
1

SQLskills Immersion Event
IEPTO1: Performance Tuning and Optimization

Module 7: Index Fragmentation
Paul S. Randal

Paul@SQLskills.com

2
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Data access methods
 What is index fragmentation?
 How does index fragmentation happen?
 Detecting index fragmentation
 Avoiding index fragmentation
 Removing index fragmentation

 Beware of people stating that fragmentation is not a problem any 
longer, or not a problem with SSDs

 Not true!



2

3
© SQLskills, All rights reserved.

https://www.SQLskills.com

Index Structure

Non-Leaf Levels

(Index Pages)

I

L L

I

L L

I

L L

R

Leaf Level

(Data or Index Pages)

4
© SQLskills, All rights reserved.

https://www.SQLskills.com

Single-record Seek

Matching record

Per-level binary search cost –

see https://sqlskills.com/p/068



3

5
© SQLskills, All rights reserved.

https://www.SQLskills.com

Multi-record Seek/Scan

Matching records (in blue)

6
© SQLskills, All rights reserved.

https://www.SQLskills.com

Allocation Order Scan

Matching records (in blue)



4

7
© SQLskills, All rights reserved.

https://www.SQLskills.com

Side Note: Merry-Go-Round Scans

Scan 2

D A T A

Scan 1

Scan 3

Scan 1 

starts

Scan 2 

starts

Scan 3 starts

8
© SQLskills, All rights reserved.

https://www.SQLskills.com

Readahead

Matching records (in blue)

Pages at this level contain pointers 

to the leaf level pages – in logical 

order. This can be used to drive 

readahead of the leaf level pages.



5

9
© SQLskills, All rights reserved.

https://www.SQLskills.com

Readahead

 Why use readahead?
 Keep the CPUs busy, maximize throughput, avoid I/O waits
 More efficient to issue 1 x 8-page read than 8 x 1-page reads

 Feedback mechanism to avoid going too far ahead of scan point
 Maximum 1,000 pages ahead

 Driven from parent level during scans
 Parent level pages contain logically-ordered links to the leaf level

 Uses variable read sizes, up to 4MB read in 2016+
 Larger reads only possible with contiguous pages
 Better contiguity = bigger reads = better performance

 Possible to disable using trace flag 652
 Problem: fragmentation causes lower-performing scans

10
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Data access methods
 What is index fragmentation?
 How does index fragmentation happen?
 Detecting index fragmentation
 Avoiding index fragmentation
 Removing index fragmentation



6

11
© SQLskills, All rights reserved.

https://www.SQLskills.com

Fragmentation in Action

Index leaf level of newly built index

Long arrow is the allocation order

Short arrows are following the logical order

12
© SQLskills, All rights reserved.

https://www.SQLskills.com

Fragmentation in Action

And now with fragmentation!

Long arrow is the allocation order

Short arrows are following the logical order



7

13
© SQLskills, All rights reserved.

https://www.SQLskills.com

Logical Fragmentation Defined

 (Sometimes called “external” fragmentation)
 Occurs when the next logical page is not the next physical page
 Prevents optimal readahead

 Reduces seek/scan performance

 Does not affect pages that are already in cache
 Smaller indexes cause less of a performance hit (e.g. 1-5000 pages or less)

 Reported as avg_fragmentation_in_percent for indexes in the 
sys.dm_db_index_physical_stats DMV

 This is what most people consider ‘fragmentation’
 “Index fragmentation affects scan performance”
 There is *so much more* to it than that!

14
© SQLskills, All rights reserved.

https://www.SQLskills.com

Extent Fragmentation Defined

 Old concept, no longer reported for indexes
 Occurs when the extents in an index are not contiguous

 Also affects readahead performance but not as much
 When writing the DMV for 2005, we decided to remove it to avoid confusion 

from too many measures of ‘fragmentation’

 Reported as avg_fragmentation_in_percent in the 
sys.dm_db_index_physical_stats DMV for heaps ONLY

 (2000: extent fragmentation algorithm in DBCC SHOWCONTIG is 
documented as not working for multiple files)

Index A Index B Index A Index B Index A Index A

1 2 3 4 5 6



8

15
© SQLskills, All rights reserved.

https://www.SQLskills.com

Low Page Density in Action

Page Header

3,000-Byte Record

3,000-Byte Record

~2,000 Bytes Wasted!

Page Header

5,000-Byte Record

~3,000 Bytes Wasted!

16
© SQLskills, All rights reserved.

https://www.SQLskills.com

Page Density Defined

 (Sometimes called “physical” or “internal” fragmentation)
 Page fullness is below the optimal level so lots of wasted space
 Effect is:

 Increased disk space (more pages required to hold same number of rows)
 Increased I/Os to read the same amount of data, leading to I/O subsystem 

pressure and overall performance degradation
 Greater memory usage if most of the index is memory resident, leading to 

increased I/Os from *other* workloads, and so on…
 More pages in the index unnecessarily can mean the Query Optimizer 

doesn’t pick that index, leading to inefficient query plans

 This means ‘fragmentation’ can affect your performance even if you 
don’t do index scans

 Hardware does not fix this
 Reported as avg_page_space_used_in_percent in the DMV



9

17
© SQLskills, All rights reserved.

https://www.SQLskills.com

Increased Buffer Pool Usage

Source: my blog at https://sqlskills.com/p/069

18
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Data access methods
 What is index fragmentation?
 How does index fragmentation happen?
 Detecting index fragmentation
 Avoiding index fragmentation
 Removing index fragmentation



10

19
© SQLskills, All rights reserved.

https://www.SQLskills.com

What Causes Fragmentation?

 Schemas/workloads that cause page splits on full pages
 GUID as high-order key (or any other random key)

 Can even affect nonclustered indexes

 Updates to variable-length columns
 Badly configured fill factor (more in a few slides)

 Clustered index is likely the only one you can make the key not cause 
fragmentation by picking an ascending order key (e.g. bigint identity)

 Wide schemas that only fit a few records per page
 E.g. a fixed-size 5000 byte row = 3000 bytes lost per page!

 Real-world example:
 Social networking site that has a homepage comments table with the 

member ID as the high-order key
 Patient check-in company using GUID as clustering key

20
© SQLskills, All rights reserved.

https://www.SQLskills.com

Real-World Examples

 MySpace

 Patient check-in company using GUID as clustering key

20

Paul Jonathan Erin Tim

Kimberly



11

21
© SQLskills, All rights reserved.

https://www.SQLskills.com

Can DML Cause Fragmentation?

 Yes, data modifications can lead to fragmentation
 INSERT

 YES – if key value is not ever increasing/decreasing (e.g. GUID)
 NO – if key is ever increasing/decreasing (e.g. INT IDENTITY)

 UPDATE
 YES – if updates make variable-length columns wider on full pages
 NO – if columns are fixed width or columns have ‘place holder’ values (i.e. 

DEFAULT values) to minimize row expansion on update

 DELETE
 YES – if deletes are singleton deletes (Swiss-cheese problem – page density 

issues)
 NO – if deletes are range deletes for archival purposes

22
© SQLskills, All rights reserved.

https://www.SQLskills.com

What is a Page Split?

 This is the primary cause of fragmentation, and is itself a performance 
problem when it occurs

 Occurs when a record must be inserted onto (or expanded on) a 
specific page in the index and there is not enough space
 Could be caused by a new record or an updated record that is now longer 

than it was before
 Could also be caused by enabling snapshot isolation, which makes updated 

records 14-bytes longer
 Also from enabling readable availability group secondaries in SQL Server 2012+

 The page has to ‘split’ to make room
 Split point is usually as close to 50/50 as possible, but may be skewed if 

Storage Engine can determine an obvious split point



12

23
© SQLskills, All rights reserved.

https://www.SQLskills.com

Page Split Mechanism

 For every page split:
 A new page is allocated to the index
 All records after the split point are moved to the new page
 New page is linked into the leaf level
 A new record must be inserted into index level above the leaf

 Could also cause a page split, cascading upwards to the root page

 All steps are fully logged and performed by a system transaction
 Very expensive, and hardware does not fix this!
 Detailed study of log records generated shown in demo towards end of 

Module 4 of the Pluralsight course SQL Server: Logging, Recovery, and the 
Transaction Log

 After page split is committed, insert/update can take place
 Page split is never rolled back

Page Split Mechanism

P

A B C



13

Page Split Mechanism

P

A B C B’

Page Split Mechanism

P

A CB B’



14

Page Split Mechanism

P

A CB B’

Page Split Mechanism

P

A CB B’



15

Demo

Increased logging during page splits

30
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Data access methods
 What is index fragmentation?
 How does index fragmentation happen?
 Detecting index fragmentation
 Avoiding index fragmentation
 Removing index fragmentation



16

31
© SQLskills, All rights reserved.

https://www.SQLskills.com

Tracking Page Splits

 There are ‘good’ and ‘nasty’ page splits…
 ‘Good’ split is when a page is allocated as part of an append-only insert 

pattern
 ‘Nasty’ split is when a real page split occurs

 Unfortunately, all documented methods of tracking page splits prior 
to SQL Server 2012 do not allow differentiation between ‘good’ and 
‘nasty’ page splits
 Perfmon counter
 sys.dm_db_index_operational_stats
 Extended event (possibly with post-processing)

 Either use log/log backup scanning or 2012+ Extended Events
 Both methods track the LOP_DELETE_SPLIT log record
 See my blog post at https://sqlskills.com/p/070

32
© SQLskills, All rights reserved.

https://www.SQLskills.com

Symptoms of Fragmentation

 Poor/degrading query performance over time
 Longer run-times
 More disk activity

 SET STATISTICS IO ON
 More frequent checkpoints occuring

 Increased logging (from page split activity)
 Depending on the average record length and the split point, a page split could 

log up to 50 times more than a regular insert!

 Increased buffer pool usage

 Worsening results from the sys.dm_db_index_physical_stats DMV
 Keys to success are knowing which indexes to look at and how to interpret 

the results



17

33
© SQLskills, All rights reserved.

https://www.SQLskills.com

sys.dm_db_index_physical_stats

 Replacement for DBCC SHOWCONTIG since SQL Server 2005
 select * from sys.dm_db_index_physical_stats (dbid, objectid, indexid, 

partitionid, samplemode)

 No need to insert/exec to analyze/process DBCC SHOWCONTIG results
 DMVs are programmatically “composable”
 However, this is a DMF, not a true DMV so must do work for results

 Ability to control how much data is read using sample mode (LIMITED, 
SAMPLED, DETAILED)
 LIMITED (default) does not read the leaf level so is fastest mode

 This is good enough for most people

 SAMPLED reads 1% of the leaf-level pages if the index/partition has more 
than 10000 pages

 DETAILED reads everything and is the slowest mode

34
© SQLskills, All rights reserved.

https://www.SQLskills.com

How the LIMITED Scanning Mode Works

Pages at this level contain pointers to 

the leaf level pages – in logical order.

This information can be used to derive 

the logical fragmentation.



18

35
© SQLskills, All rights reserved.

https://www.SQLskills.com

Interpreting the DMV Output

 What you need to look at:
 Logical fragmentation

 avg_fragmentation_in_percent (should be low)

 Page density
 avg_page_space_used_in_percent

 Should be high for data warehouse
 Should have some free space for OLTP

 Number of pages in the index

 Other counters exist (e.g. fragments, avg. fragment size) but these 
were only invented to be more accessible to users – somewhat 
unsuccessfully

Demo

Detecting fragmentation using sys.dm_db_index_physical_stats



19

37
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Data access methods
 What is index fragmentation?
 How does index fragmentation happen?
 Detecting index fragmentation
 Avoiding index fragmentation
 Removing index fragmentation

38
© SQLskills, All rights reserved.

https://www.SQLskills.com

How to Avoid Fragmentation?

 Avoid ‘random’ index keys
 Almost impossible to do for nonclustered indexes
 For clustered indexes, be careful about moving to (BIG)INT IDENTITY as small 

row size combined with many concurrent inserters could lead to an ‘insert 
hotspot’ performance issue

 Implement index fill factors and periodically remove fragmentation
 Coming up next…

 There is nothing you can do in hardware that means you can ignore 
index fragmentation
 Don’t fall for the advice that SSDs mean you can ignore it
 SSDs don’t stop page splits, extra logging, wasted space, plan changes



20

39
© SQLskills, All rights reserved.

https://www.SQLskills.com

Contiguity When (Re)Building

 Consider using –E startup parameter for very large indexes that 
support very large scans
 http://support.microsoft.com/kb/329526
 During index build/rebuild (and all other operations):

 SQL Server 2008+: 64 extents allocated before round-robin (4MB)
 I.e. 64 single-extent allocations, not one 64-extent allocation

 Combine with large RAID stripe size

 For best contiguity and readahead I/O size, use MAXDOP = 1 when 
building or rebuilding indexes
 Otherwise multiple (re)build threads building the leaf level, leading to extent 

interleaving (essentially extent fragmentation), and reduced readahead

 Note: this is not relevant for OLTP systems

40
© SQLskills, All rights reserved.

https://www.SQLskills.com

Fill Factors

 Setting a fill factor makes the Storage Engine leave space on each leaf-
level page to allow inserts/expansions to not cause page splits

 Specified at index creation or rebuild time
 NOT maintained during regular DML

 Use during index create/rebuild/reorganize
 Can specify with sp_configure for entire instance

 Not recommended – specify it per index

 Use PAD_INDEX to use fill factor for upper levels of the index
 Rarely used

 0 = 100 = default value with special meaning of ‘leave no space’
 Excellent for data warehouse, but not ideal for OLTP

 For OLTP, which value to use?



21

41
© SQLskills, All rights reserved.

https://www.SQLskills.com

Picking a Fill Factor to Use

 Balancing act between how often page splits occur and how often you 
can rebuild/defrag the index

 What is going to cause page splits in your schema?
 UPDATEs to variable-width data types?
 Random INSERTs?

 The more volatile  lower FILLFACTOR

 How often can you rebuild/defrag?
 The more frequent  higher FILLFACTOR

 Pick a value, try it, monitor fragmentation, tweak it
 Use DMVs to see how fast the fragmentation increases
 The faster fragmentation occurs  lower FILLFACTOR or decreased time 

between rebuilds/defrag
 70% or 80% are common first guesses

42
© SQLskills, All rights reserved.

https://www.SQLskills.com

Setting a Fill Factor

 Can be set when creating or rebuilding an index
 Stores the fill factor in the index metadata

 Can also be set using Object Explorer in SSMS
 Cannot be set directly with ALTER INDEX … REORGANIZE
 REBUILD and REORGANIZE use the metadata-stored fill factor, if there 

is one, otherwise they will use the instance-wide fill factor
 Unless a fill factor is specified on the REBUILD
 I.e. REBUILD-specified fill factor overrides metadata-stored fill factor, which 

overrides instance-wide fill factor



22

43
© SQLskills, All rights reserved.

https://www.SQLskills.com

Additional: Are Your Indexes Being Used?

 There are lots of bad practices around index strategy, including 
creating extra indexes
 E.g. an index for each column in the table

 Extra, unused indexes waste resources as they must be maintained by 
DML operations

 Use the sys.dm_db_index_usage_stats DMV to tell if an index is being 
used at all during the business cycle
 Beware of indexes not being used but enforcing unique constraints
 Beware that in 2012 and 2014 the stats are reset for indexes rebuilt online

 Fixed in SQL Server 2016+, and latest builds of 2012 and 2014

44
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Data access methods
 What is index fragmentation?
 How does index fragmentation happen?
 Detecting index fragmentation
 Avoiding index fragmentation
 Removing index fragmentation



23

45
© SQLskills, All rights reserved.

https://www.SQLskills.com

How to Remove Fragmentation?

 2 realistic choices
 Rebuild the index: ALTER INDEX … REBUILD

 Create a brand new index structure

 Reorganize the index: ALTER INDEX … REORGANIZE
 Shuffle the existing pages allocated to the index

 Also CREATE INDEX … WITH (DROP_EXISTING = ON)
 Commonly used to move or (re)partition an index

 Can also choose not to remove fragmentation
 If the index isn’t used for scans, and page density isn’t an issue, why spend 

the resources?

 Don’t just rebuild all indexes every day
 Synchronous mirroring or AGs may force REORGANIZE to be used

46
© SQLskills, All rights reserved.

https://www.SQLskills.com

ALTER INDEX … REBUILD

 Pros
 Can use multiple CPUs, and control MAXDOP (lower DOP = better contiguity)
 Rebuilds index statistics (with equivalent of full scan, or sampled if partitioned index)
 Can rebuild a single partition (online from 2014) or all partitions (online from 2005)
 Can be performed online

 2012+: Indexes with non-legacy LOB columns (plus clustered index on table with non-
legacy LOB/FILESTREAM column)

 2017+: ability to pause and resume an online-index rebuild, resume starts from last position

 Can be minimally-logged (but log backup will be the same size)
 SORT_IN_TEMPDB reduces logging + perf boost in 2014+ (https://sqlskills.com/p/071) 

 Not available with resumable online index rebuild

 Cons
 Atomic operation – potentially long rollback on interrupt, all or nothing semantics
 Must create new index before dropping old one, up to 125% extra space required
 When offline – SCH-M table lock for nonclustered or clustered index rebuild
 When online – blocking potential, but can be resolved in SQL 2014 onward

 Resumable online rebuild of clustered with LOB columns = SCH-M table lock for duration!



24

47
© SQLskills, All rights reserved.

https://www.SQLskills.com

ALTER INDEX … REORGANIZE

 Replaced DBCC INDEXDEFRAG in SQL Server 2005 onward
 Pros

 ALWAYS online – only requires table IX lock
 Interruptible with no loss of work – stops instantly
 Has progress reporting in sys.dm_exec_requests / percent_complete
 Compacts LOB storage (on by default, see https://sqlskills.com/p/072 for bug fixes)
 Usually faster for a lightly fragmented index
 Can reorganize one or all partitions
 Does not require any extra disk space
 In SQL Server 2016+, works on columnstore indexes too (i.e. online columnstore ops)

 Cons
 Usually slower for a heavily fragmented index
 Always fully-logged, single CPU only, does not update statistics
 Does not do as good a job as removing fragmentation
 Does not increase free space on pages!! (so may be better with a rebuild)
 Possible problem with cached query plans if # of pages drastically changes

48
© SQLskills, All rights reserved.

https://www.SQLskills.com

CREATE INDEX … WITH (DROP_EXISTING=ON)

 Don’t use this if you just want to rebuild the index with no changes
 Pros

 Same as ALTER INDEX … REBUILD
 Can move the index to a new location
 Can rebuild the index with a new partitioning scheme
 Can change the index schema (keys, sort order, etc)
 Can do all of this online (with same limitations as regular index rebuild)

 Cons
 Same as ALTER INDEX … REBUILD
 Need to know the index schema



25

49
© SQLskills, All rights reserved.

https://www.SQLskills.com

Comparison Points: REBUILD vs. REORGANIZE

 Space required
 This may force you to do REORGANIZE

 Log generated
 This may force you to do ‘staggered index maintenance’ using REORGANIZE

 Algorithm speed on amount of fragmentation
 Lots of pages above fill factor? Possibly REBUILD
 Locks required (i.e. online or not)

 This may force you to do REORGANIZE

 Interruptible or not
 Progress reporting or not

50
© SQLskills, All rights reserved.

https://www.SQLskills.com

When To Rebuild vs. Reorganize

 Much debate on this, basically it depends!

 I had to come up with numbers for Books Online so I chose:
 < 5-10% do nothing
 5-10% <> 30% defrag/reorganize
 30%+ rebuild
 And don’t do anything if the index has < 1-5000 pages

 Your mileage may (and will) vary



26

Demo

Removing fragmentation and index rebuild options

52
© SQLskills, All rights reserved.

https://www.SQLskills.com

Paul’s Method…

 Create a table with one row per index you want to work on
 I call it the ‘driver table’

 Call the DMV for the indexes listed in the driver table
 Use per-index fragmentation thresholds to determine whether to 

rebuild, reorganize, or do nothing
 Log what you decide to do for future reference
 Optional: keep a counter of how many times in succession an index is 

rebuilt and programmatically reduce fill factor

 Much easier: use code someone’s already written…
 http://ola.hallengren.com – the gold standard



27

53
© SQLskills, All rights reserved.

https://www.SQLskills.com

Inside Online Index Operations

Time

Begin Rebuild

Create New Index

Short-Term S Lock

End Rebuild

Drop Old Index

Short-Term Sch-M Lock

NewOriginal

Versioned 

Scan

Dual Update Path

Long-Term IS lock

54
© SQLskills, All rights reserved.

https://www.SQLskills.com

Inside REORGANIZE: Phase One

 Uses a ‘sliding window’ compaction algorithm
 Deletes ghosted rows

 This algorithm only compacts if enough space over 8-pages to remove 
one page
 Earlier algorithm from DBCC INDEXDEFRAG in SQL Server 2000 ran into 

pathological cases with some applications



28

55
© SQLskills, All rights reserved.

https://www.SQLskills.com

Inside REORGANIZE: Phase Two

1 2 3 4

Physical Page ID

AB

BC

DE

EF

JK

KL

VW

WZ

56
© SQLskills, All rights reserved.

https://www.SQLskills.com

Inside REORGANIZE: Phase Two

1 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

1 2 3 4

AB

BC

DE

EF

JK

KL

VW

WZ

2104

Physical Page ID



29

57
© SQLskills, All rights reserved.

https://www.SQLskills.com

Inside REORGANIZE: Phase Two

1 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

1 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4

AB

BC

DE

EF

JK

KL

VW

WZ

2104

Physical Page ID

58
© SQLskills, All rights reserved.

https://www.SQLskills.com

Inside REORGANIZE: Phase Two

1 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

1 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4

AB

BC

DE

EF

JK

KL

VW

WZ

2104

Physical Page ID



30

59
© SQLskills, All rights reserved.

https://www.SQLskills.com

Inside REORGANIZE: Phase Two

1 2 3 4

Physical Page ID

AB

BC

DE

EF

JK

KL

VW

WZ

1 2 3 4

Physical Page ID

AB

BC

DE

EF

JK

KL

VW

WZ

21041 2 3 4

Physical Page ID

AB

BC

DE

EF

JK

KL

VW

WZ

21041 2 3 4

Physical Page ID

AB

BC

DE

EF

JK

KL

VW

WZ

21041 2 3 4

AB

BC

DE

EF

JK

KL

VW

WZ

2104

Physical Page ID

60
© SQLskills, All rights reserved.

https://www.SQLskills.com

Inside REORGANIZE: Phase Two

1 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

1 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4

AB

BC

DE

EF

JK

KL

VW

WZ

2104

Physical Page ID



31

61
© SQLskills, All rights reserved.

https://www.SQLskills.com

Inside REORGANIZE: Phase Two

1 2 3 4

Physical Page ID

AB

BC

DE

EF

JK

KL

VW

WZ

1 2 3 4

Physical Page ID

AB

BC

DE

EF

JK

KL

VW

WZ

21041 2 3 4

Physical Page ID

AB

BC

DE

EF

JK

KL

VW

WZ

21041 2 3 4

Physical Page ID

AB

BC

DE

EF

JK

KL

VW

WZ

21041 2 3 4

Physical Page ID

AB

BC

DE

EF

JK

KL

VW

WZ

21041 2 3 4

Physical Page ID

AB

BC

DE

EF

JK

KL

VW

WZ

21041 2 3 4

AB

BC

DE

EF

JK

KL

VW

WZ

2104

Physical Page ID

62
© SQLskills, All rights reserved.

https://www.SQLskills.com

Inside REORGANIZE: Phase Two

1 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

1 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4

AB

BC

DE

EF

JK

KL

VW

WZ

Physical Page ID



32

63
© SQLskills, All rights reserved.

https://www.SQLskills.com

Key Takeaways

 As you can see, fragmentation is very expensive when it happens
 Many people say not to bother about fragmentation

 They’re WRONG!
 Lots of wasted storage space and extra I/Os
 Lots of wasted buffer pool memory
 Lots of extra log to back up, ship, mirror, scan…
 Performance hit of the page splits happening

 Still a problem even when using SSDs
 SSDs don’t stop fragmentation from happening

 Set appropriate fill factors for indexes that get heavily fragmented
 Start with FILLFACTOR = 70 and tweak as needed

 Consider changing index keys (carefully)

© SQLskills, All rights reserved.
http://www.SQLskills.com 64

© SQLskills, All rights reserved.
http://www.SQLskills.com

Resources

 My blog category on index fragmentation
 https://sqlskills.com/p/076

 Pluralsight course
 https://sqlskills.com/p/074

 Free index maintenance (and more!) tool
 http://ola.hallengren.com/

 WP: Microsoft SQL Server 2000 Index Defragmentation Best Practices
 https://sqlskills.com/p/073
 Based on SQL Server 2000, so discusses DBREINDEX vs. INDEXDEFRAG

 WP: Online Indexing Operations in SQL Server 2005
 https://sqlskills.com/p/075



33

65
© SQLskills, All rights reserved.

https://www.SQLskills.com

Review

 Data access methods
 What is index fragmentation?
 How does index fragmentation happen?
 Detecting index fragmentation
 Avoiding index fragmentation
 Removing index fragmentation

Questions!


