

http://www.sqlskills.com/blogs/paul/forwarding-and-forwarded-records-and-the-back-pointer-size/

•

•

•

•

•

•

•

•

•

•

ACID properties and transaction definition

While discussing locking basics, we talked about ACID properties.

We also started to discuss transactions:

• Implicit is now auto-commit. In most people’s minds implicit used to mean that SQL Server implicitly treats your
statements as a transaction. However, Oracle’s implicit mode begins a transaction for you “implicitly” and so these
should no be confused. To reduce confusion, use the term auto-commit instead.

• Explicit are user-defined transactions where you’ve explicitly defined the begin/commit.

This is from the partition-level lock escalation demo

This is from the lock escalation demo. This picture shows how the boundaries define the logical placement of data within
the 3 partitions. All this pic is describing (briefly) is that the two RIGHT boundary points of 8000 and 16000 define the
breakdown as follows:

-∞ to 7999 | 8000 to 15999 | 16000 to ∞
Partition 1 | Partition 2 | Partition 3

To highlight what impacts escalation, I used multiple transactions. The 1st affected only rows under 1K. The 2nd affected
rows 2500-7600. The 3rd affected 7500-13000. And, the 4th was all under 16K. But, none of them (individually) required
~5000 locks so none escalated.

Lock starvation vs. relaxed FIFO locking

This was just a further discussion about the process that occurs when the update lock is converted to
an exclusive lock. The discussion really focused back on the anatomy of a data modification. The
conversion does not occur until SQL Server has to process the row. So, in a large/longer running
transaction you might have many update locks acquired and then as the data is processed, the rows
are converted. Until the conversion is requested, shared locks are also allowed on these rows (even
while the update lock is waiting) because of relaxed FIFO. However, once the conversion is requested
then ALL locks will wait.

Reducing deadlocks programmatically by changing access pattern

Deadlocks often occur when resource patterns are interleaved. Where possible, rewriting code can be
really helpful. A simple example is “the banking transaction” where one user is moving money from
checking to savings and the other from savings to checking. This “crisscross” of activity will be more
prone to deadlocking. One option (because this is a transaction) is to reorder the statements of the
transactions to always access the tables in a particular order. If this were the case then these deadlocks
would be removed and replaced with blocking (not deadlocks).

Deadlocks in an Index

This picture described a deadlock that can occur when multiple indexes exist on a single table and they INCLUDE columns that are being
updated.

CL = clustered table

Left side = index on col1 INCLUDE (col4)

Right side = index on col2 INCLUDE (col4)

Imagine an update to col4 that uses WHERE col1 = Y running at the same time as an update to col4 that uses WHERE col2 = X

These updates are MUCH more likely to create deadlocks because of how locking works within indexes. To reduce the potential here – I
often use DISALLOWPAGLOCKS and ALLOWROWLOCKS.

User-defined Errors in Transactions

If you hit a resource error, SQL Server will definitely rollback. However, if you hit a user-defined error condition (for
example a constraint violation or a lock timeout), then the DEFAULT behavior is that YOU have to [programmatically]
decide what to do. This requires GOOD error handling.

If you change the setting for XACT_ABORT (off by default) then ALL errors will cause a transaction to rollback.

For Developers
Savepoints (SAVE TRANSACTION)
are a “stack” even when in the
bounds of a stored procedure. The
only “scope” for these is the “one”
transaction in which they are a
member.

For Developers (Transaction Madness)

The key points are:

BEGIN TRANSACTION

- Increments @@trancount

COMMIT TRANSACTION

- Decrements @@trancount

ROLLBACK TRANSACTION

- When used with a transaction name OR without a
name at all – always resets @@trancount to 0 and
cancels ALL pending transactions – no matter how
deeply nested.

A transaction is NOT committed until @@trancount =
0. When transactions are nested you MUST COMMIT
for every BEGIN

Savepoints (SAVE TRANSACTION NAME) do NOT
affect @@trancount and can be rolled back to safely
without affecting @@trancount.

A stored procedure is NOT a transaction in and of
itself. You MUST use BEGIN/COMMIT to engage the
ACID properties of the statements of a stored
procedure.

Be sure to go through the demo scripts if you need
more insight into transactions!

For Developers
Savepoints (SAVE TRANSACTION) are a “stack”
even when in the bounds of a stored
procedure. The only “scope” for these is the
“one” transaction in which they are a member.

The rollback that’s below actually rolls
back to the LAST savepoint (t1) in the
stack. You’ll want to make sure that
every save point is unique and well-
named.

st
ac

k

Naming savepoints
Because “nested transactions”
do not exist (instead there is only
ONE transaction) – you need to
be careful when using (and
specifically in naming)
savepoints. Since these are just a
stack – the “last” save point is
used in a rollback – even if it’s
not contextually within the code
that’s rolling back to it.

See the next image if you’ve
named your save points with
“simple” names

A GOOD save point name is one
that reflects the procedure and
the state with a bit of detail.

Proc1_StateX_PointY

User-defined transactions and user-defined errors
If a statement of a transaction hits a USER-DEFINED error – what happens?
It’s up to the application to determine the fate of the transaction.
In this case, if the 3rd statement errors with Error 1222 (Lock request time out period exceeded.) then the statement will
be rolled back but the transaction will be pending.
This is the default behavior when SET XACT_ABORT is not on.
Having better error handling – writing code within TRY/CATCH blocks is essential for reducing errors and increasing data
integrity.

Demo: Non-repeatable reads (Inconsistent Analysis)

This is showing how an update to a CL key value that causes record relocation (after another query has
already read [and released the lock on] the row) allows the reader to read the row TWICE (non-repeatedly).

This is from the demo on non-repeatable reads and shows what I called the “anderson-zembrowsky”
problem. ☺

Demo: Why does RC (read committed) have non-repeatable reads?
Because the row-level shared locks are released immediately after the row is read.

Increasing your isolation level to repeatable reads gets rid of this problem by LEAVING the row-level shared
locks for the life of the transaction. Guaranteeing that once a row has been read – it will not be able to be
changed by another transaction/user.

Discussion: Phantoms (Inconsistent Analysis)

What is correct? Are we talking about row-consistency or statement-level consistency? The
standards only define the state of the row at the time that the row is accessed. There is
NOTHING that ties together the state of those rows at the time the query is accessed
(unless you use versioning). So, here I was discussing the fact that NEW rows that are
coming into the set will be visible in all isolation levels (except serializable). I always think of
this scenario like a dog chasing its tail. ☺

Discussion: How does repeatable read prevent the Anderson/Zembrowsky problem?

As rows are read, the shared locks used to read them are left behind to protect the rows.
The rows cannot be read again in any other state because the shared locks will prevent
other users from modifying the rows.

Key-range locking (Serializable transactions)
See the next two drawings/notes for more information on this.

Key-range locking (Serializable transactions)

This picture describes key range locking in an index. When a query runs, the isolation level dictates the state of the data
(even in the bounds of a transaction) that can be seen. In a serializable transaction the data is isolated at the time the
statement runs. As a result, data must be locked to prevent anomalies. To prevent new rows from coming into the set,
SQL Server will lock the “range” of rows affected by the query. If a good index exists then SQL Server can lock within the
index (it’s in the first intermediate level – the level above the leaf level). If a good index does not exist then SQL Server
must do table-level locking. This example was showing key-range locking in an index for the “country” set. In the end, we
might end up locking more data than just that country but only a small amount of data that surrounds the value(s) of
interest.

Key-range locking (Serializable transactions)

This picture described key range locking in an index. When a query runs the isolation level dictates the state of the
data (even in the bounds of a transaction) that we should see. In a serializable transaction the data is isolated at the
time the statement runs. As a result, data must be locked at that time. To prevent new rows from coming into the set,
SQL Server will lock the “range” of rows affected by the query. If a good index exists then SQL Server can lock within
the index (it’s in the first intermediate level – the level above the leaf level). If a good index does not exist then SQL
Server must do table-level locking.

Snapshot Isolation vs. Serializable transactions

Sometimes I like to say that transaction-level read
consistency = Snapshot Isolation (using versioning)
is more serializable than the locking based
serializable transaction isolation level is. The
reason why – S.I. defines the point to which all
statements reconcile as the BEGINNING of the
transaction. All statements in the transaction
reconcile to EXACTLY that same point in time
(defined by an LSN). However, serializable can only
lock resources AS it requests them (statement by
statement). In this picture, I drew that distinction –
each statement locks AS it executes. So, the 2nd and
3rd statements reconcile to t2 (time 2) and t3 (time
3). Where as a snapshot isolation-based
transaction would always reconcile to t1.

See notes on next page

The prior slide showed a table vertically as a set of pages. The idea was to compare/contrast the behaviors between:

(1) The default – READ COMMITTED (using locking)

The key things to remember from the picture is that (1) has “hiccups” along the way as they encounter rows that are
locked. They read… wait… read… wait. This is partially what slows down a statement. However, it’s worse that this. It’s
possible that AFTER a row is read, it will appear again (if the record is relocated) and we will read it twice (non-
repeatable reads). Also, it’s possible that another transaction would modify a row that we’ve NOT yet seen (before we
get there) as well as a row that we have seen (after we’ve read it) such that the end result of our statement has rows
that aren’t really transactionally consistent (with another multi-statement transaction). This is also a problem… The
default (1) environment is prone to a few inconsistencies (aka. Inconsistent analysis). Only way to solve – increase
isolation (or [as of 2005] consider using versioning).

(2) A forced NOLOCK

The key thing to remember here is that nolock allows the reader to read quickly – not stopping for locked rows.
However, these rows may be “in-flight” and their modified data might end up getting rolled back or even be in a mid-
flight state. If you’re looking for only an estimate – this might be fine.

(3) Versioning (and it was implied that it was statement-level)

When a versioned query runs the reader will not stop but will have to go to the version store for any row that’s in flight.
This is a tiny bit slower but guarantees consistency of the ENTIRE read to the point in time when the statement started.
This gives you better concurrency as well as a definable point in time to which your statement reconciles. Of course, it
isn’t free – the overhead of versioning is for every writer and it occurs within tempdb.

An ideal use for Snapshot Isolation

The idea is that you don’t want to impact your production OLTP environment with READERs or with
versioning so instead, you replicate to subscribers and use read committed snapshot there!

(Point in time)

Versioning is a great feature!
AGs use part of versioning on the primary so that the read-only secondaries can support versioning as changing are sent.

If you use replication, definitely consider setting up versioning (read_committed_snapshot) so that reporting users don’t block replication AND
replication doesn’t block the reporting users!

Check out my whitepaper on versioning: https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-
2005/administrator/ms345124(v=sql.90)

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2005/administrator/ms345124(v=sql.90)

The Clustering key MUST be unique

The key reason that the clustering key must be unique is because of the lookup that must be
performed when looking up a corresponding row from a nonclustered index request.

The uniquifiers are unique per duplicate key value

The FIRST Smith that is inserted is unique – so no uniquifier
The second Smith goes in and it becomes Smith 1

The FIRST Jones that is inserted is unique – so no uniquifier
The second Jones goes in and it becomes Jones 1

A clustering key should be unique by definition. However, if the CL key is NOT unique then SQL Server will uniquify it. And,
this process of uniquification can be expensive because the next uniquifier value is unknown (they must scan the last page
of values in that duplicate range).

Each duplicate group can support 231-1 duplicates. What happens if you put a CL index on Lastname and then have 2 billion
rows with a value of Smith? Error 666.

Error 666: The maximum system-generated unique value for a duplicate group was exceeded for index with partition ID
%I64d. Dropping and re-creating the index may resolve this; otherwise, use another clustering key.

Another negative associated with the uniquifier value is finding it. Remember, each duplicate has a uniquifier that’s tied
only to it. On insert, SQL Server will have to scan the last page to find the maximum current value for the uniquifier for that
“group.” If you have something like a DATE (not datetime/datetime2) then you’re likely to have an impact from the
generation of the uniquifier. It’s often better to use something like an invoice number to uniquify the rows. And, secondarily
this should also save time. Because the uniquifier has to live in the variable block it requires at least 6 bytes and possibly 8.
These additional bytes are in the data rows and in ALL indexes. If 90% of your data rows include the uniquifier AND many of
your nonclustered indexes include the invoice number then you’re going to be require less storage with an int and probably
even still with a bigint given that the table won’t need the uniquifier and many indexes [probably] already have the invoice
number.

Forwarding pointers and back pointers (HEAPs ONLY)

This picture shows the overhead needed (in terms of bytes) for
forwarding records. On the page where the record was
inserted originally (to which ALL indexes will always point – as
it’s our “fixed RID”) will still have the header, the RID and the
slot in the slot array (11 bytes). On the page where the row has
been forwarded – you’ll have a back pointer. This back pointer
is 8 bytes but it lives in the variable block in the row so it
requires an additional 2 bytes. Total space wasted is 21 bytes.

High Performance Loading Discussion

Some really good questions about “high performance loading” that lead to a discussion around these key
things:

• Loading into a HEAP – typically this is best when you don’t have an ordered file *and* when you can performance
parallel load and parallel index creation.

• Loading into a Clustered Table with an Ordered Load – typically this is best when you have an ordered file and you
cannot perform a parallel load and/or parallel index creation.

• Loading into a Clustered Table with all nonclustered indexes pre-created – this is almost NEVER a good idea unless
you’re loading only a small amount of data into an existing table. Typically less than 10% new data.

Data Loading Performance Guide

http://msdn.microsoft.com/en-
us/library/dd425070.aspx

http://msdn.microsoft.com/en-us/library/dd425070.aspx

Clustering for range queries looks GREAT on paper… until modifications occur!

This was just reminding you that when folks tell you that the clustered index should be DESIGNED to
support range queries you need to remind them of what the table is going to look like when there are
modifications. What sounded good (the data is all together) doesn’t stay that way…

• INSERTs/UPDATEs are slower due to the splits

• This wastes disk space AND memory because of the fragmentation caused.

• And the range query is no longer left-right ordered but instead very out of order (fragmentation)

SQL Server 7.0’s storage engine was almost a complete rewrite. A major change in the engine around the method used from
nonclustered indexes to lookup the corresponding row in the table (heap or clustered). In 7.0 and higher, SQL Server uses a
FIXED RID (for heaps) and the clustering key (for tables with a clustered index). In 6.x, SQL Server used a volatile RID for ALL
tables (regardless of whether they were clustered or not).

Even if your “primary” table uses a GUID for inserts... You might want to use an IDENTITY column as your foreign key.
This takes less data space, less index space and results in a less expensive join. And, this might be an easier “conversion”
to make for your application. You can potentially make it over time and through changes to some tables, some procs and
then some code. Then, more tables, more procs and other code, etc. Slowly you can remove the old GUID columns and
eventually become free of GUIDs as clustering keys and GUIDs for joins! You might still have a GUID on that initial table
but only as a nonclustered PK. ☺

What does it take to change a CL PK?

Unfortunately, A LOT. And, because of the lack of indexes and foreign keys – the entire process is OFFLINE.

This is why this is such an important decision to make early!

Again, discussions about converting an existing application/database over time.

Phase I:

Add an identity column and cluster it (which includes (1) taking the database offline (2) dropping FKs, dropping NCs and
finally, dropping the CL. (3) Add the identity column and cluster it. (4) Create the PK as NC. (5) Add back the other NCs.
(6) Add back the FKs.

Phase II (you can do this for a subset of tables at a time, repeat until all are gone):

Migrate the related tables to use the Identity column for joins instead of the GUID-based FK. Slowly change code and
eventually drop the GUID-based FK leaving ONLY the int-based FKs.

If you have only one file in a read-write
filegroup you can potentially end up
with contention on the system
resources (PFS, GAM and SGAM). By
having multiple files within the
filegroup you can better handle
contention.

Generally, I recommend 2-4 files in a
read-write filegroup. You do NOT need
1 per core.

Non-unique nonclustered indexes
MUST have the lookup key (the
Heap’s RID or the clustered table’s
clustering key) pushed up the tree.
The reason stems from the fact that
the rows would NOT be able to be
found on a delete. And, it
guarantees their position on an
insert.

Fixing GUIDs

This scenario was from a question
regarding the conversion of a database
that uses GUIDs everywhere.

Completing eliminating GUIDs is tough to
do. What you might do it something more
gradual. Allow the application/user to
continue to use the GUID as a
nonclustered PK and then add a clustered
identity. Slowly convert the related tables
over by adding the identity column (as a
FK back to the primary table) and then
slowly remove this column altogether.

Where does the CL key go?

If the index is unique – then the CL is added only to the leaf-level.

If the nonclustered is non-unique – then the CL is added to leaf level as well as up the tree.
Specifically, it’s added immediately after the key; included columns are added after that.

Tangent on hash-based partitioning
This is a perfect context where unaligned
indexes make sense.

See additional diagram on the prior slide and notes on the next slide

Question/Discussion
The two previous diagrams were discussing the costs (of IOs) for lookups – between a heap and clustered
table.

It *looks* like the CL index is worse:
Using a nonclustered to do a lookup (= 3 IOs), then – using the CL to lookup the data row = 3 more
IOs for a total of 6 IOs

Whereas the heap seems to require fewer IOs. Using the nonclustered is about the same (=3 IOs), then –
using the Heap to access the data row is 1 (possibly 2 if there’s been record relocation / forwarding) for a
total of 4-5 IOs.

The long story short is that 4-5 IOs is less than 6 IOs. That seems better. Yes, the number is lower but the
IOs are potentially more expensive. The yellow highlighting shows where the less expensive IOs are going
to be performed (which is predominantly in the non-leaf structures).

As a result, a bookmark lookup from a NC to a clustered has 2 potentially physical IOs.
The lookup from a NC to a heap has potentially 2-3 physical IOs.

While many lookups might be the same – there are still OTHER reasons for why heaps are not ideal. This is
just yet-another-one. ☺

Clustered Index Seek vs. Nonclustered Scan
Costing IOs for different indexes for the query on this slide.
The clustered is 1/8 of 4000 pages or 500 IO
The nonclustered index on SSN has to do a scan
But, a nonclustered covering index that was ordered EmpID then SSN (S17) would be a seekable
nonclustered covering index with the fewest IOs as SQL Server would only have to read 1/8 of the 179
pages.

Module 8, Slide 29
For the member table (in the Credit sample database), the clustered index key is on member_no. To save space, I’m listing
that as mno.
If this were a question on a test – the answer to “which index is best?” would be “c”
A is useless (it’s NOT selective enough)
B = C = D for THIS query and in terms of I/O but C is best as it’s ALL that’s required. You do NOT need more in the key for
THIS query. D is the “art” of indexing as it’s likely the result of consolidating this index with an existing index.

Module 8, Slide 29 – Same concept with Keys and INCLUDE
In the first example all of the columns are in the key. The clustering key is added to the leaf-level and then all 5 columns
go up the tree. (NOTE: The CL Key is an ID… member_no is the actual column but this pic says EmpID as a generic “key”)

In the second example only lastname is in the key. The clustering key is added immediately after that (in the leaf-level)
and then the included columns are added to the leaf-level. Then, only lastname and EmpID go up the tree. This is the best
index for this query (if we were to tune query-by-query, which is completely unrealistic).

In the final example phone is the only include. The clustering key is added immediately after LN, FN, MI (in the leaf-level)
and then phone is added. LN, FN, MI, EmpID go up the tree. This last example is the most realistic index but only after
consolidation warrants it.

CREATE INDEX NCICovers4Cols
ON dbo.member
(lastname, firstname,
middleinitial, phone_no)

CREATE INDEX NCILNinKeyInc3Cols
ON dbo.member(lastname)
INCLUDE (firstname,
middleinitial, phone_no)

CREATE INDEX NCICovers4Cols
ON dbo.member
(lastname, firstname,
middleinitial, phone_no)

SELECT … FROM member
WHERE Lastname = 'Tripp' AND Firstname LIKE 'K%'

AND MI = 'L'

Lastname Firstname MI
Tripp Andrea L
Tripp Catherine S
Tripp Kimberly L
Tripp Lisa A
Tripp Zachary L

Lastname MI Firstname
Tripp A Lisa
Tripp L Andrea
Tripp L Kimberly
Tripp L Zachary
Tripp S Catherine

Which index order is better for this query?
Definitely the second one (index 2) because the criteria against firstname is “range-based”
while the condition against MI is equality-based.

Index 1 Index 2

Solving an application problem with a filtered index
Somewhat recently I worked with an application that had a habit of adding % to the start/end of a queried
value but only for a subset of data. However, that subset was not selective enough to use an nonclustered
index. So, the query would do a complete table scan. This was causing huge performance problems… enter,
filtered index!
We could cover the request but only where REGION = ‘subset’ so only that data would be scanned. OK, no, I
didn’t like the %value% search either but at least I could reduce the impact of it by using filtered indexes!
The negative – consistent session settings are required AND procedures must do a recompile to ensure that
they will pick up the filtered index.

A foreign key can be used to reference any column (or list of columns) that has a unique index – as long as it’s not
filtered.

In an index consolidation scenario, if you already have a constraint on SSN and you NEED an index on SSN include
(LastName) you’d end up with a “redundant” index (if SQL required a constraint-based index for foreign keys).
Instead, you can drop the constraint on SSN and instead create:

CREATE UNIQUE NONCLUSTERED INDEX SSN_Inc_LN ON Member (SSN)
INCLUDE (LastName)

Foreign Keys can reference UNIQUE indexes (without constraints)
http://www.sqlskills.com/BLOGS/KIMBERLY/post/Foreign-Keys-can-reference-UNIQUE-indexes-(without-
constraints).aspx

http://www.sqlskills.com/BLOGS/KIMBERLY/post/Foreign-Keys-can-reference-UNIQUE-indexes-(without-constraints).aspx

Data selectivity and “need” for additional columns in the key - from left-based density
subsets…
If the distribution of the data is unique at the combination of the first and second columns
then the third, forth, etc. do not provide any use in terms of seeking (JUST in terms of
seeking). However, they might provide use for sorting.
But, it MIGHT be possible to consolidate another index with this one IF you really don’t
need those extra columns in the key. Something to consider!
Multiple – all density * rows and if unique (= 1 or very close to one) then you can consider
consolidation with other similar indexes!

Column-level distribution from left-based density subsets…
This relates to the query on slide 10 and the idea that I was trying to show here is that even though the
left-based density shows that last names are horribly NOT unique and the combination of last name & first
name IS almost unique – that doesn’t imply anything about first names alone. I could have created a data
set of firstnames of Kima, Kimb, Kimc and then multiplied that with last names (Tripp, Randal, Smith) and I
would have had similar statistics for last name alone and for the combination of last name, first name. SQL
Server does NOT gamble on this – SQL Server creates column level statistics on first name.

We are NOT invalidating soon enough with the column modification counter?
This shows how relatively distributed modifications effect each column with a small percentage of the
modifications but when they add up to 20% ALL columns become invalidated (this was the PRE-2005 way of
doing it):
• The pro was that each column had a reasonable (but lower) percentage of rows modified and the stats

were invalidated
• The con is that a single overly volatile column would cause ALL statistics to be invalidated (which was

overkill).

Indexing for AND
If the columns are doing range-based searching then the order
of the secondary columns of the index might not be relevant
(or even required in the key).

This case was shown around the conditions:
WHERE firstname LIKE ‘k%’
AND region_no > 6
AND member_no < 5000

Really, it doesn’t matter what follows firstname because the
entire set of firstnames will need to be scanned.

Here we started to talk about how LOOP joins are an iterative
process. The driver (the outer/first table) is typically chosen because
it has the most selective set. Any of the tables that have a highly
selective search argument are more likely to be chosen as the driver.
An index that aids in efficiently finding those rows is REALLY helpful!

Cost can be calculated as:
Number of IOs required for first table +
Number of resulting rows in first table * the cost for each lookup
(ideally with an index on the join condition)

Loop Joins

In the worst case scenario
the costing of this iterative
process can be very
high/expensive.

Instead of doing this, SQL
Server is much more likely
to do a loop join.

Loop Joins continued
If our query was:

SELECT columns (irrelevant here)
FROM Employee AS E

JOIN Department AS D
ON E.DID = D.DID

WHERE D.city = ‘Redmond’

And, there were only 1 or 2 rows for Redmond in the
Departments table then that’s more likely to be
positioned as the driver in the join.

Once we know the DIDs then we’re going to need to find
all of the employees IN that department. We’ll need to
search against the DID column in the Employee table.

Key question:
Do you have an index on the foreign key column?

Merge Joins
Merge joins leverage “suitably sorted
sets.”

More specifically, merge leverages
indexes whose leading keys are on
the same column.

Key question:
What columns do these two tables
have in common?

The join column…

Corollary question:
Do you have indexes on EACH of the
columns (in each table)? The one
that’s often missing: the join column
that’s the foreign key.

Hash Joins
Hash are a little more complicated.
There are multiple hash types
available in SQL Server and each
provide different benefits. The
general purpose of a hash join is to
significantly reduce the number of
rows that have to be processed.

More specifically, there are two
phases:

BUILD phase
PROBE phase

The build phase is used to create a
small structure into which the larger
set can probe to determine if there’s
the possibility of a matching row.

Two very good resources:
Hash joins and hash teams in Microsoft SQL Server
by Goetz Graefe, Ross Bunker, Shaun Shaun Cooper
(http://bit.ly/1GVJJnn)

Query Evaluation Techniques for Large Databases
by Goetz Graefe
(http://bit.ly/1bX84f3)

http://t.co/KuH8gq3u
http://bit.ly/1GVJJnn
http://www.csd.uoc.gr/~hy460/pdf/query.pdf
http://bit.ly/1bX84f3

Tuning Joins
Tuning a large complex join takes breaking it down into smaller chunks. The things that you consider are
the costs of the tables (the outer most events) and the costs of the joins. And, typically, the most
expensive join is downstream from the most expensive table.

Try to find your:

* Problem Child Table
(the table with the highest cost)

* Problem Child Join
(the join – typically downstream
from the table – with the highest
cost)

Indexing Foreign Keys
An index on a join column (the foreign key) helps the performance for the referential integrity as well as
some joins. A narrow index on the join column helps but is often superseded by wider indexes; it’s still a
good start. (hence the phase – phase 1)
This is the most ideal for (but not limited to) a loop join.

Changing Join Order based on SARGs
An index on a join column (the foreign key) helps the performance for the referential integrity as well as
some joins because your more selective criteria might be on the referencing table rather than the
referenced.

A Foreign Key can reference
• Primary Key
• Unique Key
• Any unique index (even with INCLUDE but not with filters [bummer!])

Blog Post: http://www.sqlskills.com/blogs/kimberly/foreign-keys-
can-reference-unique-indexes-without-constraints/

http://www.sqlskills.com/blogs/kimberly/foreign-keys-can-reference-unique-indexes-without-constraints/

Hash Joins are “stop and go” operations (or two-phase operations)
Phase I – Build (this is the phase where they build a table to fit in cache)
Phase II – Probe (this is where the larger set uses the join condition to “probe” into the build/temp
table to output matches). Probe cannot “go” until after build completes (hence the term – stop and go).

Indexed Views
Are results sets defined by a view and materialized into
the leaf level of the UNIQUE CLUSTERED INDEX that’s
defined on the view.

Indexed Views and view maintenance
The reason that COUNT_BIG(*) over the GROUP BY class is
needed is because they need the count to determine
when the row within the indexed view should be deleted.
A zero sum is not enough.

Hot Row
If your aggregate is too small then you can have a HOT
ROW problem where all modifications are blocked trying
to write to the aggregate. You’ll serialize your inserts by
country here… CAN, MEX, USA are the only countries with
whom you do business – all US rows will have to wait as
each new sale has to update the sum for that country. This
will become a terrible bottleneck.

Partition-aligned indexed views
If you create a partition aligned indexed view and then request something like the sum(sales) for
customer #1 then SQL Server can aggregate the aggregates!
On SQL Server 2005, indexed views had to be dropped before fast-switching.
On SQL Server 2008+, when you’re switching in – you must defined the Views and IVs in order to
successfully switch in.

•

•

Filtered Statistics
Filtered statistics can be created for specific values but depending on your data distribution – you might want to divide the
data into buckets and then create a [filtered] statistic for each of those buckets.
The example was 31 million sales over ~18K customers. By creating a statistic for each 1K customers you have statistics that
are effectively 19x more detailed. Even adding only 10 filtered stats gives you 10 times more detail. However, it still might
not be detailed enough. You’ll need to test it and check the histogram. Because of potential interval subsumption* issues–
some have asked if it would be beneficial to create additional stats at different intervals… you could but it would really
depend on the queries. Having said that – the bigger the range that the query is interested the more the averages just
average out. So, really, this issue is to significantly help queries that are more targeted (where the stats just weren’t good).
* The optimizer can detect whether interval conditions in a filtered index cover, or "subsume" interval conditions of a query.

Creating Filtered Stats
The idea is to just have better statistics than what you have currently. To do this you can divide
the range into 10-20 buckets. This will give you 10 times (or 20 times) better information in
terms of statistics.

You WILL need to regularly/automatically review the values/ranges and add more or divide
them up again to ensure that the statistics are good (and stay good)!

Simple vs. Forced Parameterization
The general process is that SQL Server analyzes a query to determine if it’s safe or not (the majority of
them will NOT be safe). If it’s safe then it can get parameterized and reused. If it’s unsafe then it goes into
memory as an individual query (and it’s harder to determine the cumulative effect of these queries).
Check out the query_hash and query_plan_hash.

Filtered Stats and Forced Param
The bad news… there’s always bad news.
Forced parameterization: even when SQL Server would NOT have parameterized the statement (because
it had deemed the statement’s plan as “unsafe” to re-use), forced param will force it. In systems where
plans are very stable (but A LOT of adhoc) then this could be great. However, the example of status = 1 (in
your query) is converted to status = @1 so the filtered index/filtered stat cannot be used.

Filtered indexes and filtered stats – Auto update
The bad news… there’s always bad news.
For Updates:

statistics for a filtered index OR a filtered stat – do NOT get updated until that column’s statistics
get updated (which is when the colmodctr) is reached

Database option: FORCED parameterization
Because of how forced parameterization changes each variable to a parameter – the value of that
parameter is unknown. As a result, a filtered index (for example, WHERE status = 1) cannot be used
when a query has been parameterized to status = @1. There’s no guarantee that the value their
searching on is 1.

End result. You will NOT have good results with filtered indexes IF you use FORCED parameterization.
The good news: This is NOT on by default and not likely to be on in most environments.

Index on OrderDate

Index on ShippedDate

FactInternetSales2

DEMO
This was the demo on uneven distribution.
A table scan is always an option.
With narrow indexes, SQL Server does not understand
the correlation between these columns. As a result,
their estimates are going to assume even distribution.

DEMO
This was the suggested index from the
green hint in showplan and while it does
make this query faster (and with fewer
I/Os) it’s not the best index that’s possible.

Key point, the missing index DMVs (which is
where the green hint gets its information
from) – gives you good suggestions but not
always the best suggestion.

Furthermore, this is the same index that’s
recommended by DTA. So… sometimes it
does take *manually* defining/choosing
the index.DEMO

This was the index that I suggested (putting OrderDateKey in the key)
as a combination of:

ShipDateKey, OrderDateKey
The first record on the first page will be the minimum OrderDateKey
where ShipDateKey IS NULL.

Poor Man’s Datawarehousing
Setting a database to RO (read-only) can be a
good idea when you plan to use it solely for reads.
However, how does SQL Server update statistics or
add statistics?
Really, it can’t.
So, the main point… if you’re going to move a
backup to another server for read-only access –
you should automate some basic optimizations
before setting it to RO.

This was a reminder that when you’re calculating
row size (as well as page density) that you can
use 8096 for data rows. Every row requires 2
bytes in the slot array so two rows could each be
4046. However, a single row cannot be more than
8060. The 8060 comes from:

8192 bytes (page size)

- 96 bytes in the header

= 8096 as the maximum amount of space for data

A row must have a header of 4 bytes

= 8092 and the SQL team took “32 bytes” for
future growth.

Some of which they’re already using in SQL
Server 2005 and higher. For row versioning, each
versioned row requires a 14 byte offset. If they
had allowed a row to be 8096 – where would
they have put the offset?

Column order does not matter… it depends!

OK, this diagram should remind you that leaving the columns that are most likely to be null – at the
end of the row definition COULD save some space.

Blog post: Column order doesn't matter... generally, but - IT DEPENDS!
http://www.sqlskills.com/BLOGS/KIMBERLY/post/Column-order-doesnt-matter-generally-but-IT-
DEPENDS!.aspx

http://www.sqlskills.com/BLOGS/KIMBERLY/post/Column-order-doesnt-matter-generally-but-IT-DEPENDS!.aspx

Default behavior of a *new* LOB
(max or XML) is that they will be
put “in_row” if they fit (if the
total row size is under 8060).

If you have a lot of small LOBs
(for example 2K LOBs) then all of
your rows will be really wide. If
you’re doing a lot of scans and
NOT interested in always
returning the LOBs then you’re
going to waste a lot of pages/IOs
to get the LOBs into cache when
you don’t really need them.

Consider pushing these small
LOBs off-page instead!

Implicit Conversions
When a predicate is being evaluated there are two sides to the equation:
The column expression & The variable expression

When one of the expressions has a higher data type AND they’re implicitly
compatible then SQL Server will need to bring the other expression UP to the
same type.

If the variable expression is the LOWER type then it’s easy, only that variable
has to be converted.

The problem starts when the column expression is the lower type – then the
column has to be converted. This results in a scan of that column (could be an
index scan but if a good index doesn’t exist then it might be a table scan).

You can see implicit conversions in cache – check out Jonathan Kehayias’ blog
post on this:
Finding Implicit Column Conversions in the Plan Cache
http://sqlblog.com/blogs/jonathan_kehayias/archive/2010/01/08/finding-
implicit-column-conversions-in-the-plan-cache.aspx

http://sqlblog.com/blogs/jonathan_kehayias/archive/2010/01/08/finding-implicit-column-conversions-in-the-plan-cache.aspx

This was a tangent where we talked about a way to optimize lookups for LOB data.
One of the things that always causes people grief is that columns over 900 bytes cannot be indexed. So, if you have a
WHERE clause like this:

WHERE lobcolumn = ‘lob value……………………….’
SQL Server has to do a table scan to get all of this data.
Another trick is:
Add a CHECKSUM column that checksums a particularly large column (note: legacy LOB column types: (n)text, image AND
XML are not supported – see this link: http://msdn.microsoft.com/en-us/library/ms189788(v=sql.105).aspx) and then
rewrite your queries to be this:

WHERE lobcolumn = ‘lob value……………………….’
AND checksumcol = CHECKSUM(‘lob value……………………….’)

http://msdn.microsoft.com/en-us/library/ms189788(v=sql.105).aspx)

Sparse Columns – It only makes sense to use sparse columns when you have multiple columns that will be sparsely
populated. How sparsely populated? That depends on the data type. Check out the BOL for the percentage (per type) that
needs to be NULL in order to save 40% space.
LINK: http://technet.microsoft.com/en-us/library/cc280604.aspx (topic: Estimated Space Savings by Data Type)

http://technet.microsoft.com/en-us/library/cc280604.aspx

•

•

–

•

•

–

–

•

•

•

•

–

•

•

–

–

•

•

Sharding/Scale-out – also, often called

Service-oriented Database Architectures

(SODA)
Partitioning in our workshop was all within a single

database. However, we had a side/note about sharding

and scale-out design. The most important thing that I

can highlight is that scaling out is most ideal through

middle-tier DDR (data-driven routing) where the

applications are directed to the appropriate server. If

every user randomly goes to any of these instances

and all requests go through [distributed partitioned]

views then performance will likely be worse!

Check out the whitepapers on SODA (service-oriented

database architectures)

From https://www.sqlskills.com/sql-server-resources/sql-server-whitepapers/
• SODA: Service Oriented Database Architecture: App Server-Lite?

• SODA: How SQL Server 2005 Enables Service Oriented Database Architectures

• Scalability: Planning, Implementing, and Administering Scaleout Solutions with SQL Server 2005
• Scalability: Solutions for Highly Scalable Database Applications: An analysis of architectures and technologies

https://www.sqlskills.com/sql-server-resources/sql-server-whitepapers/
http://research.microsoft.com/apps/pubs/default.aspx?id=70220
http://www.microsoft.com/technet/prodtechnol/sql/2005/sqlsoda.mspx
http://www.microsoft.com/technet/prodtechnol/sql/2005/implementingscaleout.mspx
http://download.microsoft.com/download/a/4/7/a47b7b0e-976d-4f49-b15d-f02ade638ebe/OracleRAC.pdf

Scalable Shared Databases

Partitioning in our workshop was

all within a single database.

However, SQL Server (2005 +

2008 + 2008R2) does support

Scalable Shared Databases.

These are RO databases that

are attached to multiple servers

and then balanced through

WLBS (Windows Load

Balancing Services).

Scalable Shared Databases

https://msdn.microsoft.com/en-

us/library/ms345392(v=sql.105).

aspx

https://msdn.microsoft.com/en-us/library/ms345392(v=sql.105).aspx

Application Directed Inserts (DSE)
Even with updateable partitioned views, I usually use application directed inserts. If you’re

concerned about dynamic string execution check out the Little Bobby Tables blog post:

http://www.sqlskills.com/BLOGS/KIMBERLY/post/Little-Bobby-Tables-SQL-Injection-and-

EXECUTE-AS.aspx

http://www.sqlskills.com/BLOGS/KIMBERLY/post/Little-Bobby-Tables-SQL-Injection-and-EXECUTE-AS.aspx

Optimizing VLTs (Very Large

Table)

A very large table has many

“problems”… to reduce those – don’t

have just ONE VLT – have smaller

tables that are unioned (using

UNION ALL) into a view. If you also

have restrictive constraints (CHECK

constraints) across all of the base

tables this combination is called

Partitioned Views. You get numerous

benefits with this architecture

including: better control /

manageability, better statistics on

each table, online operations, and

the reduction of some operations all

together (on the historical data).

Indexed views are created on the

base table (not the partitioned view).

And, with partitioned views, you can

have secondary filtering criteria (with

additionally created constraints).

With PTs
If you want to create indexed views,

you must create them as partition-

aligned (for fast switching). This is

available in SQL Server 2008+.

With PVs
If you want to

create indexed

views, you must

create them

individually per

table (for the

tables that

underpin the PV).

If you’re not on

EE then you’ll

also need to

create a specific

view to access

them with the

(WITH

NOEXPAND) hint.

Filtering v.

Partitioning
You might think that

using JUST a filtered

index approach would be

better but then there’s

the interval subsumption

problem.

Architecting the RIGHT

solution and breaking

down a VLT into smaller

tables can be ideal.

Partitioned Views (PVs)

do NOT have interval

subsumption problems.

And, PVs have better

statistics…

Partition Elimination

Constraints are validated during optimization. SQL Server is able – when querying through a view –
to generate the query tree and then “prune” the tree. This partition elimination removes any of the
redundant tables from access. All of this is as long as the constraint is trusted (or, should I say as
long as it’s NOT untrusted. ☺)

Partitioned Views and business logic
Be careful with partitioned views… there’s nothing that’s going to test your
business logic. As a result, if you miss a day (for example Feb 29, 2008) then
inserts into the view will fail because there’s no view that can store that date.

Alternatively, using partitioned tables – there’s no way to have a gap or
overlapping ranges.

But, there’s a lot more to PVs and PTs (this isn’t enough to choose one over the
other) so this is just a bit more info to add to the list!

Expand Views

Another way to look at this is that there are multiple phases of query processing. The second phase
(standardization, normalization, algebrization) is where views are expanded to their base tables
(known as EXPANDVIEWS). This might sounds familiar because of the hint NOEXPAND – which is
used to force SQL Server to use indexes on views (if for some reason SQL Server isn’t using the IV).

Aligned Indexes
Indexes can be aligned to the same partition scheme:
• Either by creating them ON SCHEME(col) or
• Accepting the default behavior during creation. Nonclustered indexes default to being created on the same

scheme as the clustered index – unless they are an UNIQUE index. If the index is unique then the partitioning
column must [explicitly] be part of the key.

Indexes can be unaligned
• The index has all of the nonclustered index data for the table in one leaf structure
• Fast-switching is NOT allowed if unaligned indexes exist

Un-aligned indexes and fast switching
For fast switching to be allowed – you must have ONLY aligned
indexes. For an index to be aligned – there are rules. If the index is going to be unique (and aligned) then it MUST include
the partitioning key. Indexes will default to being created on the same scheme as the table (they will default to being
aligned – and therefore have all of these requirements).

However, if you’re not interested in fast switching – then you can have un-aligned indexes. In this case you create these
indexes on a specific filegroup (or on a different scheme). These un-aligned indexes can be unique and do NOT have to
include the partitioning column.

Staging Data
Why do you need a staging area?
(1) So that you don’t need to

overallocate space within
destination filegroups

(2) So that you don’t have to shrink
(see s54)

(3) So that you can optimize the
process…

Always load into a staging area first.
Then, transform/cleanse
Then, build the CL index ON the
destination filegroup!

Merging the right boundary
If the MERGE process is slow – you
may have merged a boundary point
that was NOT empty.

The most common case of this is
when you start with a non-empty
first partition using RIGHT-based
partitioning. With RIGHT-based
partitioning you should not MERGE
until you have TWO empty partitions
that surround the emptied boundary.
Then, you can MERGE (top diagram).

Rebuilding the active partition – OFFLINE 
With PTs – it’s likely that your last partition (often, the current data) will be active. This is
also where it’s most likely that you’ll have fragmentation. If you want to rebuild ONLY that
last partition – you’ll need take it offline to do it.

S49 – The Sliding Window Scenario

See the next slide for full details

The prior slide showed the sliding window scenario – but we went through it slowly:

(1) Preparing the table into which we’ll switch OUT our old partition

Review all of the slides for the requirements here but the key point is that this “staging” table
MUST be on the same filegroup as the partition you are going to switch out.

(2) Preparing the table for our data load and what will become our new partition to switch IN

Again, be sure to review all of the slides for the requirements here but one thing you need to
make sure of is that there’s a TRUSTED constraint on this table before you switch in.

(3) Change the partitioned table to support the new filegroup and data range

Always set the NEXT USED filegroup with ALTER SCHEME

Once you have the correct filegroup specified then ALTER FUNCTION…SPLIT

- Now, you’re ready

(4) and (5) can be in any order. SWITCH IN the new partition and SWITCH OUT the old.

(6) Clean up

Merge the boundary point but ONLY if it’s empty (the next picture will remind you of what
happens when you don’t MERGE an empty boundary point)

Backup the filegroup where the partition resides that you just switched out. OR, drop the
table.

S49 – The Sliding Window Scenario

With PTs - If you want to create
indexed views, you must create
them as partition-aligned (for fast
switching). This is available in SQL
Server 2008+.

With PVs - If
you want to

create
indexed

views, you
must create

them
individually

per table (for
the tables

that underpin
the PV). If

you’re not on
EE then you’ll

also need to
create a

specific view
to access

Moving/partitioning the CL index

When you rebuild the CL index on a scheme the clustered index (the table) will be partitioned on the new scheme. However, nonclustered
indexes will NOT be partitioned. Nonclustered indexes must be built separately/individually. And, they might need to be changed. All unique
nonclustered indexes must having the partitioning column defined as part of the key.

If the CL table that you want to partition is clustered by date/id (and is the PK) then rebuilding that on the scheme is fairly easy. But, if it’s not
the PK and the PK is instead on SalesID then you’ll change this PK to have the partitioning key as part of the PK. And, this means all FKs will
need to change, etc. This can make the process of converting to a partitioned table become an offline process.

Columnstore Indexes

This was a drawing showing the possible compression of 3 columnstore-based indexes. Then, each
columnstore index is broken down into segments. This is the base of batch-mode processing
(another core part to the performance gains that can be recognized with columnstore indexes).

Since columnstore indexes make the table
on which they’re created read-only then
you might want to use PVs to separate
read-write and read-only data.

Having said that, one limitation of the
current implementation of nonclustered
columnstore indexes is that they do not
support batch mode processing across
views that include UNION ALL. The
workaround is to use CTEs.

Check out the discussion: Perform UNION
ALL and Still Get the Benefit of Batch
Processing on the columnstore wiki here:

http://social.technet.microsoft.com/wiki/c
ontents/articles/perform-union-all-and-
still-get-the-benefit-of-batch-
processing.aspx

Might want to
have CS indexes

only on RO tables

http://social.technet.microsoft.com/wiki/contents/articles/perform-union-all-and-still-get-the-benefit-of-batch-processing.aspx

Splitting a partition that already has data:
There isn’t a slide to which this applies. This was a side discussion about splitting a partition after it
already has data.

If you forget to split for October and November and the last split was for Sept 1 – then, instead of
splitting for October (which has to move BOTH October and November data) and then splitting for
November (which has to move November’s data again) – you should always split the last set (November)
and then the earlier (October). Then, November’s data only moves once and October’s only once as well

However, if you’re going to make significant changes to a partitioning scheme (like 4 partitions to 8) then
instead of splitting 4 times – just create a new function and new scheme and then rebuild (possibly
online) the object on the new scheme.

▪

▪







▪





▪



▪



▪

▪









▪



▪



▪

▪

▪

▪

▪

1

2

4

3

▪

▪

▪

