
M3: see next slide 



M3 Explaining how a physical I/O works 
 
Thread looks in the hash lists for the BUF structure for the page it wants. 
It doesn’t find it. 
It creates the BUF structure and latches it EX (this prevents any other threads who 
also want that page from trying to read it from disk). 
It starts the async physical read. 
It puts itself on the I/O waiter list for the scheduler. 
It comes off the processor and is now suspended. 
 
Some other thread on that scheduler, when it’s about to get suspended, will check to 
see whether any of the I/Os for threads on that scheduler have completed. If so, 
whatever thread is waiting for the completed I/O is moved to the runnable queue. 
 
Remember: threads schedule themselves cooperatively. 



M3: see next slide 



M3 Explaining how the lock pending queue works. 
At time: 
X: Thread 61 holds the lock in S mode 
X+1: Thread 62 tries to acquire the lock in IX and can’t. It put itself on the pending 
queue in the lock value block, which is the waiter list for this resource. It then 
suspends itself, and moves off the CPU. 
X+2: Thread 61 releases the lock. It checks the pending queue for locks that can now 
be granted ownership of the lock (taking into account any other threads still holding 
the lock). In this case, thread 62 is granted the lock in IX mode. Thread 61 then 
moves thread 62 to the runnable queue of the scheduler where thread 62 was 
running. 
 



Deadlock scenario: Spid 62 X locks the first page. Spid 61 X locks the second page. (GL = 
Granted List of locks for that resource.) Spid 61 then tries to X lock the first page. Spid 
62 then tries to S lock the second page. That’s a deadlock. The deadlock monitor 
notices and picks a victim, based on who’s done the least amount of work. Let’s say it’s 
62. Thread 62 (waiting for the S lock) is signaled (moves to the runnable queue) and the 
deadlock monitor has set a bit in Thread 62’s memory that indicates it’s been chosen as 
a deadlock victim. Thread 62 then initiates rolling back the transaction that it’s part of. 



M3S38 Explaining about superlatches. This is when 
there’s only one latch and it’s owned by one 
scheduler (big boxes are scheduler)… 



M3S38 Explaining about 
superlatches. This is 
when there’s one latch 
per scheduler, in SH 
mode. Multiple EX 
requests cause the latch 
to collapse down again 
to the original scheduler. 



M3S43 Explaining how spinlocks work. 
Code does a test-and-set-if-clear on the 
memory that implements the spinlock. If it 
can’t get it, it spins (tries again) up to 
(generally) 1000 times and then backs off. 



M3S73 The link to the NVDIMM blog post is 
https://sqlskills.com/p/038 

https://sqlskills.com/p/038
https://sqlskills.com/p/038


M3S80s Keeping 
MAXDOP set to size 
of a NUMA node 
helps to avoid 
foreign memory 
accesses, which are 
expensive. Check in 
Buffer Node 
perfmon object. Big 
boxes are NUMA 
nodes. Small boxes 
are buffer pool 
partitions. 


