SQLskills Immersion Event
IEPTO1: Performance Tuning and Optimization

Module 1: Database Structures
Paul S. Randal
Paul@SQLskills.com

Lskills

immerse yourself in sql server

SQ



Why Cover Internals?

= |nternals aren’t just to geek-out on (although that’s fun to do too! ©)
= Understanding how data is stored, accessed, and optimized at all
levels is key when architecting a system so that it will perform well
and be more easily maintained
o Explains why some decisions are good or bad...
o Helps to troubleshoot what's actually happening...
o Gives a clearer understanding in how to design appropriately for SQL Server

* These are the building blocks for understanding the class

© SQLskills, All rights reserved.
https://www.SQLskills.com




Overview

= Records
= Pages
= Extents

= Allocation bitmaps
= |AM chains and allocation units

= Note:

o In-memory OLTP tables have opaque and entirely different set of structures
o Good primer at https://sqlskills.com/p/001

o Columnstore indexes have opaque and entirely different set of structures
o Good primer at https://sqlskills.com/p/002

© SQLskills, All rights reserved.
https://www.SQLskills.com



https://sqlskills.com/p/001
https://sqlskills.com/p/002

Server Architecture

Parser and Algebrizer

Query Optimizer
Plan Cache

Query Execution

Access Methods
Pages/Records/Heaps/Indexes/LOB/Bulk Load/Versioning/Allocation/Sort

Transaction Services
Transactions/Files/FGs/DBs/Logging/Recovery/Backup/Restore/DBM/AGs

SQALOS API
Lock Buffer /o Hosting
Manager Pool API

sg S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

SQLOS API
eqepel9nN

Thread
Scheduling

Memory
Manager

https://www.SQLskills.com



Database Components

. i = Databases consist of...
+ §-2020 o o Filegroups consist of...
3 = . ~ o Files consist of ...
]2 File2 -
S T e o Extents consist of...
- o Pages consist of...
201 9i File3 o Records which hold data
> 0 —
< %— o) 4 sl 12 16| 20 24| 28
O‘ 82018 Fil64' 7 7 7 7 7 7 7 7
g S 1| 5] of 13 17) 21 25) 29
it 201 7i File5=<< A
2| o 10]| 14 18] 22 26) 30|
201 Gi Fileo
3 7 11| 15 19| 23 27( 31
\ 7 7 7 7 7 7 7 7
i Extent Extent Extent Extent

© SQLskills, All rights reserved.
https://www.SQLskills.com




Record Structure (Non-Compressed)

Variable Length Column Column order NOT
Offset Array . usually relevant
(2 byte count + 2 byte pointer per column) during table
Null Bitmap Offset (2 bytes) e TR T,

|

T T

Tag Bytes (2) Null Bitmap
(2 byte count + 1 bit
per column in the record)

Fixed Length Columns Variable Length Columns

S ol. kill

g S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com



notes for
prior slide

Record Structure Details

* One bit in the null bitmap for each column in the record
o Performance optimization

o Added columns without default values are not added to records until the
record is next updated

o Same goes for columns with default values from SQL 2012 onwards

= Null bitmap always exists in data records
o Except when table ONLY has SPARSE columns

= Null bitmap always exists in nonclustered indexes from SQL 2012

» Variable length column offset array stores offsets of ends of columns
o To allow easy calculation of the column size without storing it, saves 2 bytes
o No need to store row length, saves 2 bytes

= Cluster keys will become first columns in data record structure
o Inaheap, columns are ordered based on column list in CREATE TABLE

© SQLskills, All rights reserved.
https://www.SQLskills.com




Record Types (1)

= Data records

o Occur in heaps (tables without clustered indexes) and at the ‘leaf-level’ of
clustered indexes

o Clustered indexes are stored as B-trees, with the lowest level being data records
in data pages (technically B+ trees that are NOT balanced in real-time)

o Non-unique clustered indexes will contain a hidden ‘uniquifier’ column

o Data records store all the columns of the table row
o Note: ‘row’ == ‘record’ == ‘slot’

—

— Non-leaf or Upper or B-tree

R Leaf

© SQLskills, All rights reserved.
https://www.SQLskills.com




Record Types (2)

= Forwarding/forwarded records
o Only occur in heaps

o If a datarecord is updated to be larger and there is no space on the page, it
is moved to a new page, and the old location has a pointer to the new
location (and the new record has back-link to the old)

o The record in the new location is the ‘forwarded’ record, and the pointer to it
in the old location is the ‘forwarding’ record

o This avoids nonclustered indexes having to be updated, but can lead to
reduced lookup performance

Forwarding
UPDATE Pointer
/ /
Forwarding Forwarded New
Record Record Data Page

» kill

SQLS I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com



Record Types (3)

= Indexrecords
o Index records come in two types: leaf and non-leaf

= Leaf-level index records
o Occur in nonclustered indexes only, at the leaf-level

o Store all nonclustered index key columns, plus:

o A link to the matching row in the table (heap or clustered index)
o Any INCLUDEd columns

* Non-leaf-level index records
o Occurin all index types in the levels above the leaf level

o Contain information to assist the Storage Engine in navigating to the correct
point at the leaf level

= Much more on these with Kimberly

© SQLskills, All rights reserved.
https://www.SQLskills.com




Record Types 4)

= Text records
o Used to store ‘off-row’ LOB (Large Object) and all row-overflow data
= ‘Off-row’ means the data/index record stores a pointer to the root of a
loose tree structure that holds the LOB data in text records
o Pointeris 16 or 24 bytes, possibly up to 72 bytes in increments of 12 bytes
o Texttreeis nota b-tree like an index

Data Page Text Page

© SQLskills, All rights reserved.
https://www.SQLskills.com



LOB Data Storage Settings

Regular and legacy types differ for default on/off-row storage
o Legacy types (n/text, image) off-row by default

o Regular types (n/varchar(max), varbinary(max), XML) on-row by default as
long as there is space, and up to 8,000 bytes only

For legacy LOB data types:
o Use the ‘text in row’ table option (defaults to OFF)
o Beware! Turning the option off is an immediate size-of-data operation

For regular LOB data types:

o Use the ‘large value types out of row’ option (defaults to OFF)
o sp_tableoption N'MyTable', 'large value types out of row', 'ON'
o sp_tableoption N'MyTable', 'large value types out of row', 'OFF’

o Existing values are migrated the next time the column is changed

Should LOB data be stored in-row or off-row? It depends!

© SQLskills, All rights reserved.
https://www.SQLskills.com



Record Types (5)

=  Versioned records (data, index, text)

o Used by features that use the versioning system
o E.g.online index operations, snapshot isolation, DML triggers

o E.g.allowing AG readable secondaries - see https://sqlskills.com/p/003
o Latest version of record on a page has 14-byte tag on the end
o Tag contains a timestamp and a pointer into the version store in tempdb

o Record expansion can cause forwarded records, or index fragmentation from

page splits Pre-Update Version of Record

-)

UPDATE

\ Version
Tag Store

sg S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com


https://sqlskills.com/p/003

Record Types (6)

= Ghost records (data, index, text)
o Deleting a record just marks it as ‘ghosted’ (i.e. logically deleted)

o Ghosting occurs in indexes (and in heaps when versioning is enabled)
o Ghosting removes need for key-range locks to protect deleted record

o Ghost record removal occurs after transaction commit
o Performed by ‘ghost cleanup’ background task

o Records are not physically overwritten, just the space they occupied on a page is
no longer marked as being used, and becomes free space

= Possible for ghost cleanup to never catch-up...
o Could be blocked by long-running query on AG secondary
o Ghost cleanup takes page locks, can cause blocking (2012+ is aggressive)
o Ghost cleanup can be disabled using TF 661, watched using TF 662

o Ghost cleanup can be forced using:
o Force anindex scan, index rebuild/reorganize, DBCC FORCEGHOSTCLEANUP
o sp_clean_db_file_free_space and sp_clean_db_free_space

© SQLskills, All rights reserved.
https://www.SQLskills.com




Page Structure

= 8,096 bytes available for
records

96
Bytes |

» Single record size limit is
8,060 for in-row portion
= Slot array
o Stores offsets to rows
o 2 bytes per row

o Offsets are stored sorted
in the order defined by
the index keys. No special
order for a heap.

6,096
Bytes

= NOTE: rows do not have
to be stored on the page
in sorted order, only the
offsets

O
sgoke“se“!giﬂlqlms ©! w‘ Lskills, All rights reserved
o https:/w



Page Types (1)

= Data pages
o Store data records
o Inaheap, or leaf-level of a clustered index
" |ndex pages
o Store index records
o At the leaf-level of nonclustered indexes, and non-leaf levels of all index
types
= Text pages
o Store text records

o Actually two types, to support the loose tree structure
o Texttree pages
o Used when values are larger than 8KB

o Text mix pages
o Used to store multiple values when they are less than 8KB (i.e. shared)

© SQLskills, All rights reserved.
https://www.SQLskills.com




Page Types (2)

= Boot page
o One per database, page (1:9) [page ID = (file:page-in-file)]
o Stores base metadata about the database as a whole
o Partially mirrored in log file header pages
o Contains pointer to starting point for crash recovery
o More on this in logging module

o Contains information about most recent backups

o Corruption = restore of at least file ID 1, or possible hex editor c&p from
older restored copy of the same database

o Dump using DBCC PAGE or DBCC DBINFO

© SQLskills, All rights reserved.
https://www.SQLskills.com



Page Types (3)

* File header pages
o One per data and log file, always first page (i.e. page 0)

o Log file header page partially mirrors the boot page
o Which is what allows a tail-log backup if data files are damaged/destroyed

o Stores metadata about that file

o Corruption =restore of at least that file , or possible hex editor c&p from
older restored copy of the same database

o More tricky if log file header or file ID=1 header
o Dump using DBCC PAGE or DBCC FILEHEADER
= Allocation bitmaps
o PFS, GAM, SGAM, IAM, DIFF_MAP, ML_MAP
o More on these later

© SQLskills, All rights reserved.
https://www.SQLskills.com




Examining pages and records



Using DBCC PAGE and DBCCIND

= DBCCIND dumps a list of pages

o dbccind ({'dbname' | dbid }, { 'objname’ | objid }, { nonclustered indid | 1|0 |
-1|-2}1[, partition_number] )

= DBCCPAGE dumps an individual page
o dbcc page ({'dbname' | dbid}, filenum, pagenum [, printopt={0|1/2|3} ])
o Requires TF 3604 to get results
o Use WITH TABLERESULTS to get tabular output

* Also new undocumented DMV from SQL Server 2012+
o sys.dm_db_database_page_allocations (equivalent of DBCC IND)

* And new documented DMV from SQL Server 2019+
o sys.dm_db_page_info (equivalent of page header from DBCC PAGE)

o k.ll

SQLS I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com



Extents

» Extents exist to make the allocation system more efficient

= Extentis group of 8 contiguous pages, starting at page 0 in data file
o Tracked in allocation bitmaps (IAM, GAM, SGAM pages)

= Mixed extents vs. dedicated extents
o Mixed: pages are shared with up to 8 objects/indexes
o Dedicated: pages are reserved for exclusive use of 1 object/index

= Default behavior before 2016 (unless disabled with TF 1118)

o First 8 pages allocated to a table/index are one-page-at-a-time from
anywhere in the filegroup (i.e. mixed extents)

o Once 8 pages have been allocated, then switch to dedicated extents
o When dedicated extent is allocate, only first page is actually allocated and used

= Mixed extents off by default in SQL Server 2016+
o ALTER DATABASE ... SET MIXED_PAGE_ALLOCATION {ON | OFF}

© SQLskills, All rights reserved.
https://www.SQLskills.com



PFS Pages and Intervals

= PFS =Page Free Space

= A PFS page tracks (among other things):
o Page allocation state

o Free space for heap data and text pages only
o No point for indexes, as insertion point is dictated by index key

* PFS page tracks 64MB of a data file (called a ‘PFS interval’)
o One byte in the PFS page per data file page, in the first extent
o 64MB = 8,088 database pages (8,088 bytes used in the PFS page)

» Each datafile is conceptually split into PFS intervals, starting with
page zero in the file

9, S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com



PFS Bits

= Each byte contains the following info:

o bits 0-2: how much free space is on the page
o 0x00: empty
o 0x01:1 to 50% full
o 0x02:51 to 80% full
o 0x03:81 to 95% full
o 0x04:96 to 100% full

o bit 3 (0x08): is there one or more ghost records on the page?
o bit4 (0x10
o bit 5 (0x20
o bit 6 (0x40
o Bit7 (0x80
= For example, an allocation IAM page will have a PFS value of 0x70
(IAM + mixed + allocated)
o Even on 2016+, where mixed extents are off by default - still used for IAMs

. is the page an |IAM page?
. is the page a mixed-page?
. is the page allocated?

N N’ e’ N

: does the page have a row from an aborted transaction (2019+)

© SQLskills, All rights reserved.
https://www.SQLskills.com




Allocation Bitmaps

= All other allocation bitmaps have 1 bit per extent over 4GB interval
o Called a GAM interval, easier just to think of it as a 4GB interval
o Equivalent to 511,232 pages in a data file; 63,904 extents; ~3.9GB
* GAM - Global Allocation Map
o Page 2, then every 511,232 pages
= SGAM - Shared Global Allocation Map
o Page 3, then every 511,232 pages
= DIFF Map - Differential Bitmap
o Page5, then every 511,232 pages
= ML Map - Minimally Logged Bitmap
o Page 6, then every 511,232 pages
= JAM page - Index Allocation Map
o Allocated as needed

© SQLskills, All rights reserved.
https://www.SQLskills.com



GAM and PFS Intervals

E.g. 10GB File
~4GB ~4GbB ~2GHB
GAM GAM GAM
Interval 1 Interval 2 Interval 3
E.g. 320MB file

64MB | 64MB | 64MB | 64MB | 64MB

& N & ~
~ K ~ 7

PFS PFS
Interval 1 Interval 5

SQLskills
goimmerseyoursel!nsqlserver SQL k” A” ght i ved.
o 54 skills.co



GAM Pages

* PFS pages track the allocation state of pages
= GAM pages track the allocation state of extents

» GAM = Global Allocation Map
o Isan extent allocated or not (doesn’t matter what to)
o If the bitis one, it's available for allocation (i.e. it is currently unused)
= GAM page searches are only done when allocations have reached the
end of the file and there is free space

o Before that, the next extent to allocate is found from a pointer in the FCB
(File Control Block) instead of searching through GAM pages

o l.e., what's the current highest-allocated extent in the file?

© SQLskills, All rights reserved.
https://www.SQLskills.com




SGAM pages

= SGAM = Shared GAM
o “Shared” is what Books Online uses — pronounce it as “es-gam”

» Used to help finding a mixed extent to allocate from

= Exactly the same format as the GAM page but the bitmap semantics
are slightly different
= Bitmap bitis one

o The extent is a mixed extent and *may have* at least one unallocated page
available for use (optimistic algorithm)

= Bitmap bitis zero

o The extent is either dedicated or is a mixed extent with no unallocated
pages (essentially the same situation given that the SGAM is used to find
mixed extents with unallocated pages)

© SQLskills, All rights reserved.
https://www.SQLskills.com



DIFF and ML Map Pages

DIFF MAP = Differential Map
o Also called the DCM or Differential Change Map
o All extents that have changed in any way since last full backup

o Any operation that changes an extent marks it as changed in the differential
bitmap for that GAM interval

o Differential backups scan these to know what to back up
o Only reset by a full backup

ML Map = Minimally-Logged Map
o Also called the BCM or Bulk Changed Map

o Any minimally-logged operation in the BULK_LOGGED recovery model that
changes an extent marks it as changed in the minimally-logged bitmap for
the GAM interval

o The next log backup scans these to know which extents to include, and then
resets the bitmaps

Both have the same format as GAM pages

o k.ll

SQLS I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com



Examining allocation bitmaps



IAM Pages

= |AM =Index Allocation Map

* Tracks all extent allocations for a table/index/partition in a GAM
interval in a data file

»= Uses the same bitmap format as GAM pages but has different headers

= |f the bitmap bit is one, the extent is allocated to whatever grouping
of allocations the IAM page belongs to

= |AM page header contains
o Which GAM interval does the IAM page track extents for?
o Because IAM pages do not have to come from the file they map
o The sequence number and linkages in the IAM chain
o More on this in a few slides
o The single-page slot array

o U nless mixed extents disabled, first 8 allocations to any object/index are mixed
pages and are tracked in this array in the first IAM page for the object/index

© SQLskills, All rights reserved.
https://www.SQLskills.com




Combining Allocation Bitmaps

* The interplay of bits in the various bitmaps follow rules (remembering
that IAM bitmaps only track dedicated extents):

0 0

0 Mixed extent with all pages allocated

Dedicated extent (must be allocated to only
a single IAM page)

Mixed extent with >= 1 unallocated page

Invalid state

Invalid state

Invalid state

0 1 0
0 1 1
1 0 0 Unallocated extent
1 0 1
1 1 0
1 1 1

Invalid state

= DBCC CHECKALLOC validates these relationships

© SQLskills, All rights reserved.
https://www.SQLskills.com



Allocating a Page...

Allocating the first page in a table is complex...
Find an extent to allocate from
o Allocate new extent ( or from mixed extent if mixed page)

Allocate the data page

o Mark it allocated in the PFS (+ mixed if mixed extent)

o (If mixed, mark the extent as available in the SGAM)
Allocate the IAM page

o Mark it allocated + mixed + IAM in the PFS

o Mark the extent as available in the SGAM
Track the data page ID or extent ID in the IAM page
Track the IAM page ID in the table’s metadata

Track the data page ID in the table’s metadata

© SQLskills, All rights reserved.
https://www.SQLskills.com



IAM Chains

= Each IAM page maps a 4GB GAM interval of a file

» |f the allocations for a particular table/index/partition are from
multiple GAM intervals (in one or more files), multiple IAM pages are
needed to track them

= |AM pages are linked together in an IAM chain
= |AM chains are unordered, except by the time order in which an IAM

page was added to the chain

o But there is a doubly-linked list, with a sequence number, that DBCC
CHECKDB validates and some operations make use of

= |n SQL Server 2000 there was one IAM chain per index, but from SQL
Server 2005 onwards it's way more complicated...

o k.ll

SQLS I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com



IAM Chains in SQL 2000

SQL 2000
Tae y &
Index 1 —
Index 2
Index 250

Index 255 —— Pl m.

Total possible IAM chains = 251

O
SQALskills
(o]

© SQLskills, All rights reserved.
https://www.SQLskills.com



Allocation Changes in SQL 2005 Onwards

Allocation metadata rewritten for SQL Server 2005
o No further changes since then

Needed to support 3 new features:

o Row-overflow (rows larger than 8,060 bytes)
o One or more variable-length columns pushed off-row

o INCLUDEd columns
o Ability to INCLUDE non-key columns in a nonclustered index
o Partitioning

o Ability to horizontally partition a table or index

Change from per-table/index IAM chain to multiple IAM chains per-
table/index

Name changed to allocation unit although nothing else about IAM
pages and IAM chains changed

Index Allocation Map became a bit of a misnomer

© SQLskills, All rights reserved.
https://www.SQLskills.com



Allocation Unit Names

= Three types of allocation unit:

o IN_ROW_DATA allocation unit
o Data and index records

o LOB_DATA allocation unit
o Textrecords for actual LOB columns

o ROW_OVERFLOW_DATA allocation unit
o Text records for variable-length columns stored off-row
* The internal names you might see in some tools are, respectively:
o HoBt - Heap-or-B-tree (pronounced ‘hobbit’ - yes, Lord of The Rings)
o LOB - Large Object
o SLOB - Small-LOB

© SQLskills, All rights reserved.
https://www.SQLskills.com



Allocation Units in SQL Server 2005

SQL 2005

Object

Index
Index

Index 250

O
SQALskills
(o]

© SQLskills, All rights reserved.
https://www.SQLskills.com



And with Partitioning...

SQL 2005

Object

Index 1
Partition 1

Partition 1,000
Index 2

Index 250

Total possible IAM chains = 750,000 !
(plus XML indexes, indexed views)

9 S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com



And from SQL Server 2008...

SQL 2008

Object
Index 1
Partition 1

Partition 1,000

Index 2
Index 1,000

Total possible IAM chains = 3 million !l!
(plus XML indexes, indexed views)

SQLskills
gommerseyoursel!nsqlserver SQL k” A” ght ; ved.
o 54 skills.co




And from SQL Server 2008 SP2...

SQL 2006 SP2+

Object

Index 1
Partition 1

Partition 15,000

Index 2 T
Index 1,000

Total possible IAM chains = 45 million !!!

(plus XML indexes, indexed views)

SQLskills
gommerseyoursel!nsqlserver SQL k” A” ght ; ved.
o 54 skills.co




Table Metadata

= Used to be sysindexes, sysobjects, syscolumns in SQL Server 7.0/2000
= From SQL Server 2005 onwards these are catalog views

= Real system tables are now:
o sys.sysallocunits
o Sys.sysrowsets
o Sys.sysrscols
o sys.sysschobjs
o sys.syscolpars
o sys.sysidxstats
o And others...

= Hidden unless you connect using the Dedicated Admin Connection

© SQLskills, All rights reserved.
https://www.SQLskills.com



Examining IAM chains and table metadata



Database Physical Version Number

= All databases have a physical version number

= Physical version number is increased during upgrade
o And sometimes by SP features...
o E.g.2005=611/612,2014 =782,2017 =869, 2019 =904

= All SQL Server instances have a maximum physical version number
they can understand

o Newer versions introduce new database structures, log records, etc.
= Database compatibility mode/level is irrelevant!

o Only controls behavior of old query syntax
= SQL Server is NOT up-level compatible

o You cannot restore or attach a database with a higher physical version to a
SQL Server that will not understand it

© SQLskills, All rights reserved.
https://www.SQLskills.com



Resources

= |nside the Storage Engine blog post category

o https://sqlskills.com/p/004
o Anatomy of a record

o Anatomy of a page

o Anatomy of an extent

o GAM, SGAM, PFS, and Other Allocation Maps
o IAM pages, IAM chains, and allocation units
o Ghost cleanup in depth

o Boot pages, and boot page corruption

o File header pages, and file header corruption

o And much more...

eeeeeeeeeeeeeeeeeeeeee

44


http://www.sqlskills.com/
https://sqlskills.com/p/004

Review

= Records
= Pages
= Extents

= Allocation bitmaps
= |AM chains and allocation units

© SQLskills, All rights reserved.
https://www.SQLskills.com




Questions!

O
SQLSKIlS
o



