
1

SQLskills Immersion Event
IEPTO1: Performance Tuning and Optimization

Discussion: Table Design Strategies
Kimberly L. Tripp

Kimberly@SQLskills.com

2
© SQLskills, All rights reserved.

http://www.SQLskills.com

Database Development and Design

 Whose job Is It?
 Resources

 Pluralsight: SQL Server: Why Physical Database Design Matters
 Author/Presenter: Kimberly L. Tripp, SQLskills.com 
 http://pluralsight.com/training/Courses/Description/sqlserver-why-physical-db-design-matters

 Pluralsight: Developing and Deploying SQL Server ISV Applications
 Author/Presenter: Erin Stellato, SQLskills.com 
 http://pluralsight.com/training/Courses/Description/sqlserver-developing-deploying-

supporting-isv-applications

 Things to consider
 Data type best practices
 Understanding row width (vertical partitioning) 
 Application inconsistencies in types
 The cost of poor design



2

3
© SQLskills, All rights reserved.

http://www.SQLskills.com

Use the “Right” Data Type

System supplied data types:
 Binary
 Character
 Integers
 Exact numerics
 Monetary
 Date and time types
 Legacy LOB (image, (n)text)
 LOB (“max” types, XML)
 Uniqueidentifier (GUID)
 FILESTREAM (vs. LOB)

Find the “right” data type for the job:
* Use the smallest (but least restrictive) data type possible
* If the data type varies:

< 5 chars should be fixed width
5-20 chars – questionable
> 20 char – lean towards variable-width

* For decimal/numeric data:
- Find the right range
- Standardize on decimal or numeric
- Understand precision and range
- Consider vardecimal in SQL Server 2005+

* For date/time data
- Review all choices/ranges in SQL Server 2008+

* For additional space savings consider:
- Compression in SQL Server 2008+
- Columnstore in SQL Server 2012+

* Use uniqueidentifier sparingly
* Consider “sparse” attribute for 2008+ 

(for Entity Attribute Values [EAV] / flexible design)

4
© SQLskills, All rights reserved.

http://www.SQLskills.com

Optimal Row Width

 Consider table usage above all else
 Estimate average row length

 Overhead
 Fixed-width columns
 Estimate average from realistic sample data

SELECT avg (datalength (columnname)) FROM tname

 Review min, max and avg. row width of existing and/or sample tables
sys.dm_db_index_physical_stats

 Calculate page density (rows/page):
8,096 bytes/page divided by ??? bytes/row = rows/page

 Calculate wasted bytes – on disk and in memory



3

5
© SQLskills, All rights reserved.

http://www.SQLskills.com

Consider a Customer Table With 1,600,000 Rows

14 Columns
1,000 Bytes/Row

8 Rows/Page
200,000 Pages

1.6GB Table

CustomerPersonal

18 Columns*
1,600 Bytes/Row

5 Rows/Page
320,000 Pages

2.5GB Table

CustomerProfessional

17 Columns*
2,000 Bytes/Row

4 Rows/Page
400,000 Pages

3.2GB Table

* The PRIMARY KEY column(s) must be made redundant for the additional tables. 
Above: 47 columns in Customer; 49 columns total between 3 tables.

One, singe Customer table = 
12.8GB
or
Customer, vertically partitioned 
into three separate tables = 7.3GB
• Savings in overall disk space (5.5GB saved)
• Not reading data into cache when not 

necessary
• LOB data can be isolated from more 

critical data to support online index 
operations (prior to SQL Server 2012 
where rebuilds with LOB can be done 
online)

• Locks are table-specific therefore less 
contention at the row level

47 Columns
4,600 Bytes/Row
Only 1 Row/Page

3,400+ Bytes Wasted
1.6 Million Pages

12.8GB Table

CustomerMisc

Customer

6
© SQLskills, All rights reserved.

http://www.SQLskills.com

Vertical Partitioning

 Optimizing row size for:
 Caching: better page density means less memory required
 Locking: only locking the columns that are of interest minimizes even row-

level conflicts

 Usage defines vertical “partitions” or “sets”
 Logically group columns to minimize joins
 Consider read only vs. OLTP columns (LOB separate from OLTP to allow 

online index maintenance (prior to SQL Server 2012) for the critical/OLTP 
part of the table)

 Consider columns often used together

 If every query requires a join, this isn’t as optimal as it could be but 
should still be considered 



4

7
© SQLskills, All rights reserved.

http://www.SQLskills.com

Pushing LOBs “Out of Row”

 Subtle form of vertical partitioning
 Doesn’t affect the application
 May significantly improve performance
 When should you do this:

 You have a lot of “small” LOB values (values under 8KB) that actually create 
large rows 

 LOBs aren’t returned on most requests so you’re filling cache with LOB 
values that aren’t being used

 Set with sp_tableoption
EXEC sp_tableoption tablename

, 'large value types out of row'

, TRUE

8
© SQLskills, All rights reserved.

http://www.SQLskills.com

“Place Holder” Rows?
Nullability and INSERT Performance

 No default: no specific value required/specified at INSERT
 NULL values DO NOT mean empty space (NULL bitmap is stored 

separately from the column data)
 Working with NULLs

 Accessing columns which allow NULL values can cause inconsistencies when 
developers/users are not aware of them

 Math with NULL values can produce interesting results (value – NULL = 
NULL)

 ANSI session settings can affect results sets when accessing columns that 
allow nulls

 Sometimes it’s best to pre-allocate the row if you’re using place-
holders (so that updates do not cause massive fragmentation)



5

9
© SQLskills, All rights reserved.

http://www.SQLskills.com

Inconsistencies in Data Types

 Query doesn’t match the column definition
 The case of the implicit_conversion

 Key inconsistencies
 “Probe Residual” in showplan for hash join

 May add a hash value for comparisons
 May add a converted version of a column

 Wastes storage space, index size, backups, … 

 Inconsistencies in any layers can be costly
 Tables
 Stored procedures/functions
 Ad hoc queries/application interface

 Consider tools like Visual Studio for refactoring and static code 
analysis

10
© SQLskills, All rights reserved.

http://www.SQLskills.com

Horizontal / Functionally Partitioning Data

 Breaking a table into smaller / more manageable chunks to:
 Reduce resource contention / limitations
 Improve options / performance for varying access patterns
 Allow more maintenance options and reduce costs / restrictions
 Improve availability and reduce downtime for disaster recovery
 Remove resource blocking or minimize maintenance costs

 Usage defines partitioning pattern / partitioning key
 Usually date-related (but doesn’t have to be)
 Distinct data patterns in terms of:

 Usage
 Criticality
 Maintenance

 Queries must specify the partitioning column on every request to aid 
in partition elimination



6

11
© SQLskills, All rights reserved.

http://www.SQLskills.com

Sales2010-2016

Sales2017

Functionally Partitioning Data

Sales VIEW
Sales2017Q1

Sales2017Q2
Sales2017Q3

Sales2017Q4

Sales2018

Sales201811

Sa
le

s2
01

80
1

Sa
le

s2
01

80
2

Sa
le

s2
01

80
3

Sales201810

Table

Partitioned Table

Partitioned Table 
(read-mostly)

Standalone Table 
(RW/“hot”/critical)

Standalone Table 
(RW/“hot”/critical)

Use UNION ALL to bring data together into a 
single View. 

Solves many problems:
* Tables can be isolated (LUNs)
* Tables can be on read only FGs
* [Table-level] Statistics are more accurate on 
smaller tables
* Limitations in PTs are removed: partition-level 
rebuilds aren’t needed (RW data is in a separate 
table(s))
* Lock escalation is reduced naturally (partition-
level was added in 2008)…

Sa
le

s2
01

80
9 Standalone 

transactional / critical 
tables -> will be 

switched in after they 
are indexed for RO

12
© SQLskills, All rights reserved.

http://www.SQLskills.com

Functionally Partitioning Data

 Partitioned tables (requirement: Enterprise Edition prior to SQL Server 
2016 SP1)
 But, for ALL Enterprise ADMIN features such as online operations – you still need 

EE
 Can convert an existing table as an ONLINE operation IF the table doesn’t have 

any LOB columns in 2005 / 2008 / R2 (fixed in 2012)
 Might run into problems around “unique” index requirements for PTs in that the 

partitioning column must be a member of the key – for all unique indexes
 Cannot do fast switching in 2005 if Indexed Views
 Cannot do fast switching if iFTS desired

 Partitioned views (benefit: available in any edition)
 Might be able to replace an existing table with a view (even for DML) if you meet 

the correct criteria
 Might not be able to replace all statements, can programmatically direct modifications 

(for INSERTs)
 Conversion may require downtime or time where certain data is inaccessible
 Definitely more work to architect, manage, design – payoff is often worth it!



7

13
© SQLskills, All rights reserved.

http://www.SQLskills.com

Table Design Best Practices

 Communications, DESIGN, consistency!
 Sloppy design (or none!) leads to:

 Performance problems
 Difficulty when performance tuning

 Scalability can only happen with good design
 Tables can be created easily but design takes knowledge:

 Knowing the data
 Knowing the users
 Knowing the system

 Take more time for design/prototyping – the sooner you begin to code, the 
longer it’s going to take!

 Consider changes over time – if already in place…third-party tools can help 
with refactoring, testing, static code analysis!


