
1

SQLskills Immersion Event
IEPTO1: Performance Tuning and Optimization

Module 3: Locking and Blocking
Kimberly L. Tripp

Kimberly@SQLskills.com

2
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 The anatomy of a data modification
 Locking and blocking

 Granularity
 Escalation
 Duration

 Troubleshooting locking behavior
 Blocking situations

 Detecting and avoiding

 Deadlock situations
 Detecting and avoiding

2

3
© SQLskills, All rights reserved.

https://www.SQLskills.com

Anatomy of a Data Modification

 User/application sends an UPDATE query
 The update is highly selective (only 5 rows)

 Indexes exist to aid in finding these rows efficiently
 The update is a SINGLE statement batch therefore this is an IMPLICIT

transaction
 Transactions can be ‘explicit’ or ‘implicit’
 Explicit transactions are controlled by the user

 Started with BEGIN TRAN
 Ended with COMMIT TRAN or ROLLBACK TRAN

 Implicit transactions are created internally by SQL Server and committed
automatically when the operations complete
 And obviously rolled-back if something goes wrong

4
© SQLskills, All rights reserved.

https://www.SQLskills.com

Anatomy of a Data Modification

 Server receives the request and locates the data in cache OR reads the
data from disk into cache
 Since this is highly selective only the necessary pages are read into cache

(maybe a few extra but that’s not important here)
 Let’s use an example where the 5 rows being modified are located on 3

different data pages

3

5
© SQLskills, All rights reserved.

https://www.SQLskills.com

What it looks like: Data Reading From Disk

UPDATE… Server…

Buffer pool

Log

Data

6
© SQLskills, All rights reserved.

https://www.SQLskills.com

Anatomy of a Data Modification

 SQL Server proceeds to lock the necessary data
 Locks are necessary to give a consistent point FOR ALL rows from which to

start
 If any other transaction(s) have ANY of these rows locked we will wait until

ALL locks have been acquired before we can proceed
 Locks are initially taken to stabilize the rows and then upgraded to exclusive locks

 In the case of this update (because it’s highly selective and because indexes
exist to make this possible) SQL Server will use row level locking

4

7
© SQLskills, All rights reserved.

https://www.SQLskills.com

What It Looks Like: Acquiring Locks

Buffer pool

Page

Page

Page

Row

Row

Row

Row

Row

Update lock

Update lock

Update lock

Update lock

Update lock

IX

IX

IX

IX

Table

8
© SQLskills, All rights reserved.

https://www.SQLskills.com

Anatomy of a Data Modification

 The rows are locked but there are also ‘intent’ locks at higher levels to
make sure other larger locks (like other potentially conflicting page or
table level locks) are not attempted and then fail
 This transaction holds the following locks:

 5 update row-level locks
 3 intent-exclusive page-level locks
 1 intent-exclusive table-level lock

 The connection also holds a shared database-level lock

 And if indexes are accessed/used then there might be additional locks
required – to read the data – they are not significant here

notes for
prior slide

5

9
© SQLskills, All rights reserved.

https://www.SQLskills.com

Update lock

Update lock

Update lock

Update lock

Update lock

Exclusive lock

Exclusive lock

Exclusive lock

Exclusive lock

Exclusive lock

What It Looks Like: Modifications

x
x

x
x

xx

x
x

x

xBuffer pool

Page

Page

Page

Row

Row

Row

Row

Row

IX

IX

IX

Table

IX

L

10
© SQLskills, All rights reserved.

https://www.SQLskills.com

Anatomy of a Data Modification

 SQL Server can now begin to make the modifications
 For EVERY row the process will include:

 Change to a stricter lock (eXclusive lock)
 An update lock helps to allow better concurrency by being compatible with other

shared locks (readers). Readers can read the pre-modified data as it is
transactionally consistent

 The eXclusive lock is required to make the change because once modified no
other reads should be able to see this un-committed change

 Make the modification (in cache)
 Log the modification to the transaction log pages (also in cache)

notes for
prior slide

6

11
© SQLskills, All rights reserved.

https://www.SQLskills.com

Anatomy of a Data Modification

 Finally, the transaction is complete
 This is the MOST critical part (the key to Durability)

 All rows have been modified
 There are no other statements in this batch (because it’s an implicit

transaction)

 Steps are:
 Write all log records for the transaction to the transaction log ON DISK

(forced write-through to disk) = durable
 This forces all of the transaction log up to the point of the COMMIT TRAN log

record to be written to disk, regardless of which transaction it is for

 Release all locks held by the transaction
 Acknowledge the commit to the user/application:

 A message may come back (e.g. 5 rows affected but not when NOCOUNT ON)
 @@TRANCOUNT = 0 (this is what really defines the END of a transaction)

12
© SQLskills, All rights reserved.

https://www.SQLskills.com

What It Looks Like: Committing

Server

Buffer pool
Sequential writes

Change

Change

Change

Change

…

Log

‘5 rows affected.’

After the log

entries are made

and the locks are

released…

~~~~

~~~~

~~~~

~~~~

~~~~

Log

Data L



7

13
© SQLskills, All rights reserved.

https://www.SQLskills.com

So Now What?

 The transaction log ON DISK contains a record of the changes made to 
the database by the transaction

 The data pages in the buffer pool reflect the changes made to the 
database by the transaction

 When do the up-to-date data pages get written from buffer pool into 
the data files on disk?

Checkpoint

14
© SQLskills, All rights reserved.

https://www.SQLskills.com

Anatomy of a Data Modification: Where Are We At?

 Optimization
 Data is very random
 Log is sequential

 Locks
 Granularity
 Duration
 Escalation

 Transactions
 Can make a mess of things if you don’t know what you’re doing…

 NOTE: Paul will be talking more about logging, recovery, log records, 
and checkpoints in the logging module



8

15
© SQLskills, All rights reserved.

https://www.SQLskills.com

Tips to Minimize Blocking

 Write efficient transactions; keep them short and in one batch
 More details in this module’s “side discussion” at the end of the deck

 Do not allow interaction in the midst of the batch
 Use indexes to help SQL Server find, and lock, only the necessary data

 More details in modules on indexing

 Use a flavor of versioning or maybe even NOLOCK
 More details in the versioning module

 Consider estimates for long-running queries and/or migrating data to 
a secondary analysis server

 In summary: locking becomes problematic “blocking” when long-
running [inefficient] and conflicting transactions execute
 Shorter transaction times mean less potential blocking…

16
© SQLskills, All rights reserved.

https://www.SQLskills.com

Locking

 SQL Server pre-2005 accomplishes isolation semantics through 
locking only

 SQL Server 2005 introduced versioning
 4 possible states of isolation for your database based on either:

 Locking only
 Versioning + locking 

 Locking is always used for writers
 Versioning can be used for readers

 With versioning enabled you still have locking, just more sparingly
 Writers lock (for other writers)
 Intent locks, metadata locks, other locks are same



9

17
© SQLskills, All rights reserved.

https://www.SQLskills.com

Lock Hierarchy

Row

Row

Row

Header

Row

Row

Row

Header

Row

Row

Row

Header

Row

Row

Row

Header

Row

Row

Row

Header

Table

DatabaseOn connect, SQL Server allows access to the 
database and gives a Shared database lock to the 
connection.

S

IX

IX

X

Imagine the user submitting a query to 
modify a single row:

To perform the update SQL Server needs to first 
access the table and lock it with an IX (Intent 
eXclusive) lock.

Second, SQL Server needs to find the page on which the 
row(s) exist and lock them with IX locks. If an index 
exists this can speed the request and limit the number 
of pages accessed.

Finally, an eXclusive
lock is acquired on the 
row(s) that need to be 
modified.

Page

UPDATE dbo.Products
SET Amount = 40.45

WHERE ProductId = 112456

18
© SQLskills, All rights reserved.

https://www.SQLskills.com

Lock Hierarchy

 Another look at basic lock hierarchy in SQL Server

Database

Table

Page

Row

S

IX

IX

X

hidden slide
w/extra details



10

19
© SQLskills, All rights reserved.

https://www.SQLskills.com

Page and Table Level Locks
Intent Locks

 Shared: only readers on the table
 Intent Shared: reader with a shared page or row level lock at a lower 

granularity
 Intent eXclusive: writer with an exclusive page or row level lock at a 

lower granularity
 eXclusive: only ONE writer on the table

X

eXclusive

IX

Intent

eXclusive

IS

Intent

Shared

S

Shared

NOT compatible

Compatible Compatible

NOT compatible…   

20
© SQLskills, All rights reserved.

https://www.SQLskills.com

Row Locks
Shared, Update, and eXclusive

 Shared: many readers
 Update: reading with the intent to modify but has NOT yet modified

 Allows better concurrency

 eXclusive: has made a modification and the transaction is still pending

Shared Update eXclusive

Shared Granted Granted WAIT

Update Granted WAIT WAIT

eXclusive WAIT WAIT WAIT

Lock HELD

R

e

q

u

e

s

t

e

d



11

21
© SQLskills, All rights reserved.

https://www.SQLskills.com

Shared, Update, and eXclusive

 By DEFAULT (read committed [2] locking)
 Shared locks: read locks held until the resource has been read and processed

 These locks are released almost immediately.

 eXclusive locks: locks held for writers from just before the transaction modifies 
the data
 These locks are not released until the owner (the transaction) has completed (i.e. 

committed).

 Update locks: acquired at the beginning of the statement to isolate all of the 
needed rows for an update to guarantee a consistent starting point!

 In other isolation levels, the behavior of locks can be different; we’ll 
cover this in the versioning module
 Read uncommitted [1] – row locks are not used
 Repeatable reads [3] – shared locks are used and held
 Serializable [4] – key range locks and other resource (table) locks are used/held
 Read committed [2] versioning and Snapshot Isolation [5] use versioning

22
© SQLskills, All rights reserved.

https://www.SQLskills.com

Schema Locks

 Two “types” of “schema” locks (confusing)
 Schema locks at the object’s schema level (meaning table-level)
 Schema locks at the schema container level (meaning schema.object)

 Transferring an object from one schema to another, locks the entire destination 
schema (see http://bit.ly/260rWol for an example)

 Schema-stability (SCH-S)
 Prevents the schema changing or IAM pages being added to the IAM chain
 Sometimes used when performing allocation order scan

 Schema-modification (SCH-M)
 Used when the an object’s schema must change

 Changing the definition of the object
 Maintenance: creating an index / rebuilding an index / partition switching
 sp_recompile tablename (requires a SCH-M on the table)

 NOTE: sp_recompile procedurename does NOT

 Not compatible with any other lock type – think of it as a super-exclusive lock
 SQL Server 2014 has a low priority lock wait option for partition switching or 

index rebuilds (this can DRAMATICALLY reduce long blocking chains)
 http://tinyurl.com/kc4g7dq



12

23
© SQLskills, All rights reserved.

https://www.SQLskills.com

Blocking – Is it Really a Problem? It depends…

 Locks guarantee consistency
 First incompatible lock request waits
 Once an incompatible lock request is made then pending locks will 

wait even if they’re compatible with locks currently held
 Special case WHEN the requested lock IS compatible WITH ALL pending 

requests…

 Primary reason for the locks to WAIT
 Why? To prevent lock starvation Imagine 3 

compatible 

readers

Row

Row

Row

header
S

S

S

Then, an eXclusive lock 

is requested

X

eXclusive lock 

WAITS

S

S

Even compatible 

shared locks must 

WAIT (or queue) 

behind the 

incompatible lock

Time

24
© SQLskills, All rights reserved.

https://www.SQLskills.com

Relaxed FIFO
To Reduce Really Long Blocking Chains

 http://blogs.msdn.com/b/psssql/archive/2009/06/02/sql-server-lock-
manager-and-relaxed-fifo.aspx (http://bit.ly/NWAyVC)

 An update is incompatible with another update 
 The requested (second) update will wait behind the current update…
 What about shared locks if ONLY update locks? This is OK!
BUG / NOTE: In 2008 R2, a SCH_S lock request was granted despite it being incompatible with the union 
of granted and waiting requests (when a SCH_M was waiting), which might lead to lock starvation (of the 
SCH_M). In 2012, the SCH_S lock request is blocked. 

Row

Row

Row

Header
S

S

S

U

Second UPDATE 

lock WAITS

S

S

Compatible locks ARE allowed 

to reduce long queuing 

problems.

REQUIREMENT: Requested 

locks must be compatible with 

ALL currently held AND all 

pending requests.

Then, an UPDATE 

lock is requested

U

UPDATE lock 

GRANTED
Time

Same starting point 

3 compatible readers

Then, more 

readers attempt 

to read…

Shared locks 

GRANTED



13

25
© SQLskills, All rights reserved.

https://www.SQLskills.com

Nasty Blocking CHAINS
Relaxed FIFO isn’t Always Enough

 Imagine someone’s running a NOLOCK query against a very large 
table (the query takes 4 minutes to run [ok, not that nasty])

 This query’s running off-hours but the standard is to use NOLOCK
 An sp_recompile tname is requested

IS

A NOLOCK 

query is 

running on 

the table

Sch_M

Then an 

sp_recompile tname

is executed

Unfortunately now… 

everybody waits………

Relaxed FIFO only let’s through the 

folks that are compatible with ALL 

pending locks (not just those that 

are currently held).

This can create terribly long blocking 

chains.

Sch_S

IS

IX

IX

Other readers 

AND writers are 

allowed

table

Time

26
© SQLskills, All rights reserved.

https://www.SQLskills.com

Lock Escalation

 What is ‘lock escalation’?
 When the cost to create / maintain the locks is too high (roughly 5000 locks 

for a single statement / request) 
 SQL Server chooses to lock at a higher level in the hierarchy to save lock 

memory / resources

Database

Table

Page

Row

S

IX

IX

X

H

i

e

r

a

r

c

h

y

Database

Table

S

X

By default, escalation is happening because 

of a high resource cost. To reduce costs 

and make this efficient, escalation is from 

row OR page TO table! Not row to page to 

table as that would be too costly!



14

27
© SQLskills, All rights reserved.

https://www.SQLskills.com

Lock Escalation: The Problem

 Lock escalation on partitioned tables reduces concurrency as the table 
lock locks ALL partitions

 Only way to solve this before 2008 is to disable escalation

IXX

FG1 FG2 FG3

Partitioned

Table

Partition 1 Partition 2 Partition 3

Query 1 Query 2

update update

28
© SQLskills, All rights reserved.

https://www.SQLskills.com

Lock Escalation: The Solution

 SQL Server 2008+ allows lock escalation to the partition level, 
allowing concurrent access to other partitions

 Escalation to partition level does not block queries on other partitions

IX

X

FG1 FG2 FG3

Partitioned

Table

Partition 1 Partition 2 Partition 3

Query 1 Query 2

update update



15

29
© SQLskills, All rights reserved.

https://www.SQLskills.com

Options and Syntax

 Escalation setting is per-table, set with ALTER TABLE:
 ALTER TABLE mytable SET (LOCK_ESCALATION = {AUTO | 

TABLE | DISABLE})

 AUTO: Partition-level escalation if the table is partitioned
 TABLE: Always table-level escalation
 DISABLE: Don’t escalate unless absolutely necessary

 How to tell what setting a table already has?
 SELECT lock_escalation_desc FROM sys.tables WHERE 

name = 'mytablename'

 There is no tool (SSMS) support for ALTER TABLE

30
© SQLskills, All rights reserved.

https://www.SQLskills.com

Lock Escalation Summary

 What is ‘lock escalation’?
 When there are too many locks and SQL Server takes a lock higher in the 

hierarchy to save lock memory

SQL Server 2005
At compilation/optimization

chooses row or page

At execution escalates:

Row -> table

Page -> table

Never Row->page->table

Why? Lock conversion too 
expensive and they’re 
already out of resources…

Hierarchy
Database

Table

Page

Row

S

IX

IX

X

SQL Server 2008+
At compilation/optimization

chooses row or page

At execution escalates:

Row -> partition/table

Page -> partition/table

By default, partition-level 
lock escalation is off 
(principle of least surprise)

hidden slide
w/extra details



16

Demo

Examining locks and lock escalation

32
© SQLskills, All rights reserved.

https://www.SQLskills.com

Lock Escalation: Monitoring

 Locking can be monitored using the DMV sys.dm_tran_locks
 SELECT * 

FROM sys.dm_tran_locks
WHERE [resource_type] <> 'DATABASE'

 Table level escalation will show:

 Partition level escalation will show:

hidden slide
w/extra details



17

33
© SQLskills, All rights reserved.

https://www.SQLskills.com

Locks – Granularity/Escalation

 Granularity chosen at compilation
 Row/page or partition or table

 Escalated at execution time if resources (to handle all of the smaller 
locks) are not available
 Row-to-table or page-to-table (or to partition if enabled on 2008+)
 Locks do NOT escalate row-to-page-to-partition/table
 Generally, lock escalation is desired as it results in less resources being 

needed to handle a query/transaction and often the query can complete 
faster, but at the expense of concurrency

 SQL Server 2005+ has two trace flags, one allows lock escalation under 
memory pressure (1224), one does not (1211)

 SQL Server 2008+ ONLY supports partition-level lock escalation when set at 
the table-level through ALTER TABLE

34
© SQLskills, All rights reserved.

https://www.SQLskills.com

Controlling Lock Granularity

 Be careful! Lock hints can negatively affect:
 Performance, as the query may take long to run
 Concurrency, as the query might run faster but other users must wait… is 

that really faster?

 ROWLOCK: use row level locking instead of table or page
 This may not be possible depending on resources and may force the query 

to take longer but give you better concurrency

 PAGLOCK: similar to row level but page level instead, this may be a 
better choice depending on data distribution

 TABLOCK: better for off hour updates when concurrency might not be 
a problem



18

35
© SQLskills, All rights reserved.

https://www.SQLskills.com

Controlling Lock Type

 UPDLOCK: requests that an update lock be used (instead of a shared 
lock – typically used when you plan to do modifications within the 
transaction)
 This can only be used at the row or page level
 Update locks do not exist at any other level

 XLOCK: requests an eXclusive lock at the row, page, or table level
 This can negatively affect concurrency while increasing performance for this 

statement/transaction
 Used if you want to bypass update locks and disallow readers

 For more information see “Locking Hints” in the BOL

36
© SQLskills, All rights reserved.

https://www.SQLskills.com

Controlling Wait Time

 Check current value
 SELECT @@lock_timeout

 Change current value
 SET LOCK_TIMEOUT N

 Where N represents the number of milliseconds

 Great for readers to give up waiting but what if a statement fails 
within a transaction?
 You must detect the runtime error (because this is user defined) and 

determine the fate of the transaction
 The transaction will be rolled back IF you have SET XACT_ABORT ON

 Skip over locked rows with READPAST



19

37
© SQLskills, All rights reserved.

https://www.SQLskills.com

Locking Prevents Conflicts

 No other transactions can invalidate the data set through 
modifications

 Is this always what you want or need?
 Queuing applications typically want locks, if someone is modifying that row 

– we want to go to another not see last transactional state
 Very volatile prices – don’t want to give them the last price if it’s currently 

being updated, so wait… (but the update’s fast)

 What about long running transactions or cases where you don’t need 
absolute current…

38
© SQLskills, All rights reserved.

https://www.SQLskills.com

Tools for Troubleshooting Blocking

 Dynamic Management Views
 System stored procedures 

 sp_lock [@@spid]

 SQL Profiler
 Performance Monitor counters
 PSS Script 

 sp_blocker_pss08 (KB#271509)

 Blocked Process Report
 Pssdiag/SQLdiag (http://diagmanager.codeplex.com/) 
 SQL Server 2008+ adds

 Performance Data Collection
 Extended Events



20

39
© SQLskills, All rights reserved.

https://www.SQLskills.com

Detecting Blocking

 SSMS Reports – Top Transactions by Blocking
 Using DMVs

 sys.dm_tran_locks and sys.dm_os_waiting_tasks
 sys.dm_os_wait_stats

 sys.dm_exec_requests
CROSS APPLY sys.dm_exec_sql_text(sql_handle)

 Shows the last command submitted

 Using system procedures
 sp_lock/sp_lock @@spid

 sp_who2 (DMV-based rewrite of sp_who)
 Shows whether blocked and by who (BlkBy column)
 LastBatch to show you when the last command was submitted from the client
 CPUTime and DiskIO to show relative activity for transactions blocked/blocking

 Adam Machanic’s sp_whoisactive
 Very comprehensive and free monitoring tool

40
© SQLskills, All rights reserved.

https://www.SQLskills.com

Detecting Blocking

 SQL Server Blocked Process Threshold
 Set at an instance level

 sp_configure 'blocked process threshold', n (secs)

 Each spid blocked for n seconds triggers an event that can be tracked 
using:
 2005 and higher

 Trace
 Event Notification
 WMI – SQL Agent Alert
 See Jonathan’s post: Using the Block Process Report in SQL Server 2005/2008

 2012 and higher – use Extended Events
 See Erin’s post: Capture Blocking Information with Extended Events and the 

Blocked Process Report



21

41
© SQLskills, All rights reserved.

https://www.SQLskills.com

When Blocking Becomes Deadly 

 Two (or more) transactions request mutually desired resources in an 
undesirable order

(T1) Transaction 1

(T2) Transaction 2

Time

(T1) locks

Table1.rowX

(T2) locks

Table2.row6

(T1) requests

Table2.row6

This is just blocking…

Which is not a problem as long as 

Transaction 2 completes in a timely 

manner…but it doesn’t

(T2) requests

Table1.rowX

This creates a DEADlock (a.k.a. a “circular 

reference”) which is infinite. SQL Server 

automatically detects and resolves a 

deadlock by choosing a victim.

42
© SQLskills, All rights reserved.

https://www.SQLskills.com

Deadlocks

 All resources have similar deadlock handling
 Deadlocks can be caused by

 Data locks: locks of rows, pages, partitions, tables, and database metadata
 Worker threads: queued tasks waiting for worker threads can cause deadlock 

(‘intra-query parallelism deadlock’)
 Memory: two tasks waiting for memory
 Parallel query execution resources
 MARS interleaving



22

43
© SQLskills, All rights reserved.

https://www.SQLskills.com

Deadlock Monitor

 Background process in the lock manager
 Checks every 5 seconds usually, but time between checks throttles up 

and down based on how frequently deadlocks are being discovered
 If something enters the wait queue right after a deadlock is detected, 

a deadlock search will immediately begin
 I.e. it is a pessimistic process

 If a deadlock is found, one of the participants is rolled back

44
© SQLskills, All rights reserved.

https://www.SQLskills.com

Deadlock Resolution

 By default, SQL Server chooses the least expensive victim to rollback 
(based on the amount of transaction log generated)

 If desired, you can impact this choice:
 SET DEADLOCK_PRIORITY

 LOW (equivalent of -5)
 NORMAL (equivalent of 0)
 HIGH (equivalent of 5)
 Things like shrink, reorganize are set to low automatically

 SQL Server 2005+ allows numeric value (-10 through 10) 
 Can also set with a variable (lookup in a table)

 The deadlock victim receives error 1205:
 Your transaction (<tran id>) was deadlocked with another process and has 

been chosen the deadlock victim. Rerun your transaction.



23

45
© SQLskills, All rights reserved.

https://www.SQLskills.com

Detecting Deadlocks

 Perfmon Counter: Deadlocks/Sec
 SQL Profiler events

 Select Locks/Deadlock Graph
 Save all deadlock graphs to single file or one file per-deadlock
 Saved in XML format with XDL extension
 Displayed graphically in profiler

 Or can be analyzed using XML APIs

 Extended Events 
 Writes deadlock graph
 System health session tracks deadlocks

 Trace flag 1222 (1204 and 1205)
 Writes deadlock info to SQL Server error log

Homework/Resources

Online Training:
See Jonathan Kehayias’ course on Pluralsight: 
SQL Server: Deadlock Analysis and Prevention

Online blog posts from Bart Duncan, Search: “bart duncan deadlocks”
Deadlock Troubleshooting, Parts 1, 2 and 3
http://tinyurl.com/clnwyyl (Part 1)



24

47
© SQLskills, All rights reserved.

https://www.SQLskills.com

Avoiding Deadlocks

 Minimize blocking
 More effective queries
 More effective indexes
 Add or remove lock hints

 Access resources in the same order
 SET DEADLOCK_PRIORITY to lower value
 Add retry logic in application if error 1205 returned
 Consider versioning; either statement-level or transaction-level

48
© SQLskills, All rights reserved.

https://www.SQLskills.com

Review

 The anatomy of a data modification
 Locking and blocking

 Granularity
 Escalation
 Duration

 Troubleshooting locking behavior
 Blocking situations

 Detecting and avoiding

 Deadlock situations
 Detecting and avoiding



25

49
© SQLskills, All rights reserved.

https://www.SQLskills.com

Latches

 Lightweight internal synchronization mechanism similar to locks but 
cannot be influenced externally

 A latch protects access to a structure in memory
 E.g. in memory copy of a page

 Many types of latches
 Simple: e.g. update, exclusive, shared
 More complex: e.g. keep, destroy

 Possible to have latch waits (similar to blocking)
 Possible to have dead-latches (these are bugs)

 Covered in more detail in 
 Paul’s Pluralsight course SQL Server: Performance Troubleshooting Using Wait 

Statistics at http://pluralsight.com/training/Courses/TableOfContents/sqlserver-waits
 Bob Ward’s 2010 session at SQL PASS. Check out: http://tinyurl.com/d2bu2f6

hidden slide
w/extra details

Questions!



26

SQLskills Immersion Event
IEPTO1: Performance Tuning and Optimization

Module 3: Locking and Blocking
Side discussion – for you / your developers!

Kimberly L. Tripp
Kimberly@SQLskills.com

52
© SQLskills, All rights reserved.

https://www.SQLskills.com

Batches

 Parsed as a unit so if any statement fails syntax then NO statements 
(in that batch) are executed
 SQL Server proceeds to next batch

 At execution, if a statement fails then that statement is rolled back 
and SQL Server exits the batch (or falls into catch block) and proceeds 
to the next batch
 Any statement following the failed statement is NOT executed
SELECT * FROM AdventureWorks.person.person

SELECT * FROM AdventureWorks.person.address

SELECT * FORM AdventureWorks.person.emailaddress

go

Error: Server: Msg 170, Level 15, State 1, Line 3

Line 3: Incorrect syntax near 'form'.



27

53
© SQLskills, All rights reserved.

https://www.SQLskills.com

Transactions

 Controlled by transaction mode of session
 Defined explicitly
 Defined at connection level

 Allows multiple statements to be treated as a single logical unit of 
work

 Handled automatically across databases on the same server (i.e. 
instance)

 Handled through MSDTC explicitly through
 BEGIN DISTRIBUTED TRANSACTION

 COMMIT TRANSACTION

 Requires error handling logic

54
© SQLskills, All rights reserved.

https://www.SQLskills.com

Transaction Mode

 Auto-commit transaction (default)
 Statement-level implicit transaction
 Each statement commits as a single unit

 Explicit transaction (user-defined)
 BEGIN TRANSACTION 

 COMMIT TRANSACTION

 Implicit transaction
 Session Level Setting
 SET IMPLICIT_TRANSACTIONS ON

 Batch scoped transactions (2005+)
 Only when MARS enabled on client



28

55
© SQLskills, All rights reserved.

https://www.SQLskills.com

Transaction Termination (1)

 Resource error: automatically handled
 If the statement fails due to a SQL Server resource error (for example, the 

transaction log fills), SQL Server maintains data integrity automatically

 User-defined error: programmatically handled
 Conditionally, when your business rules (i.e. constraint violation or a lock 

timeout (more on this coming up)) are violated, YOU must programmatically 
determine the fate of the transaction

56
© SQLskills, All rights reserved.

https://www.SQLskills.com

Transaction Termination (2)

 SET ARITHABORT (on by default in SSMS/sqlcmd)
 ON – rollback statement/transaction when divide-by-zero or arithmetic 

overflow error occurs
 OFF – return NULL

 SET XACT_ABORT (off by default)
 ON – rollback statement/transaction when runtime error occurs

 Viewing session settings:
 DBCC USEROPTIONS

 SELECT * 
FROM sys.dm_exec_sessions
WHERE session_id = @@spid (optionally)



29

57
© SQLskills, All rights reserved.

https://www.SQLskills.com

Understanding Transactions

 BEGIN TRANSACTION

 Begins a new transaction

 Supports a “name” but [VERY] limited uses
 Increments @@TRANCOUNT
 Supports special “marked transactions”

BEGIN TRANSACTION TransactionName
WITH MARK ['important transaction']

 This does NOT control rollback points 
(you’re always rolling back THE transaction)

 Useful for restore/recovery operations
 STOPATMARK [AFTER datetime]

 Includes marked transaction

 STOPBEFOREMARK [AFTER datetime]
 Includes all operations up to – but not including the marked transaction

58
© SQLskills, All rights reserved.

https://www.SQLskills.com

Understanding Transactions

 COMMIT TRANSACTION
 Finalizes the transaction

 Decrements @@TRANCOUNT by 1
 Does NOT commit the transaction UNLESS the @@TRANCOUNT is 0
 Must correspond to a BEGIN TRANSACTION 

BEGIN TRANSACTION

SQL statements
COMMIT TRANSACTION

 Or, session must have implicit_transactions turned on. This is not 
recommended.
SET IMPLICIT_TRANSACTIONS ON

SQL statements…
COMMIT TRANSACTION

(open transaction until commit)



30

59
© SQLskills, All rights reserved.

https://www.SQLskills.com

Understanding Transactions

 ROLLBACK TRANSACTION

 Aborts the transaction

 Returns @@TRANCOUNT to 0
 Cancels all levels of “nested” transactions
 You can rollback to a savepoint and still be within the bounds of the 

transaction (see next slide)
 However, you cannot rollback to a named transaction

Msg 6401, Level 16, State 1, Line 5

Cannot roll back TransactionName. No transaction or 
savepoint of that name was found.

 There is ALWAYS only one transaction in the context of rollback
 Only savepoints can be used to undo state within a transaction

60
© SQLskills, All rights reserved.

https://www.SQLskills.com

Understanding Transactions

 SAVE TRANSACTION (a.k.a. savepoints)
 Are a “stack” (without any regard for “nesting” because that doesn’t exist) and 

you CAN reuse the same name
 Does not affect @@TRANCOUNT
 When you ROLLBACK to a savepoint you must still commit or rollback the 

pending transaction
 Commonly used inside of procedural code to limit rollback effect

BEGIN TRANSACTION
SAVE TRANSACTION procname_tran

Procedural code/logic

If problem… ROLLBACK TRANSACTION procname_tran

COMMIT TRAN

RETURN [int]

 A rollback will always rollback to the most recent savepoint (not 
necessarily the scoped savepoint, even in procedures)



31

Check out the sample scripts

Transaction madness and save point coding
You MUST work with your developers to understand this… 
It will become YOUR problem!


