
1

SQLskills Immersion Event
IEPTO1: Performance Tuning and Optimization

Module 2: Data File Internals and 
Maintenance

Paul S. Randal
Paul@SQLskills.com

2
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Physical layout considerations
 Allocation algorithms
 Instant initialization
 Auto-grow
 To shrink or not to shrink?
 Data compression
 Tempdb



2

3
© SQLskills, All rights reserved.

https://www.SQLskills.com

Database Structure

Up to 32,767 databases per instance

Up to 32,767 files per database

(Total is for both data and log files)

Minimum of 2 files – one for data, one for log

MDF = 

Primary (MAIN) Data File

NDF = 

Non-Primary Data File

LDF = Log Data File

Should be only 1 log file

(see M5 for details)

Data File

*.mdf (1)

*.ndf (0-n)

Log File

*.ldf (1-n)

Database

4
© SQLskills, All rights reserved.

https://www.SQLskills.com

Consolidation Issues

 Too many databases per instance can lead to:
 Performance problems (lack of resources)

 Constantly fighting for buffer pool resources
 I/O subsystem placement difficulties

 Maintenance problems (lack of resources)
 Constant background I/O and CPU load from maintenance, DBCC CHECKDB, and 

backups

 Too many database files can lead to long startup time
 Every file has to be opened and read to get the file header page

Notes for 
prior slide



3

5
© SQLskills, All rights reserved.

https://www.SQLskills.com

Databases Per Instance

 Source: https://sqlskills.com/p/005

6
© SQLskills, All rights reserved.

https://www.SQLskills.com

Files and Filegroups

 A filegroup contains one or more files
 A table or index is wholly contained in a single filegroup 

 Every database has at least one filegroup – the PRIMARY filegroup
 Contains at least one file – the MDF
 Keep this is small as possible

 Multiple secondary filegroups can and should be defined
 Multiple good reasons for this:

 #1 availability
 #2 manageability
 #3 performance

 Multiple data files per filegroup may give better performance
 Test and also check what guidance from I/O subsystem vendor
 See https://sqlskills.com/p/006 for test showing better perf with more files

 Bigger the database, more reason for multiple filegroups



4

7
© SQLskills, All rights reserved.

https://www.SQLskills.com

SSDs/Flash Storage

 SSD = Solid State Drive
 Extremely low I/O latency and high throughput
 Very common now, and prices very affordable
 Beware of ‘best practices’

 Don’t just put tempdb or transaction logs on them!
 Don’t ignore index fragmentation when using them!
 Use them in RAID configuration, not just a single drive!

 Consider Buffer Pool Extension for Standard Edition
 Ability to have unchanged data stored on SSDs
 Useful to work around max memory limitation

 Also Hybrid Buffer Pool using PMEM devices in 2019+, similar to BPE
 Server and database configurable, all Editions, Linux and Windows

 See Paul’s SSD blog series: https://sqlskills.com/p/007
 And CSS post on SSDs: https://sqlskills.com/p/008

8
© SQLskills, All rights reserved.

https://www.SQLskills.com

Physical Layout Considerations (1)

 Know your workload and your I/O subsystem!
 Much of this may be out of your control or irrelevant depending on 

hardware in use
 RAID array configuration

 Choose appropriate RAID level (if you can)
 E.g. not RAID-5 for a high volume OLTP system

 Different kinds of data onto different storage
 E.g. rarely used LOB data on RAID 5, OLTP data on RAID 1/10

 Possibly defrag the volumes
 NTFS-level fragmentation very small effect on performance of large scans
 Do not do volume defragging while SQL Server is running

 Beware of 3rd-party “open file” defraggers

 If heavy fragmentation, auto-growth is set incorrectly, which is a perf issue

 Capacity planning considerations?



5

9
© SQLskills, All rights reserved.

https://www.SQLskills.com

Physical Layout Considerations (2)

 Separation of files is old advice but might still be applicable
 Degree of separation depends on I/O workload and I/O subsystem

 E.g. SAN can do a better job of spreading I/O costs than a single drive 
 E.g. on all-flash storage, likely won’t have any effect

 If on older storage, consider separating:
 Log files from data files, even separate databases on different LUNs

 Gets separate I/O metrics and perfmon counters
 Sequential workload separate from random workload, generally is a good thing
 Beware of putting all log files on L:, becomes a random pattern

 SQL Server files separate from other uses (e.g. OS files on C:)

 Your I/O subsystem may be fast enough to avoid separation
 tempdb – see later in this module
 Old paper: Physical Database Storage Design (https://sqlskills.com/p/009)

 Read the whitepaper from your storage vendor

10
© SQLskills, All rights reserved.

https://www.SQLskills.com

Volume Configuration

 Disk partition alignment
 Make sure partition start offset is divisible by RAID stripe size
 Before Windows Server 2008, default offset is 31.5KB (WS2008+ uses 1MB)

 Not RAID stripe aligned, so extra I/Os to read/write data

 On WS2008+, still must check after formatting to ensure I/O subsystem did 
not intercept and use incorrect alignment
 See https://sqlskills.com/p/010 for details of how to check
 Also http://sqlpowerdoc.codeplex.com/ for PowerShell method

 RAID stripe size: whatever your I/O vendor recommends
 NTFS cluster (allocation unit) size doesn’t matter on modern hardware

 No current empirical evidence that 64KB is better than anything else
 Do not reformat if it’s set to 4KB

 Whitepaper: Disk Partition Alignment Best Practices For SQL Server
 https://sqlskills.com/p/011



6

11
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Physical layout considerations
 Allocation algorithms
 Instant initialization
 Auto-grow
 To shrink or not to shrink?
 Data compression
 Tempdb

12
© SQLskills, All rights reserved.

https://www.SQLskills.com

How Does Allocation Work?

 With a single-file database, very simple
 When filegroup has multiple files, two allocation algorithms are used:

 Round-robin allocation
 Allocations are made from each data file in the filegroup in turn, essentially 

striping the data across multiple files

 Proportional fill
 Allocations are made from each data file during round-robin proportional to the 

amount of free space in each file
 Weightings recalculated whenever a file is added/dropped, or at least 8192 extent 

allocations take place in the filegroup – see https://sqlskills.com/p/013

 For best results, data files should be the same size

 Misconception: you cannot add another data file to a filegroup and 
rebalance the allocations across all files
 You have to create a new filegroup to do that
 Even rebuilding indexes doesn’t do what you’d think



7

13
© SQLskills, All rights reserved.

https://www.SQLskills.com

How Does the Buffer Pool Work?

 Sometimes called the ‘buffer cache’
 Memory block used to hold in-memory copies of pages from data files
 Pages are read into the buffer pool when requested by other parts of 

the Storage Engine and not already in memory
 When a page is already in memory, this is a logical I/O
 When a page has to be read from disk, this is a physical I/O
 All I/Os start as logical and may become physical

 Page lifetime in memory depends on many things
 Two last access times are tracked and provide an LRU indication

 Tracked as smallint, not a full datetime

 When memory pressure is felt, the least-recently-used pages are ‘tossed’ out 
of the buffer pool to make way for needed pages

 Also done proactively by the lazy writer background process

 Hash tables exist to quickly find page images in memory

14
© SQLskills, All rights reserved.

https://www.SQLskills.com

More on the Buffer Pool

 What’s in the buffer pool?
 SELECT * FROM sys.dm_os_buffer_descriptors
 Be aware that large amounts of index fragmentation can lead to lots of 

wasted buffer pool space
 Blog posts with scripts: https://sqlskills.com/p/014
 More on this in M7

 Memory management
 Buffer pool does full-extent reads when ramping up in Enterprise Edition

 And with TF840 in other editions: https://sqlskills.com/p/015
 As long as the I/O subsystem can keep up, no downsides to enabling



8

15
© SQLskills, All rights reserved.

https://www.SQLskills.com

Creating or Growing Data Files

 Whenever a data file is created or grown, its ‘high-water mark’ must 
be set in NTFS
 This is the point in the file up to which NTFS knows the data is trustworthy 

and will allow it to be read

 By default, this is done by zeroing out the new/additional space
 This is done by SQL Server, single-threaded, by issuing successive writes of 

blocks of zeroes to the file
 The new /additional space cannot be used until the process completes and 

the allocation that triggered it will pause until it is done

 This process can be skipped by enabling instant file initialization
 Only applies to data files

16
© SQLskills, All rights reserved.

https://www.SQLskills.com

Instant File Initialization

 Allows SQL Server to skip the zeroing process
 Instead of doing the zeroing, SQL Server calls the Windows API 

SetFileValidData, which sets the file highwater mark
 Disabled by default because there is a potential, rare, security risk of 

enabling it:
 If a volume is being shared by a database and a file server storing ‘secure 

files’ and if the file server deletes some files, and then the database grows, it 
may pick up some of the space used by the deleted filed

 As instant file initialization skips zeroing the new space, the old raw bytes of 
the deleted files will be accessible to a DBA using DBCC PAGE

 If this is not the case then no security risk, or if the DBA is a Windows 
Administrator then the risk is already there

 If you can, turn it on!
 Very important to have enabled for downtime savings when restoring



9

17
© SQLskills, All rights reserved.

https://www.SQLskills.com

Instant File Initialization in Action

 Hardware configuration – Dell PowerEdge R720
32 cores, 64GB memory, RAID 10 array with 6 x 300 GB, 15k disks

 Software configuration: SQL 2014 (similar results on all versions)
 With zero initialization

 CREATE DATABASE with 20GB Data file = 7:12 minutes
 ALTER DATABASE BY 10GB = 4:20 minutes
 RESTORE 30GB DATABASE (EMPTY Backup) = 29:13 minutes
 RESTORE 30GB DATABASE (11GB Backup) = 30:27 minutes 

 With instant file initialization
 CREATE DATABASE with 20GB Data file = 8 seconds
 ALTER DATABASE BY 10GB = < 1 second
 RESTORE 30GB DATABASE (EMPTY Backup) = 14 seconds
 RESTORE 30GB DATABASE (11GB Backup) = 1:32 minutes 

 Additional data: https://sqlskills.com/p/016

18
© SQLskills, All rights reserved.

https://www.SQLskills.com

Enabling Instant File Initialization

 Cannot be enabled from within SQL Server
 Option to enable it in SQL Server 2016+ installation wizard
 Status reported in error log at instance startup in SQL Server 2016+

 Requires:
 Any Edition of SQL Server
 “Perform Volume Maintenance Tasks” security permission granted to SQL 

Server service account or group

 Use Local Security Policy Editor to grant permission
 Administrative Tools -> Local Security Policy and then Local Policies -> User 

Rights Assignment (defaults to Local Administrators Group)
 Video demo of procedure at https://sqlskills.com/p/017

 Instant initialization happens automatically once SQL Server is 
restarted after granting the permission

 Look at sys.dm_server_services to see if enabled



10

19
© SQLskills, All rights reserved.

https://www.SQLskills.com

Auto-Grow

 When a file is full, it will grow to provide more space
 Enable instant file initialization to skip zero initialization
 1MB auto-growth default often not changed leading to lots of auto-growth

 SQL Server 2016+ is better: 8MB initial size with 64MB auto-grow

 Best practice to manually manage file sizes
 Allows you to decide which files to grow, by how much, and when
 Monitor file usage and alert when threshold reached

 But auto-grow should still be enabled ‘just in case’
 If it’s off, and no-one monitors space, the workload could stop
 Monitor auto-growth using SQL Trace or Extended Events
 Always have file growth to be a fixed amount, not a percentage

 TF 1117 to force all files in a filegroup to grow at once
 2016+: ALTER DATABASE … MODIFY FILEGROUP {AUTOGROW_ALL_FILES | 

AUTOGROW_SINGLE_FILE}

20
© SQLskills, All rights reserved.

https://www.SQLskills.com

Auto-Shrink or Regular Shrinking

 When to use auto-shrink? NEVER!
 About the only thing there is NOT an ‘it depends’ answer for
 This should be one of the first things that gets checked when you take over a 

new database

 Why not?
 Data file shrink (same code as auto-shrink) is almost guaranteed to introduce 

index fragmentation within the data files
 The database will most likely just auto-grow again, and then auto-shrink, 

auto-grow in a cycle that wastes resources
 You can’t control when it kicks in and affects performance
 Blog post: https://sqlskills.com/p/018

 Regular shrinking is just as bad
 Watch out for Maintenance Plans that include a shrink



11

Demo

Impact of shrink on index fragmentation

22
© SQLskills, All rights reserved.

https://www.SQLskills.com

When to Use Data File Shrink?

 Should be a very rare operation
 Because it causes index fragmentation

 Three scenarios:
 Emptying a file before removing it
 When large amount of data has been deleted AND space won’t be reused
 Moving a file/filegroup/database to read-only

 Even then, shrink may not be the best method
 Remember – it causes fragmentation

 So, how to perform a data file shrink?



12

23
© SQLskills, All rights reserved.

https://www.SQLskills.com

How to Shrink a Data File?

 Drop nonclustered indexes
 Create a new filegroup and move all clustered indexes into it

 Use CREATE INDEX… WITH (DROP_EXISTING=ON) and specify the location 
to be the new filegroup
 Doesn’t move LOB data, but see https://sqlskills.com/p/019

 Can be performed online

 If any table are heaps, use shrink to move them
 Heaps are unordered so shrink does not fragment them
 Beware shrink is *very* slow for heaps and LOB data

 Recreate nonclustered indexes on new filegroup
 Drop old filegroup
 If you have to shrink a data file, use ALTER INDEX … REORGANIZE to 

remove index fragmentation
 Or consider disabling then rebuilding them after the shrink

24
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Physical layout considerations
 Allocation algorithms
 Instant initialization
 Auto-grow
 To shrink or not to shrink?
 Data compression
 Tempdb



13

25
© SQLskills, All rights reserved.

https://www.SQLskills.com

Data Compression: The Problem

 Cost of storage rises with database size
 High-end storage is expensive
 Multiple copies required – test, HA, backups

 Cost of managing storage rises with database size
 Time taken for backups and maintenance operations (I/O bound)
 Time taken to restore backups in a disaster

 Migration from other platforms (Oracle or DB2) that support 
compression is hard without compression
 Reduced TCO of SQL Server can be outweighed by increased storage costs 

from 3-5x increase in database size

 Compressing data on-page leads to better memory utilization
 Blog post: https://sqlskills.com/p/021
 Sometimes does better than columnstore – see https://sqlskills.com/p/105

26
© SQLskills, All rights reserved.

https://www.SQLskills.com

Is Data Compression Suitable?

 Performance gain comes from having to perform fewer I/Os, tradeoff 
against CPU, for large scans
 But, data is compressed on disk AND in memory so each access of the data 

must decompress it, using CPU
 Enabling can be a performance detriment for volatile data (e.g. OLTP)

 Monetary gain comes from saving disk space
 Can you do that with backup compression?
 Can you do that by removing wasted space from fragmentation?

 Questions to ask:
 Is the I/O vs. CPU tradeoff worthwhile?
 Will there be a significant space saving?
 Are cost savings more important than potential workload impact?

 WP: Data Compression: Strategy, Capacity Planning and Best Practices
 https://sqlskills.com/p/022



14

27
© SQLskills, All rights reserved.

https://www.SQLskills.com

What Can Be Compressed?

 Compression can be applied to:
 A whole heap
 A whole clustered index
 A whole non-clustered index
 A whole indexed view
 Single partitions of partitioned tables and indexes

 Different partitions can have different compression settings

 Each index must be compressed separately
 Compressing the heap or clustered index does not compress all indexes

 Switching from heap <-> clustered index keeps compression setting
 System tables cannot be compressed
 How do you choose what/when to compress?

28
© SQLskills, All rights reserved.

https://www.SQLskills.com

Estimating Space Savings

 Enabling data compression on existing data can be very costly
 Basically the partition, index, or table is rebuilt

 It makes sense to evaluate the potential savings before enabling 
compression, using the SP
 sp_estimate_data_compression_savings

 Creates a 5% sampled subset of the data in tempdb and compresses it 
using the requested compression mechanism

 Returns the estimated size of the table/index/partition with the 
requested compression, plus details of the sample size
 Can also be used when turning OFF compression

 Note: A storage decrease from compression is not guaranteed



15

29
© SQLskills, All rights reserved.

https://www.SQLskills.com

ROW Compression

 Stores fixed-length numeric data as variable-length
 E.g. integer, decimal, float, datetime, money
 E.g. a bigint holding the value 34 will only store 1 byte

 Stores fixed-length character data as variable-length
 Blank characters are not stored
 E.g. a char (50) holding ‘Paul Randal’ will only store 11 bytes

 Strips out unused bytes for Unicode strings if all zeroes
 A new variable-length row format is used to bring the per-column 

metadata overhead down from 2-bytes to 4-bits
 Null and zero values can be stored only using the 4-bits of metadata

 Details of row compression can be found in Books Online
 ‘Row Compression Implementation’ in BOL index

30
© SQLskills, All rights reserved.

https://www.SQLskills.com

Record Structure

 Per-column descriptors give column length, plus special values such 
as zero or null

 ‘Jump points’ every 32 columns to speed up access

Column Descriptors (4 bits each = 16 values)

Header

Short Data Region

(values <= 8 bytes)

Long Data Region

(incl. off-row columns)



16

31
© SQLskills, All rights reserved.

https://www.SQLskills.com

PAGE Compression

 Page compression does three things:
 ROW compression
 Per-column prefix compression
 Per-page dictionary compression

 When compressing a page, these three operations are done in the 
order listed above

 Page compression adds a record at the start of each page called a 
compression information structure, or CI 

 Details of page compression can be found in Books Online
 ‘Page Compression Implementation’ in BOL index

32
© SQLskills, All rights reserved.

https://www.SQLskills.com

PAGE Compression: Prefix Compression

 For each column, a value is chosen that allows space reduction and is 
stored in the compression information structure (CI)

 The in-row values are replaced with indicators of full or partial 
matches with the value in the CI

 Note that the largest value for each column is stored in the CI
 The process uses byte-level comparisons across all data types



17

33
© SQLskills, All rights reserved.

https://www.SQLskills.com

PAGE Compression: Dictionary Compression

 Dictionary compression is done AFTER prefix compression
 The whole page is scanned looking for common values, which are 

stored in the CI area on the page
 The in-row values are replaced with pointers to the CI area

34
© SQLskills, All rights reserved.

https://www.SQLskills.com

When is Data Compressed?

 After PAGE compression is enabled, new pages are only ROW 
compressed until they fill up, then the next row insertion triggers 
page compression

 The page is PAGE compressed, and if there’s 20% space savings after 
compression has occurred (and the CI structure added), the next row 
is compressed and inserted
 If there’s not enough space saving, the page is not compressed and the row 

will be inserted on a new page

 When a table or index is rebuilt with PAGE compression on, PAGE 
compression occurs as part of the rebuild, but follows the same 
process
 I.e., there may be some uncompressed pages if PAGE compression was not 

worthwhile

 Per-page modification counter triggers re-compression of page



18

35
© SQLskills, All rights reserved.

https://www.SQLskills.com

Limitations

 Data compression was Enterprise Edition only until 2016 SP1
 Restoring a backup with compressed data in would fail on a lower edition 

(same as happened with partitioning in SQL Server 2005)
 Check the sys.dm_db_persisted_sku_features DMV

 Off-row data is not compressed
 Enabling or disabling are index rebuilds, so not a trivial process
 You might be burning a lot of CPU attempting compression on non-

compressible data
 Check in sys.dm_db_index_operational_stats

 page_compression_attempt_count should not be a lot higher than
page_compression_success_count

36
© SQLskills, All rights reserved.

https://www.SQLskills.com

Customer Experiences with Data Compression

Customer Space 

Savings

Throughput 

impact

Notes

Customer #1 40% 5% PAGE compression. OLTP web application. Large 

volume of transactions.

Customer #2 62% 40%-60% PAGE compression. DW application. Large

sequential range queries . 

Customer #3 38% -1% PAGE compression. OLTP with some reporting. 

500 users, 1,500 trans/sec.

Customer #4 80% -11% PAGE compression. OLTP application. A lot of 

insert, update and delete activity.

Customer #5 52% 2% - 3% PAGE compression. OLTP Application.

Customer #6 81% 3% PAGE compression. ERP application – small 

transactions.

Your Mileage Will Vary!



19

© SQLskills, All rights reserved.
https://www.SQLskills.com 37

© SQLskills, All rights reserved.
https://www.SQLskills.com

More Info on Data Compression

 WP: Data Compression: Strategy, Capacity Planning and Best Practices
 https://sqlskills.com/p/022

 Blog post series:
 Walking through data compression analysis of a large database, plus 

investigation of CPU usage, wait stats, backup timings, and much more
 https://sqlskills.com/p/023 is for final part, with links to previous parts

38
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Physical layout considerations
 Allocation algorithms
 Instant initialization
 Auto-grow
 To shrink or not to shrink?
 Data compression
 Tempdb



20

39
© SQLskills, All rights reserved.

https://www.SQLskills.com

Traditional tempdb Uses

 User objects:
 Table variables (@)
 #temp and global ##temp tables/indexes
 Regular tables

 Internal objects
 Worktables (e.g. sort, intermediate results, …) from memory spills to disk
 Workfiles (only for hash joins and hash aggregates) from spills to disk
 Intermediate sort results from index create/rebuilds

 Only if SORT_IN_TEMPDB is specified

 Intermediate DBCC CHECKDB results (in a worktable)
 Version store (main one + online index operations one)

 Full list and explanations in BOL: Capacity Planning for Tempdb

40
© SQLskills, All rights reserved.

https://www.SQLskills.com

Version Store

 Stores all version records (as described in M1) created in all databases
 One new allocation unit created every minute

 Variable size depending on how many versions created in that minute

 Cleanup task runs every minute or so
 If all version records in allocation unit no longer required, it can be deleted

 Non-logged
 Long-running transactions using snapshot isolation can interrupt 

cleanup and lead to tempdb growth
 DMV added in 2016 SP2+ to see which database is causing versions

 sys.dm_tran_version_store_space_usage

 See Books Online: Row Versioning Resource Usage
 https://sqlskills.com/p/024



21

41
© SQLskills, All rights reserved.

https://www.SQLskills.com

tempdb Sizing

 No easy way to figure out initial size as so many operations can use 
tempdb space
 General practice is run production workload, see how big tempdb gets

 General query workload
 Index maintenance operations

 Set tempdb size to resulting size
 Enable appropriate auto-growth, equal on all files

 2016+ sets default autogrow to 64MB, all tempdb files grow at same time
 2016+ setup has a decent tempdb configuration wizard

 2017+ allows initial size of each file to be up to 256GB and warns if size more than 
1GB without Instant File Initialization enabled for the instance

 We’ll talk about the number of files to create in a few slides…
 Books Online: Capacity Planning for Tempdb

 https://sqlskills.com/p/025

42
© SQLskills, All rights reserved.

https://www.SQLskills.com

tempdb Sizing and Restart

 Tempdb reverts to the last specifically set size after a server restart
 If tempdb grows during operations, that is not the same as specifically 

setting the size
 Avoid excessive auto-growth after a server restart by manually setting 

the size



22

43
© SQLskills, All rights reserved.

https://www.SQLskills.com

tempdb and I/O Subsystems

 Best practice has been to separate tempdb from other databases due 
to I/O contention and put on high-performance I/O subsystem
 Entirely depends on I/O subsystem and workload involved

 Favorite use of SSDs
 SSDs are best suited to random I/O, but generally will give a performance 

boost to an I/O subsystem that’s overwhelmed

 Page checksums on tempdb weren’t available until SQL 2008
 On by default for new instances of SQL 2008 onwards
 Make sure they’re enabled for tempdb for upgraded instances

 In 2014+, data not flushed to disk for bulk operations in tempdb
 Books Online – Optimizing Tempdb Performance

 https://sqlskills.com/p/026

44
© SQLskills, All rights reserved.

https://www.SQLskills.com

tempdb Allocation Bitmap Contention

 Some query workloads cause multiple concurrent threads to 
repeatedly create/drop small temp tables and/or worktables
 Can also be from repeated population/truncation of temp tables

 Easy to cause PAGELATCH_UP contention on allocation bitmaps prior 
to SQL Server 2019, especially PFS
 Use sys.dm_os_waiting_tasks to see waits on PAGELATCH_UP
 SGAM page to manipulate mixed extents (resource 2:1:3)
 PFS page to allocate/deallocate pages (resource 2:1:1 and then any page ID 

that’s a multiple of 8088)

 Contention can occur in all versions, but much reduced in 2019+
 This can sometimes (rarely) happen in user databases with VERY high-

end allocation workloads



23

45
© SQLskills, All rights reserved.

https://www.SQLskills.com

tempdb System Table Contention

 Some query workloads cause multiple concurrent threads to 
repeatedly create/drop small temp tables and/or worktables
 Can cause PAGELATCH_SH/EX contention on sysobjvalues and 

sysseobjvalues tables (‘insert hotspot’)
 Use sys.dm_os_waiting_tasks to see waits on PAGELATCH_SH/EX in tempdb
 Check whether the page is in a system table using DBCC PAGE

 Fixed somewhat in SQL Server 2016 builds
 See https://sqlskills.com/p/107 and 108

 Can remove completely in 2019 by setting system tables in-memory
 ALTER SERVER CONFIGURATION SET MEMORY_OPTIMIZED 

TEMPDB_METADATA = ON;
 Restart instance

 Also a new trace flag 3427 in latest 2016 builds that speeds up small 
transactions using tempdb (see https://sqlskills.com/p/108)
 Removes overhead from Common Criteria Compliance auditing)

46
© SQLskills, All rights reserved.

https://www.SQLskills.com

tempdb Temp Table Caching

 There is a cache of worktables and temp tables
 Worktable cache is very small
 Temp table cache is (relatively) unbounded

 Mechanism:
 When a temp table/worktable is dropped, a single IAM page, a data 

page/extent, and its metadata entry remain
 As long as temp table is less than 8MB when dropped
 Only for temp tables NOT created by ad hoc statements

 And in 2014+, no further DDL in SP that creates the temp table

 The next temp table/worktable creation pulls one out of the cache
 All kinds of reasons a temp table may not be cached

 See blog posts: https://sqlskills.com/p/027 and 
https://sqlskills.com/p/028



24

47
© SQLskills, All rights reserved.

https://www.SQLskills.com

Alleviating tempdb Bitmap Contention

 TF 1118 (KB 328551) removes mixed extents (SGAM contention)
 All instances across the world should have this enabled (and T3226)
 Behavior on by default in SQL Server 2016+

 Use multiple data files to reduce contention (KB 2154845)
 <= 8 cores: #files = #cores; > 8 cores, #files=8, then increase by 4 at a time
 2016+ install automatically configures multiple tempdb data files
 Adding just one file may not work (see https://sqlskills.com/p/029)
 Investigation article on Simple Talk: https://sqlskills.com/p/030

 Alleviated a bit in latest 2016/2017 builds by spreading allocations 
over multiple PFS intervals (see https://sqlskills.com/p/106 and 108) 

 2019 enhancements
 No latch for PFS updates, using special CPU instructions
 Temp table cache optimizations to reduce spinlock contention when 

adding/removing entries

Demo

tempdb allocation bitmap contention: 2017 vs. 2019



25

49
© SQLskills, All rights reserved.

https://www.SQLskills.com

tempdb Configuration Survey

 Source: https://sqlskills.com/p/031

© SQLskills, All rights reserved.
https://www.SQLskills.com 50

© SQLskills, All rights reserved.
https://www.SQLskills.com

More Info on Tempdb

 Moving tempdb – see KB 224071
 WP: Working with tempdb in SQL Server 2005

 https://sqlskills.com/p/032
 Still very applicable today

 Blog post: Misconceptions Around TF 1118
 https://sqlskills.com/p/033

 Blog post series on tempdb
 https://sqlskills.com/p/034

 Books Online:
 Troubleshooting Insufficient Disk Space in Tempdb

 https://sqlskills.com/p/035

 Capacity Planning for Tempdb
 https://sqlskills.com/p/025



26

© SQLskills, All rights reserved.
https://www.SQLskills.com 51

© SQLskills, All rights reserved.
https://www.SQLskills.com

Some Linux Specifics…

 Instant file initialization always on for data files
 Setup does not create multiple tempdb data files

 Microsoft recommendation is 1:1 with logical processor cores

 Having more data files definitely helps on Linux
 According to Microsoft testing

52
© SQLskills, All rights reserved.

https://www.SQLskills.com

Review

 Physical layout considerations
 Allocation algorithms
 Instant initialization
 Auto-grow
 To shrink or not to shrink?
 Data compression
 Tempdb



27

Questions!


