
1

SQLskills Immersion Event
IEPTO1: Performance Tuning and Optimization

Module 8: Internals and Data Access
Kimberly L. Tripp

Kimberly@SQLskills.com

2
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Data access patterns
 Covering

 Understanding selectivity
 Understanding the “tipping point”

 What methods exist for covering?
 Nonclustered indexes (all releases)
 Using indexed views (SQL Server 2000+)
 Using INCLUDE (SQL Server 2005+)
 Using filtered indexes (SQL Server 2008+)
 Using filtered statistics (SQL Server 2008+)

 Too many cooks in the kitchen…
 Index consolidation

2

3
© SQLskills, All rights reserved.

https://www.SQLskills.com

…
1, Griffith, …

2, Ulaska, …

3, Johnson, …

…

20, Morrisson, …

21, Ambers, …

22, Johany, …

23, Smith, …

…

40, Griffen, …

41, Shen, …

42, Alberts, …

43, Landon, …

…

60, Lynne, …

79981, Geller, …

79982, Smith, …

79983, Jones, …

…

80000, Kirkert, …

79961, Kiesow, …

79962, Simon, …

79963, Gellock, …

…

79980, Debry, …

79941, Baker, …

79942, Shehy, …

79943, Laws, …

…

79960, Miller, …

File1, Page 5982 File1, Page 5983 File1, Page 5984 File1, Page 9979 File1, Page 9980 File1, Page 9981

…
1, 1, 5982

21, 1, 5983

41, 1, 5984

…

~12421

~74641

…

79941, 1, 9979

79961, 1, 9980

79981, 1, 9981

File1, Page 12982 File1, Page 12986

1, 1, 12982

12441, 1, 12983

24881, 1, 12984

…

74641, 1, 12986

File1, Page 12987

Root
= 1 page

Intermediate level
= 7 pages

B-tree
Total overhead in

terms of disk
space

= 8 pages
or < 1%

Leaf
level
4,000
pages

Query Specific Index Usage

SELECT e.*
FROM

dbo.Employee AS e
WHERE

e.EmployeeID = 22

22, Johany, …

1, 1, 12982

21, 1, 5983

4
© SQLskills, All rights reserved.

https://www.SQLskills.com

Query Specific Index Usage

 Root, then leaf in NC index on SSN to yield
EmployeeID

 = 2 logical reads
 Root, intermediate, leaf in CL index to yield *

(all columns)
 = 3 logical reads
 Total of 5 logical reads

NC

B-tree

Leaf – NC SSN

CL

B-tree

Leaf = data

Bookmark

lookup

SELECT e.*
FROM dbo.Employee AS e
WHERE e.SSN = '123-45-6789'

3

5
© SQLskills, All rights reserved.

https://www.SQLskills.com

Query Specific Index Usage

Assumption – 12 Rows

 Root, then leaf in NC index on SSN to
yield 12 EmployeeIDs

= 2 to 3 logical reads
 Root, intermediate, leaf for each row to

access * in CL index to yield
= 3 x 12 logical reads

 Total of 38/39 logical reads

NC

B-tree

Leaf – NC SSN

CL

B-tree

Leaf = data

Bookmark

lookup for

each row

SELECT e.*
FROM dbo.Employee AS e
WHERE e.SSN BETWEEN '123-45-6789' AND '123-45-6800'

6
© SQLskills, All rights reserved.

https://www.SQLskills.com

Query Specific Index Usage

 At what range would a bookmark lookup be useless?

??? rows

 Table scan = 4,000 pages
 When # of rows >= 4,000,

table scan is definitely better!
 In fact, probably well before that…

4,000 sequential reads are better
than even fewer random reads

NC

B-tree

Leaf – NC SSN

CL

B-tree

Leaf = data

SELECT e.*
FROM dbo.Employee AS e
WHERE e.SSN BETWEEN x AND y

Bookmark

lookup for

each row

4

7
© SQLskills, All rights reserved.

https://www.SQLskills.com

When is a Query Selective Enough?

 If bookmark lookups are necessary… then a nonclustered is used
ONLY when it’s selective enough

 SQL Server looks at table size to compare the cost of bookmark
lookups (which are random) to the cost of a table scan (which can be
performed sequentially)

 To calculate this “tipping point,” compare the I/Os to the table size for
an estimate

 Take the number of pages (as a percentage of the table) to calculate
the tipping point of rows, then determine what that percentage is
relative to the table…

Lookups OK Lookups too expensiveT.P.

1/4
1/3 Pages

8
© SQLskills, All rights reserved.

https://www.SQLskills.com

Employee Scenario

 Imagine an Employee table with 80,000 rows at 20 rows per page for 4,000
total pages:

 Marking these two points (1/4 and 1/3) we can see the boundary around where
the tipping point is found

 This defines what’s OK (less than 1/4) versus what would be too expensive
(greater than 1/3)

 Since that represents random I/Os, translate that into rows (lookups):

1/4 mark is 1,000/80,000 = 1.25% and 1/3 mark is 1,333/80,000 = 1.66%
 This means that if a query (against this table) is going to do LESS than 1,000

I/Os, SQL Server will use a nonclustered index because the lookups are OK
 However, if a query is going to do MORE than 1,333 I/Os then SQL Server WILL

not use a nonclustered index with bookmark lookups because it’s too
expensive; instead, SQL Server will scan

Lookups OK Lookups too expensive (scan)T.P.

1,000 = 1/4
1/3 = 1,333 4,000 pages

5

9
© SQLskills, All rights reserved.

https://www.SQLskills.com

The Tipping Point Varies…
Table by Table and Based on PAGES

 Tipping point query #1
 Table with 1 million rows over 50,000 pages (20 rows/page)
 12,500 – 16,666 pages ஃ rows = 1.25 – 1.66%

 Tipping point query #2
 Table with 1 million rows over 10,000 pages (100 rows/page)
 2,500 – 3,333 pages ஃ rows = 0.25 – 0.33%

 Tipping point query #3
 Table with 1 million rows over 100,000 pages (10 rows/page)
 25,000 – 33,333 pages ஃ rows = 2.5 – 3.33%

 Roughly 1/4 - 1/3 the number of PAGES in the table, translated to rows
in the table = range (defined by the percent which is selective enough
(less than 1/4) to the percent not selective enough (> than 1/3))
 Why it is not an exact percentage? CPUs/cores, disk affinity…but not actual

disk speed (solid state) or whether or not the table is already in cache

For more details on these three

queries, see the Tipping Point

category on my blog:

https://www.SQLskills.com/blogs/k

imberly/category/the-tipping-

point/

10
© SQLskills, All rights reserved.

https://www.SQLskills.com

Tipping Point of FactInternetSales
From AdventureWorksDW20xx

 As shipped:
 Pages: 1,238
 Rows: 60,398
 Tipping point estimate between

 309 (1/4 pages) and 412 (1/3 pages)

 Tipping point actual = ~356
 Translated into % of rows

= 356/60,398 = 0.589%

 In modified version (key integer):
 Pages: 475,754
 Rows: 30,923,776
 Tipping point estimate between

 118,938 (1/4 pages) and 158,584 (1/3 pages)

 Translated into % of rows – from .41 - .45% (depending of DOP)

Tipping point demo query values

The “small table” version:

11058 (estimate 354 rows)

11059 (estimate 358 rows)

The modified version (beefy machine):

MAXDOP 1 =

11043 (est. 138,695)

11044 (est. 141,505)

about 140,000 = .45%

MAXDOP n =

11038 (est. 124,644)

11039 (est. 127,454)

about 126,000 = .41%

UPDATED

6

11
© SQLskills, All rights reserved.

https://www.SQLskills.com

The Tipping Point Varies

 Use our formula as an estimate – more of a concept rather than a hard
number

 It’s not exact but the idea is important!
 Narrow indexes have very FEW uses! (often tip)
 If a query has to do a bookmark lookup then the query is going to

have to be EXTREMELY HIGHLY selective in order to use the index (you
can calculate/predict this)

 If a query is not highly selective but critical/important and you want
consistent results/plans then you MUST look at some form of
covering… why?

 Covering is always good – there is NO TIPPING POINT!

12
© SQLskills, All rights reserved.

https://www.SQLskills.com

Bookmark Lookups are Expensive!

 How can we get rid of the bookmark lookup?
 Are there other algorithms?

 Joins that reduce the set before bookmark lookups are needed
 Index intersection (using multiple indexes to cover a query)
 Covering

 Using nonclustered indexes without bookmark lookups
 Indexed views… (2000+)
 INCLUDEd columns… (2005+)
 Filtered indexes… (2008+)

 But, you have to be careful not to over-index!

7

13
© SQLskills, All rights reserved.

https://www.SQLskills.com

 Think back to our nonclustered index structure
 Leaf level contains the nonclustered key column(s) – index indexed

order
 Includes either the heap’s fixed RID or the table’s clustering key

File1, Page 19197

Total overhead in terms
of disk space
= 208 pages

or ~5%

Nonclustered Index
Unique Key SSN

…
…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

997-07-9915, 4001

…

…

…

…

…

…

…

…

…

…

File1, Page 16897 File1, Page 16898 File1, Page 16899 File1, Page 18110 File1, Page 18111 File1, Page 18112

385
entries

385
entries

385
entries

385
entries

305
entries

000-00-0184, 31101
000-00-0236, 22669

000-00-0395, 18705

013-00-6001, 11932

208
entries

Root = 1 page

14
© SQLskills, All rights reserved.

https://www.SQLskills.com

What if You Didn’t Know?
Unique Key SSN

 Could this structure be anything else?
 What if you created a table with JUST EmpID and SSN and then

clustered it on SSN

Root = 1 page

…
…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

997-07-9915, 4001

…

…

…

…

…

…

…

…

…

…

File1, Page 16897 File1, Page 16898 File1, Page 16899 File1, Page 18110 File1, Page 18111 File1, Page 18112

385
entries

385
entries

385
entries

385
entries

305
entries

000-00-0184, 31101
000-00-0236, 22669

000-00-0395, 18705

013-00-6001, 11932

208
entries

File1, Page 19197

8

15
© SQLskills, All rights reserved.

https://www.SQLskills.com

Nonclustered Index
Fairly Obvious Index Access

SELECT e.EmpID, e.SSN
FROM dbo.Employee AS e
WHERE e.SSN BETWEEN '623-45-6789' AND '623-45-6800'

Root = 1 page

…
…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

997-07-9915, 4001

…

…

…

…

…

…

…

…

…

…

File1, Page 16897 File1, Page 16898 File1, Page 16899 File1, Page 18110 File1, Page 18111 File1, Page 18112

385
entries

385
entries

385
entries

385
entries

305
entries

000-00-0184, 31101
000-00-0236, 22669

000-00-0395, 18705

013-00-6001, 11932

208
entries

File1, Page 19197

16
© SQLskills, All rights reserved.

https://www.SQLskills.com

Nonclustered Index
Fairly Obvious Index Access

SELECT e.EmpID, e.SSN
FROM dbo.Employee AS e
WHERE e.SSN BETWEEN '623-45-6789' AND '623-45-6800'

Root = 1 page

…
…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

997-07-9915, 4001

…

…

…

…

…

…

…

…

…

…

File1, Page 16897 File1, Page 16898 File1, Page 16899 File1, Page 18110 File1, Page 18111 File1, Page 18112

385
entries

385
entries

385
entries

385
entries

305
entries

000-00-0184, 31101
000-00-0236, 22669

000-00-0395, 18705

013-00-6001, 11932

208
entries

File1, Page 19197

Start at the root page 1

Find the page where the
starting point exists 2

Start an index partial
scan until end of set

3

623-45-6437, 348
623-45-6798, 287

623-45-6790, 342
623-45-6791, 81
623-45-6796, 9832

623-45-6799, 643
623-45-6800, 4231

623-45-6798, 287

9

17
© SQLskills, All rights reserved.

https://www.SQLskills.com

Similar Query – How to Process?
Less Obvious Index Access

 Clustered index on EmpID
 Seekable with partial scan
 If table has 80,000 rows at 20 rows per page then the table has 4,000 pages
 If 10,000 is 1/8 of 80,000 then this SEEKABLE query will cost 1/8 of the 4,000

pages.

 Nonclustered index on SSN, EmpID
 Not seekable, must scan
 If the leaf level has 80,000 rows at 385 rows per page then the leaf level of

the nonclustered index has 208 pages
 If this index is not seekable, then we must scan all 208 pages.

SELECT e.EmpID, e.SSN
FROM dbo.Employee AS e
WHERE e.EmpID < 10000

= 500 I/Os

= 208 I/Os

18
© SQLskills, All rights reserved.

https://www.SQLskills.com

Similar Query
Is There More to This Example?

 What if the number of rows WHERE EmployeeID < 10000
was not 9,999?

 Would the optimizer make a different choice between the two indexes
(and algorithms)?
 When 9,999, then

 Seekable clustered index = 500 I/Os
 Nonclustered covering index scan = 208 I/Os

 If only 1,000, then
 Seekable clustered index = 50 I/Os (@20 rows per page)
 Nonclustered covering index scan = 208 I/Os

 Because the covering index isn’t seekable, the best index varies
 If this query were critical, I’d consider covering with a nonclustered

index that is seekable…
CREATE INDEX IndexName ON Member(EmployeeID, SSN)

10

19
© SQLskills, All rights reserved.

https://www.SQLskills.com

What is Covering?
Using an Index to Cover a Query

 Only applies to nonclustered indexes
 The clustered “covers” all requests but it’s the largest structure; it’s what

we’re trying to avoid!

 All columns requested in the query are somewhere in the index
regardless of:
 Where they are in the query
 Where they are in the index

 However, column order does matter…
 If an index is seekable – you might be able to drastically reduce I/Os (think of

the phone book – seekable by any left-based subset of the key: Lastname,
Firstname, MiddleInitial)

 If an index is not seekable and can only be scanned then you still might have
significant savings, depending on how much narrower (than the base table)
the index is…

20
© SQLskills, All rights reserved.

https://www.SQLskills.com

How is Covering Possible?
There is “Data” in the Index

 Nonclustered indexes (without filters) contain something for every
row in the base table (in the leaf level)
 If the table has 10 million rows then ALL non-filtered nonclustered indexes

have 10 million rows
 The leaf-level naturally has the index key (such as SSN) and also contains the

clustering key (if the table is clustered) or the row’s RID (if the table is a heap)
 This structure could be a table in and of itself: a table created with only two

columns that is clustered by the index key (SSN for example)
 This structure can be scanned (like a table)
 This structure can be seeked into (like a clustered table)
 This structure can act like a table and it’s this that you can leverage!

11

21
© SQLskills, All rights reserved.

https://www.SQLskills.com

Improve Low-Selectivity Queries

 Limited select list
 Index on columns requested

 Covering!
A mini clustered table of just the data you need!

SELECT m.LastName, m.FirstName, m.PhoneNo
FROM dbo.Member AS m
WHERE m.LastName LIKE '[S-Z]%'
-- 10,000 Rows, 3072 in S-Z Range

22
© SQLskills, All rights reserved.

https://www.SQLskills.com

Options to Access Data

 Table scan
 Nonclustered on LastName

 Bookmark lookups for every row

 Nonclustered index on
LastName, FirstName and PhoneNo

 Nonclustered index on
FirstName, LastName, PhoneNo

12

23
© SQLskills, All rights reserved.

https://www.SQLskills.com

Actual I/O Costs
Table scan

= 143 reads

NC LastName

= 6,354 reads

NC covering seek

= 19 reads

NC covering SCAN

= 59 reads

SQL

Server

2000

screen

shot

hidden slide
w/extra details

24
© SQLskills, All rights reserved.

https://www.SQLskills.com

Table scan

= 144 reads

NC LastName

= 6,354 reads

NC covering seek

= 21 reads

NC covering SCAN

= 59 reads

SQL

Server

2005

RTM

screen

shot

hidden slide
w/extra details

Actual I/O Costs

13

25
© SQLskills, All rights reserved.

https://www.SQLskills.com

Table scan

= 144 reads

NC LastName

= 6,354 reads

NC covering seek

= 21 Reads

NC covering SCAN

= 59 Reads

Actual I/O Costs

SQL

Server

2005

SP1+

/2008

screen

shot

26
© SQLskills, All rights reserved.

https://www.SQLskills.com

You CANNOT Cover Everything!
And, I Really Don’t Want You To…

 SQL Server 2005+ theoretically allows you to cover anything and
everything (no real restrictions on what can be covered!)
 Just because you can, doesn’t mean you should!

 Over-indexing can be worse than under-indexing… especially if
there’s no rhyme or reason to the indexes created (they end up being
nothing but costly overhead)
 Do not just automatically put “an index on every column”…BAD!

 Too many indexes cost you:
 During modifications
 During maintenance
 Wasted cache
 Wasted space (on disk, in backups, etc…)

14

27
© SQLskills, All rights reserved.

https://www.SQLskills.com

To Cover or Not to Cover?
Covering: Cleverly, Correctly, and Concisely!

 Know how these strategies work
 Scalability != “add more indexes”

 Get a good feel for your workload (you cannot tune without ALL of the
following):
 Knowing your data
 Knowing your workload
 Knowing how SQL Server works

 Leverage the tools
 2000: ITW, Profiler, read80trace (PSS)
 2005: DTA, Performance Dashboard, Profiler, RML Utilities (PSS)
 2008: Add [Performance] Data Collection, query_hash

 Using covering sparingly and ALWAYS be sure to use index
consolidation techniques… ALL of these tools can have a tendency to
become shortsighted.

28
© SQLskills, All rights reserved.

https://www.SQLskills.com

Methods for Covering

 Nonclustered indexes (all releases, all editions)
 Using indexed views (SQL Server 2000+)

 Available on all editions but limited on non-Enterprise editions. If not on
Enterprise
 Only queries which specifically reference the VIEW can leverage the index and

ONLY when you use the hint:
FROM viewname WITH (NOEXPAND)

 Using INCLUDE (SQL Server 2005+, all editions)
 Using filtered indexes (SQL Server 2008+, all editions)

15

29
© SQLskills, All rights reserved.

https://www.SQLskills.com

INCLUDE for Better Covering

 Key is limited to 900 bytes or 16 columns (whichever comes first)*
 Allows the tree to be more scalable
 Only applies to the b-tree not the leaf level of the index

 Leaf-level can include non-key columns – with NO limitations (can
include LOB types – use sparingly if at all!)
 Allows the leaf level to cover more queries
 Can cover ANYTHING

 In SQL Server 2005+ you CAN cover anything and everything… but
just because you can, should you?

 In SQL Server 2016:
 A clustered index can have up to 32 columns and 900 bytes
 A nonclustered index can have up to 32 columns and 1700 bytes

30
© SQLskills, All rights reserved.

https://www.SQLskills.com

Best Uses for INCLUDE

CREATE INDEX NCIndexLNOnly

ON dbo.member(lastname)

CREATE INDEX NCIndexCoversAll4Cols

ON dbo.member

(lastname, firstname, middleinitial, phone_no)

CREATE INDEX NCIndexLNinKeyInclude3OtherCols

ON dbo.member(lastname)

INCLUDE (firstname, middleinitial, phone_no)

CREATE INDEX NCIndexCoveringLnFnMiIncludePhone

ON dbo.member(lastname, firstname, middleinitial)

INCLUDE (phone_no)

SELECT m.lastname, m.firstname,
m.middleinitial, m.phone_no

FROM dbo.member AS m
WHERE m.lastname LIKE '[S-Z]%'

 The science

Debatable, but this might be
my choice (the art of indexing)

 Only useful for HIGHLY selective queries
(which is NOT this one!)

 OK, but a bit overkill…

16

31
© SQLskills, All rights reserved.

https://www.SQLskills.com

Physical Index Structures
Specific to Index Type

 The clustered index (only 1 per table)
 The leaf level IS the data (the TABLE is clustered)
 The b-tree is used for navigation
 Contains every row (and every column) of the table
 Cannot be filtered in any way

 Nonclustered indexes (SQL2005: 249, SQL2008+: 999 per table)
 Without a filter

 Contains something for every row of the table
 Wide variety of uses but with more storage/overhead/maintenance

 With a filter
 Contains ONLY the rows that match the condition(s)
 Fewer, more-specific uses but with [potentially significantly] less

storage/overhead/maintenance

32
© SQLskills, All rights reserved.

https://www.SQLskills.com

Filtered [Nonclustered] Indexes

 Only applies to nonclustered indexes
 Maintenance costs are lower as only DML that affects rows in the

index causes index changes
 Statistics are more accurate (at the time of creation) as they cover a

smaller number of rows
 IMPORTANT NOTE: They START out being more accurate but there are some

problems keeping them up to date (more on this coming up)…

 Overall size might be significantly lower than a full-table index
 Require consistent session settings at many levels of creation and use

(same session setting requirements as indexed views and computed
column indexes)

17

33
© SQLskills, All rights reserved.

https://www.SQLskills.com

Session Settings

 See BOL topic: Set Options that Affect Results
 Session settings control behavior – and the result of some

computations
 Data in these persisted structures must be consistent
 Session settings that must be on:

 ANSI_NULLS
 ANSI_WARNING
 QUOTED_IDENTIFIER
 CONCAT_NULL_YIELDS_NULL
 ANSI_PADDING
 ARITHABORT

 Session setting that must be off:
 NUMERIC_ROUNDABORT

Msg 1934, Level 16,

State 1, Line 1
CREATE INDEX failed because the

following SET options have incorrect

settings: 'QUOTED_IDENTIFIER'. Verify

that SET options are correct for use

with indexed views and/or indexes on

computed columns and/or filtered

indexes and/or query notifications

and/or XML data type methods and/or

spatial index operations.

34
© SQLskills, All rights reserved.

https://www.SQLskills.com

Client Consistency

 Consistency with table(s), view and the clustered index (on the view)
creation OR table and the filtered index
 All tables on which the view is based, the view itself and the index must be

created with the correct session settings set or the index cannot be created
on the view

 Consistency with base table access
 All INSERT, UPDATE and DELETE statements must be executed with correct

session settings or the insert, update or delete will fail

 Consistency with query access
 All queries that SELECT against views with indexes (or tables with filtered

indexes) must access them with the correct session settings set otherwise
the data will need to be recalculated, rejoined or recomputed

18

35
© SQLskills, All rights reserved.

https://www.SQLskills.com

Filtered Indexes: Uses

 Indexing over sparse column values
 Indexing over partitions

 Subset of (and fewer of them) filtered indexes for current, read-write data
 Subset (usually different and probably more of them) of filtered indexes for

historical, read-only data

 Indexing over tables with distinct ranges of values
 Looking only for a specific type (and relatively small set of data)

WHERE Active = 1

 Only interested in one salesperson
WHERE SalesPerson = 8

 Only interested in actual salespeople (OTC Sales have ID of 1)
WHERE SalesPerson > 1

 NEVER create identical individual indexes per set
 Different columns and/or included columns is OK

36
© SQLskills, All rights reserved.

https://www.SQLskills.com

Imagine “Types” of Data

 Insurance types: car, home, life, etc.
 Document types: (think SharePoint)
 Customers (with subtleties and views where you look at certain customers

and specific attributes)
 Imagine there are 6 subtle “types” of records stored (distribution can be even

or NOT – doesn’t matter)
 When you look at type = 1, you’re most interested in c6, c8, c4, c7

 A filtered index on type = 1 only stores that % of data (whether large or small)

 When you look at type = 2, you’re most interested in c12, c16, c14, c6
 A filtered index on type = 2 only stores that % of data (whether large or small)

 When you look at type = 3, you’re most interested in c2, c3, c4, c6

 The point is that each index is smaller and with the rough equivalent
(depending on column sizes) of ONE old (full-table) index you’re getting 6
optimal and targeted filtered indexes!

19

37
© SQLskills, All rights reserved.

https://www.SQLskills.com

Filtered Indexes
Why Not One Per Set?

 Leaf level of a regular nonclustered on
SalesPerson (SalesPerson)
INCLUDE (c6, c8)

 Leaf level of individual
filtered indexes by SalesPerson
INCLUDE (C6, c8)

 Total size difference is negligible at best (but, you don’t have to
include the column over which you are filtering)
 Predicate uses are MORE

limited
 Covering choices are

WAY MORE flexible

nonclustered
b-tree

Leaf level – NC SSN

=1 =2 =3 =4 =5

(… 1 …) (… 2 …) (… 3 …) (… 4 …) (… 5…)(… 2 …) (… 3 …) (… 4 …)

SalesPerson BETWEEN 2 AND 4

38
© SQLskills, All rights reserved.

https://www.SQLskills.com

nonclustered
b-tree

INCLUDE
(c16, c22)

INCLUDE
(c2, c8)

INCLUDE
(c9, c13) …

Filtered Indexes
When is One Per Set OK?

 Leaf level for a nonclustered on
SalesPerson

(SalesPerson, Customer)
INCLUDE (c4, c5, c6)

requires same set of
columns for all salespeople

 What if you want different
columns per set?
 SalesPerson = 1 (c16, c22)
 SalesPerson = 2 (c2, c8)
 etc…

=1 =2 =3 =4 =5

(… 1 …) (… 2 …) (… 3 …) (… 4 …) (… 5…)

20

39
© SQLskills, All rights reserved.

https://www.SQLskills.com

Filtered Indexes: Monitoring

 sys.indexes has two interesting columns:
 has_filter: if the index has a filter predicate
 filter_definition: expression for the filter definition

 DBCC SHOW_STATISTICSwill list the filter expression that defines
the subset over which the statistics are computed

 sp_helpindex doesn’t show INCLUDEd columns or filtered indexes–
use my tweaked “sp_helpindex” to get better information and
determine if one index really is redundant/duplicate:
 https://www.SQLskills.com/BLOGS/KIMBERLY/category/sp_helpindex-

rewrites.aspx

40
© SQLskills, All rights reserved.

https://www.SQLskills.com

Filtered Indexes: Miscellaneous

 Have the same “session” requirements as computed columns and
indexed views (need to make sure the client applications are
consistent)

 Other features work well with filtered indexes:
 ALTER INDEX … REBUILD/REORGANIZE work with filtered indexes
 Online index operations work with filtered indexes (but not indexed views)
 DTA can suggest filtered indexes (NOTE: Missing index DMVs do not suggest

filters)

 Filtered indexes can be accessed for LITERALS within a stored
procedure but NOT parameters or variables unless you use OPTION
(RECOMPILE) on the statement that needs to leverage the filtered
index

21

41
© SQLskills, All rights reserved.

https://www.SQLskills.com

Filtered Indexes: COVER MORE!

 They’re small so add more!
 More effective for covering when sets are clearly defined

 Incredibly powerful
 Hard to manage without knowledgeable database

developer/admin/architect – really need to have someone that’s
dedicated/managing the server

 When the sets are equality-based consider NOT including that
attribute (unless the query returns that column)

 When the sets are NOT equality-based consider including the
attribute as part of the key for effective seeking

 In summary, don’t go wild with this feature – it has powerful but has
specific uses!

42
© SQLskills, All rights reserved.

https://www.SQLskills.com

Other Less Obvious Index Access Patterns

 Scanning nonclustered indexes to cover the query
 Nonclustered index intersection to join multiple indexes to cover the

query
 Hash aggregates to scan and build aggregates out of order – still

better to scan a covering index rather than a clustered
 Certainly, the BEST case is when you cover ONLY the necessary data

AND it’s seekable!
 But, you can’t cover everything…

22

43
© SQLskills, All rights reserved.

https://www.SQLskills.com

Many Ways to Cover Queries

 Clustered index: always covers (only one way to seek or partially scan,
full scan is the most expensive here as it’s the entire row/set)

 Nonclustered indexes: cover the query with narrower rows = “just the
data you need”

 Nonclustered indexes with INCLUDE: can allow you to cover ANY
query and can even include LOB types in the leaf level of the index

 Indexed views: can cover wide queries (as does include) but these can
include joins, aggregates, computations, deterministic functions, etc.

 Do you need to cover EVERY query? NO!

44
© SQLskills, All rights reserved.

https://www.SQLskills.com

Be Careful: Too Many Cooks in the Kitchen!

 You find a query that needs indexes…
 Your colleagues find queries that need indexes…
 ITW/DTA find queries that need indexes…
 The missing index DMVs find queries that need indexes…

 We think these tools/people are helping – and the indexes definitely
help queries (they’re not wrong)

 But, you may end up with a lot of similar indexes
(hopefully only similar – and not identical? – indexes)

SQL Server will let you create as many useless indexes as you like…

23

45
© SQLskills, All rights reserved.

https://www.SQLskills.com

Index Consolidation for Better Covering

 Index structures
 Key is used for navigation

 Must preserve the left-based seeking capability of the key
 INCLUDE is for covering

 Order of the columns in the include is irrelevant

 Imagine the following indexes:
 Ind1: (Lastname, Firstname, MiddleInitial)
 Ind2: (Lastname) INCLUDE (Phone)
 Ind3: (Lastname, Firstname) INCLUDE (SSN)

 COMBINE all three:
 (Lastname, Firstname, MiddleInitial)

INCLUDE (Phone, SSN)
 Before you create ANY new indexes, review the current indexes!
 I’m surprised at how often this is overlooked/missed!

46
© SQLskills, All rights reserved.

https://www.SQLskills.com

Review

 Data access patterns
 Covering

 Understanding selectivity
 Understanding the “tipping point”

 What methods exist for covering?
 Nonclustered indexes (all releases)
 Using indexed views (SQL Server 2000+)
 Using INCLUDE (SQL Server 2005+)
 Using filtered indexes (SQL Server 2008+)
 Using filtered statistics (SQL Server 2008+)

 Too many cooks in the kitchen…
 Index consolidation

24

Questions!

