
1

SQLskills Immersion Event
IEPTO1: Performance Tuning and Optimization

Module 1: Database Structures
Paul S. Randal

Paul@SQLskills.com

2
© SQLskills, All rights reserved.

https://www.SQLskills.com

Why Cover Internals?

 Internals aren’t just to geek-out on (although that’s fun to do too! )
 Understanding how data is stored, accessed, and optimized at all

levels is key when architecting a system so that it will perform well
and be more easily maintained
 Explains why some decisions are good or bad…
 Helps to troubleshoot what’s actually happening…
 Gives a clearer understanding in how to design appropriately for SQL Server

 These are the building blocks for understanding the class

2

3
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Records
 Pages
 Extents
 Allocation bitmaps
 IAM chains and allocation units

 Note:
 In-memory OLTP tables have opaque and entirely different set of structures

 Good primer at https://sqlskills.com/p/001

 Columnstore indexes have opaque and entirely different set of structures
 Good primer at https://sqlskills.com/p/002

4
© SQLskills, All rights reserved.

https://www.SQLskills.com

Server Architecture

Deadlock

Monitor
Hosting

API
Resource

Monitor

Lazy

Writer

D
B

C
C

SQLOS

Scheduler

Monitor

Storage Engine

Protocols

Memory

Manager

Buffer

Pool
I/O

Query Processor
Parser and Algebrizer

Query Optimizer

Plan Cache

Query Execution

Access Methods

Pages/Records/Heaps/Indexes/LOB/Bulk Load/Versioning/Allocation/Sort

Transaction Services

Transactions/Files/FGs/DBs/Logging/Recovery/Backup/Restore/DBM/AGs

M
e

t
a

d
a

t
a

S
Q

LO
S

 A
P

I

SQLOS API

Lock

Manager

Thread

Scheduling

3

5
© SQLskills, All rights reserved.

https://www.SQLskills.com

Database Components

 Databases consist of…
 Filegroups consist of…

 Files consist of…
 Extents consist of…

 Pages consist of…
o Records which hold data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

19

20

21

22

23

18

Extent

0
Extent

1
Extent

2

24

25

27

28

29

30

31

26

…

Extent

3

File2

File3

Log

R
e

a
d

-W
ri

t
e

F
ile

g
ro

u
p

File4

File5

File6

R
e

a
d

-O
n

ly

F
ile

g
ro

u
p

s

2020

2018

2017

2016

Primary

File1

2019

6
© SQLskills, All rights reserved.

https://www.SQLskills.com

Record Structure (Non-Compressed)

Null Bitmap Offset (2 bytes)

Tag Bytes (2) Null Bitmap
(2 byte count + 1 bit

per column in the record)

Variable Length Column

Offset Array
(2 byte count + 2 byte pointer per column)

Fixed Length Columns Variable Length Columns

Column order NOT

usually relevant

during table

creation...

4

7
© SQLskills, All rights reserved.

https://www.SQLskills.com

Record Structure Details

 One bit in the null bitmap for each column in the record
 Performance optimization
 Added columns without default values are not added to records until the

record is next updated
 Same goes for columns with default values from SQL 2012 onwards

 Null bitmap always exists in data records
 Except when table ONLY has SPARSE columns

 Null bitmap always exists in nonclustered indexes from SQL 2012
 Variable length column offset array stores offsets of ends of columns

 To allow easy calculation of the column size without storing it, saves 2 bytes
 No need to store row length, saves 2 bytes

 Cluster keys will become first columns in data record structure
 In a heap, columns are ordered based on column list in CREATE TABLE

notes for
prior slide

8
© SQLskills, All rights reserved.

https://www.SQLskills.com

Record Types (1)

 Data records
 Occur in heaps (tables without clustered indexes) and at the ‘leaf-level’ of

clustered indexes
 Clustered indexes are stored as B-trees, with the lowest level being data records

in data pages (technically B+ trees that are NOT balanced in real-time)
 Non-unique clustered indexes will contain a hidden ‘uniquifier’ column

 Data records store all the columns of the table row
 Note: ‘row’ == ‘record’ == ‘slot’

Leaf

Non-leaf or Upper or B-tree

5

9
© SQLskills, All rights reserved.

https://www.SQLskills.com

Record Types (2)

 Forwarding/forwarded records
 Only occur in heaps
 If a data record is updated to be larger and there is no space on the page, it

is moved to a new page, and the old location has a pointer to the new
location (and the new record has back-link to the old)

 The record in the new location is the ‘forwarded’ record, and the pointer to it
in the old location is the ‘forwarding’ record

 This avoids nonclustered indexes having to be updated, but can lead to
reduced lookup performance

UPDATE

New

Data Page

Forwarded

Record

Forwarding

Pointer

Forwarding

Record

10
© SQLskills, All rights reserved.

https://www.SQLskills.com

Record Types (3)

 Index records
 Index records come in two types: leaf and non-leaf

 Leaf-level index records
 Occur in nonclustered indexes only, at the leaf-level
 Store all nonclustered index key columns, plus:

 A link to the matching row in the table (heap or clustered index)
 Any INCLUDEd columns

 Non-leaf-level index records
 Occur in all index types in the levels above the leaf level
 Contain information to assist the Storage Engine in navigating to the correct

point at the leaf level

 Much more on these with Kimberly

6

11
© SQLskills, All rights reserved.

https://www.SQLskills.com

Record Types (4)

 Text records
 Used to store ‘off-row’ LOB (Large Object) and all row-overflow data

 ‘Off-row’ means the data/index record stores a pointer to the root of a
loose tree structure that holds the LOB data in text records
 Pointer is 16 or 24 bytes, possibly up to 72 bytes in increments of 12 bytes
 Text tree is not a b-tree like an index

Data Page Text Page

12
© SQLskills, All rights reserved.

https://www.SQLskills.com

LOB Data Storage Settings

 Regular and legacy types differ for default on/off-row storage
 Legacy types (n/text, image) off-row by default
 Regular types (n/varchar(max), varbinary(max), XML) on-row by default as

long as there is space, and up to 8,000 bytes only

 For legacy LOB data types:
 Use the ‘text in row’ table option (defaults to OFF)
 Beware! Turning the option off is an immediate size-of-data operation

 For regular LOB data types:
 Use the ‘large value types out of row’ option (defaults to OFF)

 sp_tableoption N'MyTable', 'large value types out of row', 'ON'
 sp_tableoption N'MyTable', 'large value types out of row', 'OFF‘

 Existing values are migrated the next time the column is changed

 Should LOB data be stored in-row or off-row? It depends!

7

13
© SQLskills, All rights reserved.

https://www.SQLskills.com

Record Types (5)

 Versioned records (data, index, text)
 Used by features that use the versioning system

 E.g. online index operations, snapshot isolation, DML triggers
 E.g. allowing AG readable secondaries – see https://sqlskills.com/p/003

 Latest version of record on a page has 14-byte tag on the end
 Tag contains a timestamp and a pointer into the version store in tempdb

 Record expansion can cause forwarded records, or index fragmentation from
page splits

UPDATE

Version

StoreTag

Pre-Update Version of Record

14
© SQLskills, All rights reserved.

https://www.SQLskills.com

Record Types (6)

 Ghost records (data, index, text)
 Deleting a record just marks it as ‘ghosted’ (i.e. logically deleted)
 Ghosting occurs in indexes (and in heaps when versioning is enabled)

 Ghosting removes need for key-range locks to protect deleted record

 Ghost record removal occurs after transaction commit
 Performed by ‘ghost cleanup’ background task
 Records are not physically overwritten, just the space they occupied on a page is

no longer marked as being used, and becomes free space

 Possible for ghost cleanup to never catch-up…
 Could be blocked by long-running query on AG secondary
 Ghost cleanup takes page locks, can cause blocking (2012+ is aggressive)
 Ghost cleanup can be disabled using TF 661, watched using TF 662
 Ghost cleanup can be forced using:

 Force an index scan, index rebuild/reorganize, DBCC FORCEGHOSTCLEANUP
 sp_clean_db_file_free_space and sp_clean_db_free_space

8

15
© SQLskills, All rights reserved.

https://www.SQLskills.com

Page Structure

 8,096 bytes available for
records

 Single record size limit is
8,060 for in-row portion

 Slot array
 Stores offsets to rows
 2 bytes per row
 Offsets are stored sorted

in the order defined by
the index keys. No special
order for a heap.

 NOTE: rows do not have
to be stored on the page
in sorted order, only the
offsets

Page Header

Row A

ABC

96

Bytes

8,096

Bytes
Row B

Row C

16
© SQLskills, All rights reserved.

https://www.SQLskills.com

Page Types (1)

 Data pages
 Store data records
 In a heap, or leaf-level of a clustered index

 Index pages
 Store index records
 At the leaf-level of nonclustered indexes, and non-leaf levels of all index

types

 Text pages
 Store text records
 Actually two types, to support the loose tree structure

 Text tree pages
 Used when values are larger than 8KB

 Text mix pages
 Used to store multiple values when they are less than 8KB (i.e. shared)

9

17
© SQLskills, All rights reserved.

https://www.SQLskills.com

Page Types (2)

 Boot page
 One per database, page (1:9) [page ID = (file:page-in-file)]
 Stores base metadata about the database as a whole
 Partially mirrored in log file header pages
 Contains pointer to starting point for crash recovery

 More on this in logging module

 Contains information about most recent backups
 Corruption = restore of at least file ID 1, or possible hex editor c&p from

older restored copy of the same database
 Dump using DBCC PAGE or DBCC DBINFO

18
© SQLskills, All rights reserved.

https://www.SQLskills.com

Page Types (3)

 File header pages
 One per data and log file, always first page (i.e. page 0)
 Log file header page partially mirrors the boot page

 Which is what allows a tail-log backup if data files are damaged/destroyed

 Stores metadata about that file
 Corruption = restore of at least that file , or possible hex editor c&p from

older restored copy of the same database
 More tricky if log file header or file ID=1 header

 Dump using DBCC PAGE or DBCC FILEHEADER

 Allocation bitmaps
 PFS, GAM, SGAM, IAM, DIFF_MAP, ML_MAP
 More on these later

10

Demo

Examining pages and records

20
© SQLskills, All rights reserved.

https://www.SQLskills.com

Using DBCC PAGE and DBCC IND

 DBCC IND dumps a list of pages
 dbcc ind ({ 'dbname' | dbid }, { 'objname' | objid }, { nonclustered indid | 1 | 0 |

-1 | -2 } [, partition_number])

 DBCC PAGE dumps an individual page
 dbcc page ({'dbname' | dbid}, filenum, pagenum [, printopt={0|1|2|3}])
 Requires TF 3604 to get results
 Use WITH TABLERESULTS to get tabular output

 Also new undocumented DMV from SQL Server 2012+
 sys.dm_db_database_page_allocations (equivalent of DBCC IND)

 And new documented DMV from SQL Server 2019+
 sys.dm_db_page_info (equivalent of page header from DBCC PAGE)

11

21
© SQLskills, All rights reserved.

https://www.SQLskills.com

Extents

 Extents exist to make the allocation system more efficient
 Extent is group of 8 contiguous pages, starting at page 0 in data file

 Tracked in allocation bitmaps (IAM, GAM, SGAM pages)

 Mixed extents vs. dedicated extents
 Mixed: pages are shared with up to 8 objects/indexes
 Dedicated: pages are reserved for exclusive use of 1 object/index

 Default behavior before 2016 (unless disabled with TF 1118)
 First 8 pages allocated to a table/index are one-page-at-a-time from

anywhere in the filegroup (i.e. mixed extents)
 Once 8 pages have been allocated, then switch to dedicated extents

 When dedicated extent is allocate, only first page is actually allocated and used

 Mixed extents off by default in SQL Server 2016+
 ALTER DATABASE … SET MIXED_PAGE_ALLOCATION {ON | OFF}

22
© SQLskills, All rights reserved.

https://www.SQLskills.com

PFS Pages and Intervals

 PFS = Page Free Space
 A PFS page tracks (among other things):

 Page allocation state
 Free space for heap data and text pages only

 No point for indexes, as insertion point is dictated by index key

 PFS page tracks 64MB of a data file (called a ‘PFS interval’)
 One byte in the PFS page per data file page, in the first extent
 64MB = 8,088 database pages (8,088 bytes used in the PFS page)

 Each data file is conceptually split into PFS intervals, starting with
page zero in the file

12

23
© SQLskills, All rights reserved.

https://www.SQLskills.com

PFS Bits

 Each byte contains the following info:
 bits 0-2: how much free space is on the page

 0x00: empty
 0x01: 1 to 50% full
 0x02: 51 to 80% full
 0x03: 81 to 95% full
 0x04: 96 to 100% full

 bit 3 (0x08): is there one or more ghost records on the page?
 bit 4 (0x10): is the page an IAM page?
 bit 5 (0x20): is the page a mixed-page?
 bit 6 (0x40): is the page allocated?
 Bit 7 (0x80): does the page have a row from an aborted transaction (2019+)

 For example, an allocation IAM page will have a PFS value of 0x70
(IAM + mixed + allocated)
 Even on 2016+, where mixed extents are off by default – still used for IAMs

24
© SQLskills, All rights reserved.

https://www.SQLskills.com

Allocation Bitmaps

 All other allocation bitmaps have 1 bit per extent over 4GB interval
 Called a GAM interval, easier just to think of it as a 4GB interval
 Equivalent to 511,232 pages in a data file; 63,904 extents; ~3.9GB

 GAM – Global Allocation Map
 Page 2, then every 511,232 pages

 SGAM – Shared Global Allocation Map
 Page 3, then every 511,232 pages

 DIFF Map – Differential Bitmap
 Page 5, then every 511,232 pages

 ML Map – Minimally Logged Bitmap
 Page 6, then every 511,232 pages

 IAM page – Index Allocation Map
 Allocated as needed

13

25
© SQLskills, All rights reserved.

https://www.SQLskills.com

GAM and PFS Intervals

E.g. 10GB File

~4GB ~4GB ~2GB

GAM

Interval 1

GAM

Interval 2

GAM

Interval 3

E.g. 320MB file

PFS

Interval 1

PFS

Interval 5

64MB 64MB 64MB 64MB 64MB

26
© SQLskills, All rights reserved.

https://www.SQLskills.com

GAM Pages

 PFS pages track the allocation state of pages
 GAM pages track the allocation state of extents
 GAM = Global Allocation Map

 Is an extent allocated or not (doesn’t matter what to)
 If the bit is one, it’s available for allocation (i.e. it is currently unused)

 GAM page searches are only done when allocations have reached the
end of the file and there is free space
 Before that, the next extent to allocate is found from a pointer in the FCB

(File Control Block) instead of searching through GAM pages
 I.e., what’s the current highest-allocated extent in the file?

14

27
© SQLskills, All rights reserved.

https://www.SQLskills.com

SGAM pages

 SGAM = Shared GAM
 “Shared” is what Books Online uses – pronounce it as “es-gam”

 Used to help finding a mixed extent to allocate from
 Exactly the same format as the GAM page but the bitmap semantics

are slightly different
 Bitmap bit is one

 The extent is a mixed extent and *may have* at least one unallocated page
available for use (optimistic algorithm)

 Bitmap bit is zero
 The extent is either dedicated or is a mixed extent with no unallocated

pages (essentially the same situation given that the SGAM is used to find
mixed extents with unallocated pages)

28
© SQLskills, All rights reserved.

https://www.SQLskills.com

DIFF and ML Map Pages

 DIFF MAP = Differential Map
 Also called the DCM or Differential Change Map
 All extents that have changed in any way since last full backup
 Any operation that changes an extent marks it as changed in the differential

bitmap for that GAM interval
 Differential backups scan these to know what to back up
 Only reset by a full backup

 ML Map = Minimally-Logged Map
 Also called the BCM or Bulk Changed Map
 Any minimally-logged operation in the BULK_LOGGED recovery model that

changes an extent marks it as changed in the minimally-logged bitmap for
the GAM interval

 The next log backup scans these to know which extents to include, and then
resets the bitmaps

 Both have the same format as GAM pages

15

Demo

Examining allocation bitmaps

30
© SQLskills, All rights reserved.

https://www.SQLskills.com

IAM Pages

 IAM = Index Allocation Map
 Tracks all extent allocations for a table/index/partition in a GAM

interval in a data file
 Uses the same bitmap format as GAM pages but has different headers
 If the bitmap bit is one, the extent is allocated to whatever grouping

of allocations the IAM page belongs to
 IAM page header contains

 Which GAM interval does the IAM page track extents for?
 Because IAM pages do not have to come from the file they map

 The sequence number and linkages in the IAM chain
 More on this in a few slides

 The single-page slot array
 U nless mixed extents disabled, first 8 allocations to any object/index are mixed

pages and are tracked in this array in the first IAM page for the object/index

16

31
© SQLskills, All rights reserved.

https://www.SQLskills.com

Combining Allocation Bitmaps

 The interplay of bits in the various bitmaps follow rules (remembering
that IAM bitmaps only track dedicated extents):

 DBCC CHECKALLOC validates these relationships

GAM SGAM IAM Comments

0 0 0 Mixed extent with all pages allocated

0 0 1 Dedicated extent (must be allocated to only
a single IAM page)

0 1 0 Mixed extent with >= 1 unallocated page

0 1 1 Invalid state

1 0 0 Unallocated extent

1 0 1 Invalid state

1 1 0 Invalid state

1 1 1 Invalid state

32
© SQLskills, All rights reserved.

https://www.SQLskills.com

Allocating a Page…

 Allocating the first page in a table is complex…
 Find an extent to allocate from

 Allocate new extent (or from mixed extent if mixed page)

 Allocate the data page
 Mark it allocated in the PFS (+ mixed if mixed extent)
 (If mixed, mark the extent as available in the SGAM)

 Allocate the IAM page
 Mark it allocated + mixed + IAM in the PFS
 Mark the extent as available in the SGAM

 Track the data page ID or extent ID in the IAM page
 Track the IAM page ID in the table’s metadata
 Track the data page ID in the table’s metadata

17

33
© SQLskills, All rights reserved.

https://www.SQLskills.com

IAM Chains

 Each IAM page maps a 4GB GAM interval of a file
 If the allocations for a particular table/index/partition are from

multiple GAM intervals (in one or more files), multiple IAM pages are
needed to track them

 IAM pages are linked together in an IAM chain
 IAM chains are unordered, except by the time order in which an IAM

page was added to the chain
 But there is a doubly-linked list, with a sequence number, that DBCC

CHECKDB validates and some operations make use of

 In SQL Server 2000 there was one IAM chain per index, but from SQL
Server 2005 onwards it’s way more complicated…

34
© SQLskills, All rights reserved.

https://www.SQLskills.com

SQL 2000

IAM Chains in SQL 2000

Table

Index 1

Index 2

.

.

.

Index 250

Index 255

Total possible IAM chains = 251

18

35
© SQLskills, All rights reserved.

https://www.SQLskills.com

Allocation Changes in SQL 2005 Onwards

 Allocation metadata rewritten for SQL Server 2005
 No further changes since then

 Needed to support 3 new features:
 Row-overflow (rows larger than 8,060 bytes)

 One or more variable-length columns pushed off-row

 INCLUDEd columns
 Ability to INCLUDE non-key columns in a nonclustered index

 Partitioning
 Ability to horizontally partition a table or index

 Change from per-table/index IAM chain to multiple IAM chains per-
table/index

 Name changed to allocation unit although nothing else about IAM
pages and IAM chains changed

 Index Allocation Map became a bit of a misnomer

36
© SQLskills, All rights reserved.

https://www.SQLskills.com

Allocation Unit Names

 Three types of allocation unit:
 IN_ROW_DATA allocation unit

 Data and index records

 LOB_DATA allocation unit
 Text records for actual LOB columns

 ROW_OVERFLOW_DATA allocation unit
 Text records for variable-length columns stored off-row

 The internal names you might see in some tools are, respectively:
 HoBt – Heap-or-B-tree (pronounced ‘hobbit’ – yes, Lord of The Rings)
 LOB – Large Object
 SLOB – Small-LOB

19

37
© SQLskills, All rights reserved.

https://www.SQLskills.com

SQL 2005

Allocation Units in SQL Server 2005

Object

Index 1

Index 2

.

.

.

.

Index 250

HoBt

SLOB

LOB

38
© SQLskills, All rights reserved.

https://www.SQLskills.com

Total possible IAM chains = 750,000 !!!

(plus XML indexes, indexed views)

Index 1

Partition 1

.

.

.

Partition 1,000

Index 2

.

Index 250

SQL 2005

And with Partitioning…

Object

HoBt
SLOB

LOB

HoBt
SLOB

LOB

20

39
© SQLskills, All rights reserved.

https://www.SQLskills.com

Total possible IAM chains = 3 million !!!

(plus XML indexes, indexed views)

Index 1

Partition 1

.

.

.

Partition 1,000

Index 2

.

Index 1,000

SQL 2008

And from SQL Server 2008…

Object

HoBt
SLOB

LOB

HoBt
SLOB

LOB

40
© SQLskills, All rights reserved.

https://www.SQLskills.com

Total possible IAM chains = 45 million !!!
(plus XML indexes, indexed views)

Index 1

Partition 1

.

.

.

Partition 15,000
Index 2

.

Index 1,000

SQL 2008 SP2+

And from SQL Server 2008 SP2…

Object

HoBt
SLOB

LOB

HoBt
SLOB

LOB

21

41
© SQLskills, All rights reserved.

https://www.SQLskills.com

Table Metadata

 Used to be sysindexes, sysobjects, syscolumns in SQL Server 7.0/2000
 From SQL Server 2005 onwards these are catalog views
 Real system tables are now:

 sys.sysallocunits
 sys.sysrowsets
 sys.sysrscols
 sys.sysschobjs
 sys.syscolpars
 sys.sysidxstats
 And others…

 Hidden unless you connect using the Dedicated Admin Connection

Demo

Examining IAM chains and table metadata

22

43
© SQLskills, All rights reserved.

https://www.SQLskills.com

Database Physical Version Number

 All databases have a physical version number
 Physical version number is increased during upgrade

 And sometimes by SP features…
 E.g. 2005 = 611/612, 2014 = 782, 2017 = 869, 2019 = 904

 All SQL Server instances have a maximum physical version number
they can understand
 Newer versions introduce new database structures, log records, etc.

 Database compatibility mode/level is irrelevant!
 Only controls behavior of old query syntax

 SQL Server is NOT up-level compatible
 You cannot restore or attach a database with a higher physical version to a

SQL Server that will not understand it

© SQLskills, All rights reserved.
https://www.SQLskills.com 44

© SQLskills, All rights reserved.
https://www.SQLskills.com

Resources

 Inside the Storage Engine blog post category
 https://sqlskills.com/p/004

 Anatomy of a record
 Anatomy of a page
 Anatomy of an extent
 GAM, SGAM, PFS, and Other Allocation Maps
 IAM pages, IAM chains, and allocation units
 Ghost cleanup in depth
 Boot pages, and boot page corruption
 File header pages, and file header corruption

 And much more…

23

45
© SQLskills, All rights reserved.

https://www.SQLskills.com

Review

 Records
 Pages
 Extents
 Allocation bitmaps
 IAM chains and allocation units

Questions!

