

-— EE then you'll

| O (O also need to

2 D} 2O create a specific
< 3 O view to access
them with the

(WITH

o / _— NOEXPAND) hint.

With PTs

If you want to create indexed views,
you must create them as partition-
aligned (for fast switching). This is
available in SQL Server 2008+.

Filtering v. .\

Partitioning
You might think that

\?, \
oy
using JUST a filtered U\)\ /

index approach would be FI Fi Fl

bett_er but then thereg T Feb MAR
the interval subsumption r;‘—;; [—>

{_
"k

Hhren ?n\b
lntervo <u bsthbq

problem. % |

Waeae date = Kam 10,
Architecting the RIGHT
solution and breaking
down a VLT into smaller
tables can be ideal.
Partitioned Views (PVs) — —
do NOT have interval |\a\0\°~| ' Ceb / -

subsumption problems. Tan Trble

And, PVs have better | \
wf Ny
statistics...

Wi date behween anld omd Ta 20 oK.
danl) ond feb 10 No

=~

‘ D dowt hawa | S e
PV W boflor S,

R\,

Fa=pe

obhere Fete = Y 2onor12”

stramt o b
C:R/: C
S

Constraints are validated during optimization. SQL Server is able — when querying through a view —
to generate the query tree and then “prune” the tree. This partition elimination removes any of the
redundant tables from access. All of this is as long as the constraint is trusted (or, should | say as
long as it’s NOT untrusted. ©)

Partition Elimination

V

AT AN
(x)e) (wm

— 28 7 — 3§

Partitioned Views and business logic

Be careful with partitioned views... there’s nothing that’s going to test your
business logic. As a result, if you miss a day (for example Feb 29, 2008) then
inserts into the view will fail because there’s no view that can store that date.

Alternatively, using partitioned tables — there’s no way to have a gap or
overlapping ranges.

But, there’s a lot more to PVs and PTs (this isn’t enough to choose one over the
other) so this is just a bit more info to add to the list!

Expand Views

Another way to look at this is that there are multiple phases of query processing. The second phase
(standardization, normalization, algebrization) is where views are expanded to their base tables
(known as EXPANDVIEWS). This might sounds familiar because of the hint NOEXPAND — which is
used to force SQL Server to use indexes on views (if for some reason SQL Server isn’t using the V).

_ z |C Unaftgn_eA

Aligned Indexes

Indexes can be aligned to the same partition scheme:

* Either by creating them ON SCHEME(col) or

* Accepting the default behavior during creation. Nonclustered indexes default to being created on the same
scheme as the clustered index — unless they are an UNIQUE index. If the index is unique then the partitioning
column must [explicitly] be part of the key.

Indexes can be unaligned

* The index has all of the nonclustered index data for the table in one leaf structure

* Fast-switching is NOT allowed if unaligned indexes exist

C osk

N

Un-aligned indexes and fast switching , S (U n-a ' g Ql)

For fast switching to be allowed — you must have ONLY aligned

indexes. For an index to be aligned — there are rules. If the index is going to be unique (and aligned) then it MUST include
the partitioning key. Indexes will default to being created on the same scheme as the table (they will default to being
aligned — and therefore have all of these requirements).

However, if you’re not interested in fast switching — then you can have un-aligned indexes. In this case you create these
indexes on a specific filegroup (or on a different scheme). These un-aligned indexes can be unique and do NOT have to
include the partitioning column.

Staging Data
Why do you need a staging area?
(1) So that you don’t need to
overallocate space within
destination filegroups
— B 7 -)’ (2) So that you don’t have to shrink
\ G G)) ® (see s54)
\ O QQQ/((3) So that you can optimize the

process...

Always load into a staging area first.
Then, transform/cleanse
Then, build the CL index ON the

destinatienfilegroup!

oct

Merging the right boundary

If the MERGE process is slow — you
may have merged a boundary point
that was NOT empty.

The most common case of this is
when you start with a non-empty
first partition using RIGHT-based
partitioning. With RIGHT-based
partitioning you should not MERGE
until you have TWO empty partitions
that surround the emptied boundary.
Then, you can MERGE (top diagram).

Rebuilding the active partition — OFFLINE ®
With PTs — it’s likely that your last partition (often, the current data) will be active. This is
also where it’s most likely that you’ll have fragmentation. If you want to rebuild ONLY that

last partition — you’ll need take it offline to do it.

HLUT P

Sehewmg T3 Use vexT 4—‘3,(47

2 Su)l*t;\/-guném gp(l’- #2064070' looundg:)

ffu%f?.
j Condvautf
3
200342 on sl ‘-\’o eag
o) CL CL Clem(c,?.
dvop \abole 4 (2ady For prod
CR CL on 3y

$49 - The Sliding Window Scenario 2012 +— CRr ¢S

CAan +hAa mnAavE clidAa FAvr Fiill AAa¥FAaile

The prior slide showed the sliding window scenario — but we went through it slowly:
(1) Preparing the table into which we’ll switch OUT our old partition

Review all of the slides for the requirements here but the key point is that this “staging” table
MUST be on the same filegroup as the partition you are going to switch out.

(2) Preparing the table for our data load and what will become our new partition to switch IN

Again, be sure to review all of the slides for the requirements here but one thing you need to
make sure of is that there’s a TRUSTED constraint on this table before you switch in.

(3) Change the partitioned table to support the new filegroup and data range

Always set the NEXT USED filegroup with ALTER SCHEME

Once you have the correct filegroup specified then ALTER FUNCTION...SPLIT

- Now, you’re ready

(4) and (5) can be in any order. SWITCH IN the new partition and SWITCH OUT the old.
(6) Clean up

Merge the boundary point but ONLY if it’s empty (the next picture will remind you of what
happens when you don’t MERGE an empty boundary point)

Backup the filegroup where the partition resides that you just switched out. OR, drop the
table.

Stheme. R U8 6
@ ol g It E Zoo‘#oﬂ?
E \E .

A LEYADTA

N ol Dct d o r '\\
g“gg,{“r 3! 03 K Ou KQVZW RN

O O“}
&/ cr T 2080761 —— Consh
=. W i
0N 0,2—_: ol e
CrRcL Cr CcLoon %__(f
Ck N R NC
200%/3 C R \I “‘/ $49 - The Sliding Window Scenario Q V/I\/

\ ':? \{ With PVs - If

rP \/ U you want to
create
/W\ indexed
UAr VA views, you

~ must create

Z—g-l ((: LLg them
g—e—\’\"ce v CeM individually

1V [V per table (for

IV the tables
'_l/C_D_ that underpin

2 Ol the PV). If
< 30 e not on
EE then you'll

. / — also need to
create a

specific view

With PTs - If you want to create
indexed views, you must create
them as partition-aligned (for fast
switching). This is available in SQL
Server 2008+.

CcL OD Onigu.

mal (((stes) 2%:1 gncp

Tl / CoucCL | N PEY

SalesPr

Sy, oles (%lzs/l))
J

Cst (&l ‘C%li

ez | _(&=> %%

&3 (0 Qu&)é

Moving/partitioning the CL index

D >

When you rebuild the CL index on a scheme the clustered index (the table) will be partitioned on the new scheme. However, nonclustered
indexes will NOT be partitioned. Nonclustered indexes must be built separately/individually. And, they might need to be changed. All unique
nonclustered indexes must having the partitioning column defined as part of the key.

If the CL table that you want to partition is clustered by date/id (and is the PK) then rebuilding that on the scheme is fairly easy. But, if it’s not
the PK and the PK is instead on SalesID then you’ll change this PK to have the partitioning key as part of the PK. And, this means all FKs will
need to change, etc. This can make the process of converting to a partitioned table become an offline process.

|

> |
____J
Columnstore Indexes

This was a drawing showing the possible compression of 3 columnstore-based indexes. Then, each
columnstore index is broken down into segments. This is the base of batch-mode processing
(another core part to the performance gains that can be recognized with columnstore indexes).

PV <

(120

-

SP
(6 P
(QT)
A<

Celee +

UA_L

(GBCM) (t)

. Illll I'(/; ‘E?WV\
Might want to

have CS indexes
only on RO tables

BohUn mode. CM

Since columnstore indexes make the table
on which they’re created read-only then
you might want to use PVs to separate
read-write and read-only data.

Having said that, one limitation of the
current implementation of nonclustered
columnstore indexes is that they do not
support batch mode processing across
views that include UNION ALL. The
workaround is to use CTEs.

Check out the discussion: Perform UNION
ALL and Still Get the Benefit of Batch
Processing on the columnstore wiki here:
http://social.technet.microsoft.com/wiki/c
ontents/articles/perform-union-all-and-
still-get-the-benefit-of-batch-
processing.aspx

http://social.technet.microsoft.com/wiki/contents/articles/perform-union-all-and-still-get-the-benefit-of-batch-processing.aspx

Splitting a partition that already has data:

There isn’t a slide to which this applies. This was a side discussion about.splitting a partition after it
already has data.

If you forget to split for October and November and the last split was for Sept 1 — then, instead of
splitting for October (which has to move BOTH October and November data) and then splitting for
November (which has to move November’s data again) — you should always split the last set (November)
and then the earlier (October). Then, November’s data only moves once and October’s only once as well

However, if you're going to make significant changes to a partitioning scheme (like 4 partitions to 8) then
instead of splitting 4 times — just create a new function and new scheme and then rebuild (possibly
online) the object on the new scheme.

SQLskills Immersion Event
IEHADR: High Availability and Disaster Recovery

Backup Strategy and Internals

Kimberly L. Tripp
Kimberly@SQLskills.com

SQLS kl lls These were originally from a 4x3

immerse yourself in sql server format so they're not perfect in
widescreen but the info’s good! ;-)

Trace Flags To Stop Log Dumping

* To change the behavior of BACKUP LOG WITH TRUNCATE_ONLY or
NO LOG:
= |n SQL Server 2000

o Traceflag-T3231
o In FULL or BULK_LOGGED recovery model they do nothing
o In SIMPLE recovery model they will clear the log

= |n SQL Server 2005
o Trace flag -T3231 works the same way as in 2000
o Trace flag-T3031 does a checkpoint

= |n SQL Server 2008+

o Manually clearing the log is no longer possible, but some people may still do it by
switching back-and-forth to SIMPLE recovery model

© SQLskills, All rights reserved.

http://www.SQLskills.com

Continuity of the Log Backup Chain

» If the log backup chain is not complete (meaning one or more log backups
are damaged or missing) then complete recovery is not possible

o Must have complete chain of log backups from which to restore
= Consider using mirrored backups of the transaction log and/or storing
them on redundant disks
= What breaks the log chain?

o Clearing the transaction log manually (using WITH TRUNCATE_ONLY or WITH
NO_LOG)

o Changing the database to SIMPLE recovery model (and then changing back)

o Deleting, overwriting or throwing away a log backup that was not made as
COPY_ONLY

o Reverting from a database snapshot

© SQLskills, All rights reserved.

http://www.SQLskills.com

Log Backups After Minimally-Logged Operations

= If there has been a minimally-logged operation since the previous log backup, the next
log backup will also back up all data extents modified by the minimally-logged
operation
o This means the minimally-logged operation can be fully reconstituted

» Theresulting log backup will be roughly the same size as if the operation was
performed in the FULL recovery model

o A point-in-time restore operation cannot stop at any point between the start and end of the log
backup

coror Transaction log —
00011

ooo1o | Bitmap page
00100
00000

N
»

Log backup

Data extents
alaexte = Extents modified by minimally-logged operation

© SQLskills, All rights reserved.

http://www.SQLskills.com

Switching Recovery Models

ALTER DATABASE <name>
SETRECOVERY BULK_LOGGED

BACKUP LOG
BATCH OPERATION
FULL N/ BULK_LOGGED
>

Advantages: Advantages: ALTER DATABASE <names>

recovery = Faster bulk operation
= Pointin time .

recovery Disadvantages:
= Accessto “tail” of = NoSTOPAT

the log = Dataloss possible if media

failure...
= If database becomes suspect,

cannot back up tail of log.

© SQLskills, All rights reserved.

http://www.SQLskills.com

