
1

SQLskills Immersion Event
IEPTO2: Performance Tuning and Optimization

Module 6: Analyzing Query Performance
Erin Stellato

Erin@SQLskills.com

2
© SQLskills, All rights reserved.

http://www.SQLskills.com

Before You Analyze and Tune: Identify Change

 Changes in query performance can result from a variety of factors,
such as:
 Changes in data
 Code and schema changes
 SQL Server version/edition changes
 Hardware changes (e.g., different processors)

 Knowing how to find changes in query performance easily and quickly
is essential – whether they are planned or not

 Historically, capturing this information has been a manual effort

2

3
© SQLskills, All rights reserved.

http://www.SQLskills.com

Options for Identifying Change

 Testing for planned changes:
 Established baselines from manual capture or third-party utilities
 Distributed Replay Utility
 Database Experimentation Assistant
 Query Store

 Finding unplanned changes:
 Established baselines from manual capture or third-party utilities
 Using DMVs, logs, etc. in SQL Server on the fly
 Query Store

4
© SQLskills, All rights reserved.

http://www.SQLskills.com

Overview

 Capturing changes in query performance
 Capturing and analyzing plans
 Common operators
 Essential information in a plan

3

5
© SQLskills, All rights reserved.

http://www.SQLskills.com

Sources for Data Related to Query Performance

 SQL Server Management Studio
 DMVs
 Extended Events/Trace
 Query Store
 PerfMon

6
© SQLskills, All rights reserved.

http://www.SQLskills.com

Data of Interest

 Query text
 Query plan
 Compiles/recompiles

 Reason for recompile

 Query execution data
 Individual metrics

 SSMS
 Extended Events and Trace

 Aggregated metrics
 DMVs
 Query Store
 PerfMon

 The source you use will depend on your version of SQL Server and the
problem you’re trying to solve

4

7
© SQLskills, All rights reserved.

http://www.SQLskills.com

SSMS

 Actual and estimated plans
 STATISTICS I/O and STATISTICS TIME
 Client statistics
 Live Query Statistics

 Available in SQL Server 2016, but can work with SQL Server 2014 using later
versions SSMS (17.x)

 Can affect query performance

8
© SQLskills, All rights reserved.

http://www.SQLskills.com

DMVs

 sys.dm_exec_sql_text
 Provided a sql_handle, returns text of the batch

 sys.dm_exec_cached_plans
 One row for each query plan currently in memory

 sys.dm_exec_query_plan
 Provided a plan_handle, it returns the plan in XML format

 sys.dm_exec_text_query_plan
 Output is in text format

 sys.dm_exec_query_stats
 Aggregate performance statistics for cached plans

 sys.dm_exec_procedure_stats
 Aggregate performance statistics for cached stored procedures

 sys.dm_exec_function_stats (added in 2016)
 Aggregate performance statistics for cached functions

5

9
© SQLskills, All rights reserved.

http://www.SQLskills.com

Extended Events

 sql_batch_completed
 Completion of T-SQL batch

 rpc_completed
 Completion of a remote procedure call

 sp_statement_completed
 Completion of T-SQL statement within a stored procedure

 sql_statement_completed
 Completion of T-SQL statement

 query_post_compilation_showplan
 query_pre_execution_showplan
 query_post_execution_showplan
 query_thread_profile

 Includes actual plan information for every operator and thread
 Use with caution

Not
recommended

10
© SQLskills, All rights reserved.

http://www.SQLskills.com

Query Store

 Described as a flight data recorder
 Captures information about query execution

 Query text
 Query plan
 Compilation time
 Last execution time
 Duration, CPU, logical reads, physical reads, writes

 Available in *all* editions of SQL Server
 Recommended to run the latest CU for all supported versions

6

11
© SQLskills, All rights reserved.

http://www.SQLskills.com

Query Store Details

 Enabled at the database level
 Data persisted in internal tables *in* the database which has Query

Store enabled
 Cannot be enabled for master, tempdb, or model

 Default settings for Query Store are taken from the model database
 http://www.sqlskills.com/blogs/erin/sql-server-query-store-default-settings/

 Requires VIEW DATABASE STATE to view Query Store data
 Requires db_owner to force/unforce plans
 Data is not captured on readable secondaries

 It is propagated from the read/write primary to the read-only secondaries

12
© SQLskills, All rights reserved.

http://www.SQLskills.com

Data Captured by Query Store

Query and Plan

 Compile, bind and
optimization
duration

 Compile memory
 Last execution time
 Context settings
 Query text
 Query plan

Runtime Stats

 Execution count
 Duration
 CPU
 Logical reads
 Physical reads
 Writes
 Memory use
 DOP
 Log bytes/used
 Tempdb

Wait Stats

 Wait statistics (per
plan)

SQL Server 2017+ and
Azure SQL Database

7

13
© SQLskills, All rights reserved.

http://www.SQLskills.com

SQL Query

Compilation

Execution

Query Store

Plan Store

Runtime Stats
Store

Wait Stats
Store

Query
Store

internal
tables

in m
em

ory

Async write

Adapted from: https://msdn.microsoft.com/en-us/library/mt631173.aspx

14
© SQLskills, All rights reserved.

http://www.SQLskills.com

Query Store Settings

 There are nine settings related to query store configuration, and they
affect what data gets collected and how it is stored

 Improper configuration can cause data to be removed from Query
Store before expected, or Query Store can stop collecting data
entirely

8

15
© SQLskills, All rights reserved.

http://www.SQLskills.com

Query Store Settings

 OPERATION_MODE = [READ_WRITE | READ_ONLY]
 Why it matters: If you’re expecting READ_WRITE and QS is READ_ONLY, you

need to understand why.

 QUERY_CAPTURE_MODE = [ALL | AUTO | CUSTOM | NONE]
 Why it matters: Can affect “overhead” from QS, depending on your

workload. While those “insignificant queries” may not be worth collecting, if
you’re looking for a specific query and can’t find it, you need to understand
why

 MAX_PLANS_PER_QUERY = #

16
© SQLskills, All rights reserved.

http://www.SQLskills.com

Query Store Settings

 MAX_STORAGE_SIZE_MB = #
 Why it matters: The default is 100MB or 1GB...what this needs to be

depends on your workload and how much information you want to keep
 “Ideal” size is 10GB or less (this is not documented)

 CLEANUP_POLICY = (STALE_QUERY_THRESHOLD_DAYS = #)
 Why it matters: The default is 30, you may want to keep more data

 SIZE_BASED_CLEANUP_MODE = [AUTO | OFF]
 Why it matters: If this is off and the space allocated to Query Store is

completely consumed, it will switch to READ_ONLY

9

17
© SQLskills, All rights reserved.

http://www.SQLskills.com

Query Store Settings

 DATA_FLUSH_INTERVAL_SECONDS = #
 Why it matters: Affects how much QS data are you willing to lose

 INTERVAL_LENGTH_MINUTES = #
 Why it matters: This will affect the space consumed by Query Store and the

time windows across which you can analyze data

 WAIT_STATS_CAPTURE_MODE [ON | OFF]
 Why it matters: Enabled by default (and enabled when upgrade to SQL

2017)
 SQL Server 2017+ and Azure SQL Database

18
© SQLskills, All rights reserved.

http://www.SQLskills.com

Query Store CUSTOM Capture Mode

 STALE_CAPTURE_POLICY_THRESHOLD
 Why it matters: Sets the window of time for query evaluation

 EXECUTION_COUNT
 Why it matters: If a query executes < N times, unless compile or execution

CPU time exceed set values, it won’t be captured

 TOTAL_COMPILE_CPU_TIME_MS
 Why it matters: Estimation based on existing data may be difficult

 TOTAL_EXECUTION_CPU_TIME_MS
 Why it matters: Existing data should help with estimation

10

19
© SQLskills, All rights reserved.

http://www.SQLskills.com

Query Store Trace Flags

 By default, SQL Server will wait until the Query Store that’s in-memory
is written to disk before fully shutting down
 This could delay a failover

 TF 7745 bypasses writing Query Store to disk at shutdown
 Query Store data may be lost, the amount is dependent on the value for

DATA_FLUSH_INTERVAL_SECONDS

 Current configuration prevents queries from executing until all Query
Store data has been loaded into memory
 May be an issue for larger data sets
 Check for QDS_LOADDB wait type

 TF 7752 allows queries to execute while Query Store data loads
asynchronously during SQL Server startup
 Data about query execution will not be collected until Query Store data is

loaded into memory
 No longer needed in SQL Server 2019

Demo

Query Store configuration and use

11

Understanding Runtime Statistics

SELECT [OrderID], [OrderDate], [CustomerPurchaseOrderNumber]
FROM [Sales].[Orders]
WHERE [CustomerID] = @CustID
ORDER BY [OrderDate];

runtime_stats_interval_id plan_id count_executions avg_duration last_duration max_duration min_duration

query_id plan_id query_plan

sys.query_store_query sys.query_store_query_plan

sys.query_store_runtime_stats

Understanding Runtime Statistics

SELECT [OrderID], [OrderDate], [CustomerPurchaseOrderNumber]
FROM [Sales].[Orders]
WHERE [CustomerID] = @CustID
ORDER BY [OrderDate];

runtime_stats_interval_id plan_id count_executions avg_duration last_duration max_duration min_duration

query_id

786

plan_id query_plan

805 <ShowPlanXML xmlns=“http://sc

sys.query_store_query sys.query_store_query_plan

sys.query_store_runtime_stats

12

Understanding Runtime Statistics

SELECT [OrderID], [OrderDate], [CustomerPurchaseOrderNumber]
FROM [Sales].[Orders]
WHERE [CustomerID] = @CustID
ORDER BY [OrderDate];

runtime_stats_interval_id plan_id count_executions avg_duration last_duration max_duration min_duration

2932 805 1 400 400 400 400

query_id

786

plan_id query_plan

805 <ShowPlanXML xmlns=“http://sc

sys.query_store_query sys.query_store_query_plan

sys.query_store_runtime_stats

Understanding Runtime Statistics

SELECT [OrderID], [OrderDate], [CustomerPurchaseOrderNumber]
FROM [Sales].[Orders]
WHERE [CustomerID] = @CustID
ORDER BY [OrderDate];

runtime_stats_interval_id plan_id count_executions avg_duration last_duration max_duration min_duration

2932 805 2 600 800 800 400

query_id

786

plan_id query_plan

805 <ShowPlanXML xmlns=“http://sc

sys.query_store_query sys.query_store_query_plan

sys.query_store_runtime_stats

13

Understanding Runtime Statistics

SELECT [OrderID], [OrderDate], [CustomerPurchaseOrderNumber]
FROM [Sales].[Orders]
WHERE [CustomerID] = @CustID
ORDER BY [OrderDate];

runtime_stats_interval_id plan_id count_executions avg_duration last_duration max_duration min_duration

2932 805 3 566 500 800 400

query_id

786

plan_id query_plan

805 <ShowPlanXML xmlns=“http://sc

sys.query_store_query sys.query_store_query_plan

sys.query_store_runtime_stats

Understanding Runtime Statistics

SELECT [OrderID], [OrderDate], [CustomerPurchaseOrderNumber]
FROM [Sales].[Orders]
WHERE [CustomerID] = @CustID
ORDER BY [OrderDate];

runtime_stats_interval_id plan_id count_executions avg_duration last_duration max_duration min_duration

2932 805 4 500 300 800 300

query_id

786

plan_id query_plan

805 <ShowPlanXML xmlns=“http://sc

sys.query_store_query sys.query_store_query_plan

sys.query_store_runtime_stats

14

Understanding Runtime Statistics

SELECT [OrderID], [OrderDate], [CustomerPurchaseOrderNumber]
FROM [Sales].[Orders]
WHERE [CustomerID] = @CustID
ORDER BY [OrderDate];

runtime_stats_interval_id plan_id count_executions avg_duration last_duration max_duration min_duration

2932 805 894 378 401 800 295

query_id

786

plan_id query_plan

805 <ShowPlanXML xmlns=“http://sc

sys.query_store_query sys.query_store_query_plan

sys.query_store_runtime_stats

Understanding Runtime Statistics

SELECT [OrderID], [OrderDate], [CustomerPurchaseOrderNumber]
FROM [Sales].[Orders]
WHERE [CustomerID] = @CustID
ORDER BY [OrderDate];

runtime_stats_interval_id plan_id count_executions avg_duration last_duration max_duration min_duration

2932 805 894 378 401 800 295

2933 805 1 350 350 350 350

query_id

786

plan_id query_plan

805 <ShowPlanXML xmlns=“http://sc

sys.query_store_query sys.query_store_query_plan

sys.query_store_runtime_stats

15

Understanding Runtime Statistics

SELECT [OrderID], [OrderDate], [CustomerPurchaseOrderNumber]
FROM [Sales].[Orders]
WHERE [CustomerID] = @CustID
ORDER BY [OrderDate];

runtime_stats_interval_id plan_id count_executions avg_duration last_duration max_duration min_duration

2932 805 4 500 300 800 300

2933 805 1 350 350 350 350

runtime_stats_interval_id start_time end_time

2932 2019-05-07 12:00:00.0000000 +00:00 2019-05-07 13:00:00.0000000 +00:00

2933 2019-05-07 13:00:00.0000000 +00:00 2019-05-07 14:00:00.0000000 +00:00

sys.query_store_runtime_stats_interval

sys.query_store_runtime_stats

Demo

Comparing query performance data

16

31
© SQLskills, All rights reserved.

http://www.SQLskills.com

Query Store Overhead

 Designed to have minimal overhead
 High volume, ad-hoc workloads may appear as though they have

performance issues
 This does not mean that these issues weren’t present in your workload

already
 On any version of SQL Server, you run the risk of running into performance

issues because of the way your workload is designed

 These workloads will require more space in Query Store
 It may not be possible to retain a significant amount of data

 Performance optimizations added in SQL Server 2017 and SQL Server
2019 have been back-ported to SQL Server 2016
 https://support.microsoft.com/en-us/help/4340759

 Query Store Performance Overhead: What you need to know
 https://www.sqlskills.com/blogs/erin/query-store-performance-overhead/

32
© SQLskills, All rights reserved.

http://www.SQLskills.com

Monitoring Performance with Query Store Enabled

 CPU (PerfMon)
 Memory

 sys.dm_os_memory_clerks
 Monitor types that include QDS

 query_store_db_diagnostics Event
 Database specific
 In SQL Server 2016+

 query_store_global_mem_obj_size_kb Event
 Instance level
 Exists in SQL Server 2016+

 If OPERATION_MODE frequently changes to READ_ONLY, review size
of Query Store and how much data you’re keeping

17

33
© SQLskills, All rights reserved.

http://www.SQLskills.com

Overview

 Capturing changes in query performance
 Capturing and analyzing plans
 Common operators
 Essential information in a plan

34
© SQLskills, All rights reserved.

http://www.SQLskills.com

Query Plan Analysis

 Every query that is submitted to SQL Server has a query plan
generated

 T-SQL is a declarative language: you tell SQL Server WHAT to do but
not HOW to do it
 There are exceptions such as hints and plan guides
 Features such as columnstore indexes are sensitive to query construction

 We use query plans to find out HOW the results are being retrieved
 From the plan, we can try to optimize query performance

 Query plans help you triage what occurred in the plan, and then
address the areas that would benefit the most from improvement
 This insight gives you the ability to prioritize across statements within a

batch, as well as operations within a specific statement

18

35
© SQLskills, All rights reserved.

http://www.SQLskills.com

Query Optimization Principles

 Think of the optimizer as a framework used for finding a query plan
 The optimizer is given a query tree that has logical operations

 Logical operations describe what will occur, such as a sort or a scan

 The optimizer then uses transformation rules to generate physical
operations from the logical ones

 The physical operators, when assembled, create a query plan

36
© SQLskills, All rights reserved.

http://www.SQLskills.com

Operators

 Operators are building blocks for a query, each one has a specific
functionality
 Some operators access data (scan, seek), others perform operations such as

aggregations or joins
 There is a one-to-many mapping of logical to physical

 For example, an INNER JOIN could be implemented as a Loop, Hash, or Merge join

 Specific operators are not “good” or “bad”
 Some can consume more resources than others or have overhead of which

you should be aware
 Some are more appropriate in given contexts

 SQL Server 2019 has 100+ operators
 Operators may also be referred to as iterators

19

37
© SQLskills, All rights reserved.

http://www.SQLskills.com

Query Optimization and Cost

 Each operation in the query tree is given a cost, and those are totaled
to determine total cost for each possible plan

 Cost-based optimization looks at statistics and the size of the data
that would be retrieved to estimate I/O
 The optimizer always assumes a cold cache
 The optimizer assumes random I/Os will be spread out evenly among pages

in an index or table
 In some cases, an operation is over-costed

 Additional assumptions exist (e.g. every query reads every row into the
result set)

38
© SQLskills, All rights reserved.

http://www.SQLskills.com

Operator Cost (1)

 Cost used to equate to elapsed time in seconds required to run on a
specific Microsoft employee’s machine (from SQL Server 7 era)

20

39
© SQLskills, All rights reserved.

http://www.SQLskills.com

Operator Cost (2)

 “Cost” today in the context of query plans is a unit-less measure
 Cost <> time
 Cost <> CPU

 Cost is used for relative comparison across plan operators and
between plans

 “cost threshold for parallelism” option refers to this very same cost
(default 5)
 The default value of 5 is very low considering today’s CPU architecture

 Estimated costs remain as “estimates” for actual plans

40
© SQLskills, All rights reserved.

http://www.SQLskills.com

Operator Cost (3)

 Operator cost = I/O cost + CPU cost
 I/O cost assumes physical I/O required (i.e. cold cache)

 Cost calculation varies by operator
 Some have I/O and CPU costs, some have just CPU cost

 # of executions increase cost for specific operations

 Sub-tree cost = cost of specific operator + descendants
 Total cost for the plan is found in root operator
 I/O cost assumptions (example):

 Data pages NOT in cache
 Random I/O = 0.003125
 Sequential I/O = 0.000740741

 These aren’t formally documented, but you can start calculating for
yourself and mapping to I/Os via sys.dm_db_partition_stats and SET
STATISTICS IO

21

41
© SQLskills, All rights reserved.

http://www.SQLskills.com

Cost Sensitivity to Row and Page Count

 Estimated costs are sensitive to specific pieces of data
 e.g. the number of anticipated data pages and rows

 Consider the Clustered Index Scan operator
 Estimated I/O cost of a Clustered Index Scan shows sensitivity to anticipated

data page counts, but not row counts.
 Think about the estimated I/O cost impact that high fragmentation may have

(same number of rows across many partially-filled data pages)

 Estimated CPU cost of a Clustered Index Scan sensitivity to row counts, but
not data page counts.
 Regarding row counts, even for narrow rows, consider the estimated CPU cost

impact that high row counts may have.

42
© SQLskills, All rights reserved.

http://www.SQLskills.com

Finding a Query Plan

 The majority of plans are stored in cache
 Exceptions covered in Module 9

 The plan retrieved from cache and Query Store is the query plan (aka
estimated plan)
 sys.dm_exec_query_plan or sys.dm_exec_cached_plans
 sys.query_store_plan
 SET SHOWPLAN_XML
 Graphical Showplan

 The query plan + runtime statistics (aka actual plan) can only be
retrieved when you execute the query
 SET STATISTICS XML
 Graphical Showplan
 Trace or Extended Events…these are not recommended
 sys.dm_exec_query_plan_stats in SQL Server 2019 and Azure SQL DB

22

43
© SQLskills, All rights reserved.

http://www.SQLskills.com

“Estimated” vs. “Actual”

 The plan that’s stored in cache is the one that has been used
 This is the query plan. It does not contain runtime statistics.

 When you retrieve the plan from cache, you only see estimates
(number of rows, number of executions)

 When you capture the “actual” query plan, it’s typically the same as
the plan that exists in cache (though not always!) but it also includes
actual runtime statistics (actual number of rows, actual number of
executions)
 Useful to see if there is disparity between the estimates and actuals

44
© SQLskills, All rights reserved.

http://www.SQLskills.com

Remember Plans in SQL 2000?

23

45
© SQLskills, All rights reserved.

http://www.SQLskills.com

Plans in XML vs. Text

 XML showplan formats may seem more unwieldy and verbose than
their text-based / tabular counterparts, but there are some key
advantages:
 Can be processed via XPath and XQuery
 Easier to add attributes/elements from version to version

 Saving the SHOWPLAN_XML or STATISTICS_XML output to a file with
“.sqlplan” extension can be opened in SSMS in the graphical format
(and XML)

 XML schema describes the structure of an XML document
 http://schemas.microsoft.com/sqlserver/2004/07/showplan/
 Much of what you can find in the graphical plan you can see in XML, so the

primary benefit is in parsing and finding key elements and attributes
programmatically

46
© SQLskills, All rights reserved.

http://www.SQLskills.com

Information in a Query Plan

 The plan tells you how the query was executed… how the optimizer
decided to retrieve the results
 What tables and/or indexes were accessed
 Whether scans or seeks were performed
 What operators (a.k.a. iterators) were used
 The estimated cost of each operation
 How many rows were expected
 More information continues to be added to plans

 Duration
 I/O information
 Wait statistics

24

47
© SQLskills, All rights reserved.

http://www.SQLskills.com

Where Do You Start with a Plan?

48
© SQLskills, All rights reserved.

http://www.SQLskills.com

Where Do You Start With a Plan?

 There is no one “right” answer
 Don’t believe statements that specific operators or behaviors

translate to an absolute problem
 We’ll discuss things to watch for, but see them as areas of investigation

 Some might be red herrings instead of red flags

 The emphasis is on patterns you are more likely to see
 You have to practice reading and understanding plans to determine

where you can improve a query, and this takes time

25

49
© SQLskills, All rights reserved.

http://www.SQLskills.com

Reading Plans

 An operator reads rows from a leaf-level data source OR from child
operators and return rows to the parent

 Control flow starts at the root (left-to-right)
 Data flow starts at the leaf level (right-to-left)

Control flow

Data flow

50
© SQLskills, All rights reserved.

http://www.SQLskills.com

Overview

 Capturing changes in query performance
 Capturing and analyzing plans
 Common operators
 Essential information in a plan

26

51
© SQLskills, All rights reserved.

http://www.SQLskills.com

Table and Index Scans

 Table Scan: indicating a retrieval of ALL rows from a table
 Indicates a heap table
 Is it a red flag?

 Probably for larger tables (I/O)

 Clustered Index Scan: indicating a retrieval of all rows
 Is it a red flag?

 If it’s a large table or you expect a seek operation

 What about nonclustered index scan of leaf level?
 Depends on the size; it may or may not be an issue

52
© SQLskills, All rights reserved.

http://www.SQLskills.com

Index Seeks

 Clustered Index Seek
 Retrieving rows based on a SEEK predicate from clustered index

 Nonclustered Index Seek
 Same, but from a nonclustered index

 There is nothing in the query plan that differentiates between
singleton or range scan operations
 Can use sys.dm_db_index_operational_stats to determine

 range_scan_count
 singleton_lookup_count

27

53
© SQLskills, All rights reserved.

http://www.SQLskills.com

Columnstore Index Operators

 Columnstore Index Scan
 Build Hash: build of a batch hash table for a columnstore index

 Key area to check: Batch vs. Row mode

54
© SQLskills, All rights reserved.

http://www.SQLskills.com

Filter

 Predicates can be evaluated within operators that read data from
table/indexes

 Query Optimizer aims (when possible) to “push” filter down the tree
(leaf level) to reduce rows moved

 If a predicate is high in cost or complexity a separate Filter operator
may be used

 When you see these, take note of where they are happening
 Late in the data flow can translate to higher overhead as the operators pull

data

28

55
© SQLskills, All rights reserved.

http://www.SQLskills.com

Predicates

 Seek Predicate
 Used in actual index seek operation

 Leveraging index keys

 Predicate (Residual Predicate)
 Search condition that isn’t SARGable – so it remains as an extra predicate

 For Merge Join: check Graphical Showplan Properties for “Residual” value
 For Hash Match: check “Probe Residual” value in plan itself (tooltip over operator)

© SQLskills, All rights reserved.
http://www.SQLskills.com 56

© SQLskills, All rights reserved.
http://www.SQLskills.com

Seek Predicate with No Residual

SELECT
[e].[EmployeeID],
[c].[Title],
[c].[FirstName],
[c].[MiddleName],
[c].[LastName],
[c].[Suffix]
FROM [HumamResources].[Employee] [e]
INNER JOIN [Person].[Contact] [c]
ON [c].[ContactID] = [e].[ContactID];

29

© SQLskills, All rights reserved.
http://www.SQLskills.com 57

© SQLskills, All rights reserved.
http://www.SQLskills.com

Seek Predicate and Residual
SELECT
[e].[EmployeeID],
[c].[Title],
[c].[FirstName],
[c].[MiddleName],
[c].[LastName],
[c].[Suffix],
[c].[EmailAddress]
FROM [HumamResources].[Employee] [e]
INNER JOIN [Person].[Contact] [c]
ON [c].[ContactID] = [e].[ContactID]
WHERE [LastName] = 'Ellerbrock';

58
© SQLskills, All rights reserved.

http://www.SQLskills.com

Additional Predicate Diagnostics

 ActualRowsRead attribute was added in SQL Server 2012 SP3 and SQL
Server 2014 SP2 (also in SQL Server 2016+) to provide additional
information about predicate evaluation
 https://support.microsoft.com/en-us/kb/3107397

 Compare against ActualRows, which is the number of rows output
from the operator

30

Demo

Data access operators

60
© SQLskills, All rights reserved.

http://www.SQLskills.com

Join Considerations

 Beware of advice telling you that specific join types (or operators, for
that matter) are “good” or “bad”

 Join hints and/or forcing order = red flag
 Generally, “edge” cases or extreme tuning scenarios warrant their use
 Otherwise, ask questions and find out why this is happening

31

61
© SQLskills, All rights reserved.

http://www.SQLskills.com

Nested Loop

 Uses each row from one input to find rows from a second input that
satisfy the join predicate

 Usually seen with smaller data sets and lookups, where the inner
input is indexed on the join predicate

 Algorithm:
 For one row in the outer (top) table, find matching rows in the inner

(bottom) table and return them
 After no matching rows on the inner table are found, retrieve the next row

from the outer (top) table and repeat until end of outer (top) table rows

62
© SQLskills, All rights reserved.

http://www.SQLskills.com

Nested Loop Join Performance Characteristics

 Look for “smaller” table as outer (top) table
 Bad cardinality estimates can lead to this NOT being the case

 Nested Loops may be associated with inflated random I/Os when the
row estimates end up being incorrectly estimated

 Look for under-estimates for inner table or index scans
 Memory requirements are lower comparatively

32

63
© SQLskills, All rights reserved.

http://www.SQLskills.com

Key Lookup

 A.k.a. Bookmark Lookups
 SQL Server 2000: Bookmark Lookup
 Early versions of 2005: “Clustered Index Seek” + keyword LOOKUP
 2005 SP2+: “Key Lookup” (but XML format still displayed “Clustered Index

Seek”)

 Key Lookup = bookmark lookup on table with clustered index (always
via Nested Loop)
 If you see WITH PREFETCH then QP is using read-ahead

 Is this good or bad?
 For each row in the non-clustered index, an associated clustered index I/O is

required (random I/O)
 Even if all applicable pages are cached, you can STILL have inflated overhead

(compared to a covering index) due to the increased number of random
logical reads

64
© SQLskills, All rights reserved.

http://www.SQLskills.com

RID Lookup

 Simply a bookmark lookup to a heap (using the RID)
 Just like with Key Lookups, you’ll only see this with Nested Loop Joins

 Is it good or bad?
 Same considerations as a Key Lookup
 You also may research good vs. bad because you’re going against a heap

33

65
© SQLskills, All rights reserved.

http://www.SQLskills.com

Merge Join

 Joins two inputs which are sorted on the joining columns and returns
matching rows
 Typically benefits moderate-sized data sets

 Algorithm:
 Retrieve row from the outer input
 Advance through the inner input until no more matches are found
 Retrieve the next row from the outer input and repeat
 Note: worktables are needed to support many-to-many merge joins (outer

input is not distinct)

66
© SQLskills, All rights reserved.

http://www.SQLskills.com

Merge Join Performance Characteristics

 Outer (top) / inner (bottom) requires sort on join key
 Pre-existing sorting (via index) is ideal, but sorts can be automatically

added
 If the sort is injected into the plan by the Query Optimizer, take note

of it
 Query Optimizer injected sorts have a risk of spilling to disk (tempdb)

 Memory requirements are generally lower
 Many-to-many joins have overhead in the form of worktables

 Look for ManyToMany attribute

34

67
© SQLskills, All rights reserved.

http://www.SQLskills.com

Hash Match Join

 Joins two unsorted inputs and outputs the matching rows
 Often seen with large data sets
 Grouping aggregates

 Algorithm:
 Build a hash table (hash buckets) via computed hash key values for each row

of the “build” input (top/outer table)
 For each probe row (bottom/inner table), compute a hash key value and evaluate

for matches in the “build” hash table (buckets)
 Output matches (or output based on logical operation)

68
© SQLskills, All rights reserved.

http://www.SQLskills.com

Hash Match Join Performance Characteristics

 Doesn’t require ordering of inner or outer inputs
 Hash table must be generated FIRST before the probe begins, and this

is a blocking operation
 Typical case is that the smaller table is the “build table”, which ideally

reduces the latency between the build and probe phases
 Red flag if you see otherwise

 Hash build or probe can spill to disk if there is insufficient memory
(higher memory requirements)

35

69
© SQLskills, All rights reserved.

http://www.SQLskills.com

Hash Joins: Performance Variations

 SQL Server can also do “role reversal”
 >= one spill, build/probe roles can be switched

 Not visible to us and should be rare

 Hash Warning events can be found in Extended Events (also in Trace)
and spill notifications are within the actual plan from SQL Server 2012
onwards

 Reasons for spills include cardinality estimate issues (skewed data
distributions, missing or stale statistics), inappropriate join selection
or memory pressure
 Estimates based on both cardinality and average row size

70
© SQLskills, All rights reserved.

http://www.SQLskills.com

Hash Joins: Plan Warnings in SQL Server 2012+

36

71
© SQLskills, All rights reserved.

http://www.SQLskills.com

Batch Mode Adaptive Join

 New operator: Adaptive Join
 Indicates that the optimizer has the choice of a Hash Join or Nested

Loop
 Decision is deferred until after the first input is scanned
 Threshold established by the adaptive join determines at what point a plan

will switch to a nested loop

 Plan is still cached, join type is determined at run-time
 Ideal for workloads with varied inputs/skewed data
 Applies to SELECT statements only
 Batch mode is used because a columnstore index is used, or a table

with a columnstore index is referenced
 Introduced in SQL Server 2017, requires compatibility mode 140 or

higher

Demo

Join operators

37

73
© SQLskills, All rights reserved.

http://www.SQLskills.com

Query Memory

 Some queries require memory to store data while sorting and joining
rows, thus a memory grant is requested
 Lifetime of the grant is equivalent to the lifetime of the query

 Pay attention to heavy memory-consuming operators:
 Hash Match
 Sort

 When available memory is insufficient, queries that require lots of
memory may wait to execute (RESOURCE_SEMAPHORE wait type)

 Under-estimating memory (due to cardinality estimation issues) can
cause spills to tempdb (I/O)

 Over-estimating memory can reduce concurrency!

74
© SQLskills, All rights reserved.

http://www.SQLskills.com

Stop-and-Go Operators

 Stop-and-go operators must read ALL rows from the child operator
before it can pass rows to the parent or perform specific actions

 Examples of stop-and-go operators include:
 Hash Join

 Outer (top) table in “blocking input”, not inner
 Must read and process the entire build phase before the probe phase can start

 Sort
 Eager Spool
 Hash Aggregate

 Examples of operators that can keep streaming one row for every row
that is read:
 Nested Loop
 Merge Join
 Compute Scalar

38

75
© SQLskills, All rights reserved.

http://www.SQLskills.com

Sort

 As named, this operator orders rows received from an input
 Variations include:

 Distinct Sort
 Top N Sort

 Noteworthy: Sort tempdb spills
 Keep an eye on these for the following reasons:

 Sort can occur in tempdb for large data sets and memory constraints (see
Sort Warnings)

 Has resource overhead (CPU / I/O / memory)
 May not be needed if you have supporting indexes or unnecessary ORDER

BY

76
© SQLskills, All rights reserved.

http://www.SQLskills.com

Operator Memory

 Each type of operator requires varying amounts of memory in order to
perform the associated operation

 Some operators require more memory because they cache rows
 More rows = more memory required

 SQL Server performs estimates of the required memory and tries to reserve the
memory grant prior to execution

 This is where cardinality estimation is critical

39

77
© SQLskills, All rights reserved.

http://www.SQLskills.com

Memory Grant Information (1)

 SQL Server 2012 expanded on memory grant information
 Provides estimates vs. actual
 Serial required/desired memory attributes estimated during query

compile time for serial execution
 Unit of measurement = KB

 Other attributes provide estimates that include parallelism
<MemoryGrantInfo
SerialRequiredMemory="6144"
SerialDesiredMemory="6760"
RequiredMemory="51464"
DesiredMemory="52104"
RequestedMemory="52104"
GrantWaitTime="0"
GrantedMemory="52104"
MaxUsedMemory="4680" />

78
© SQLskills, All rights reserved.

http://www.SQLskills.com

Memory Grant Information (2)

 Additional information available in SQL Server 2014 SP2 and SQL
Server 2016 SP1

 Expose maximum memory values for a single query
 MaxCompileMemory
 MaxQueryMemory
 https://support.microsoft.com/en-us/kb/3170112

 If memory grant use is not efficient, e.g. only a fraction of allocated
memory grant is used, the MemoryGrantWarning attribute is added to
the plan
 https://support.microsoft.com/en-us/kb/3172997

40

79
© SQLskills, All rights reserved.

http://www.SQLskills.com

Controlling Memory Grants

 The Resource Semaphore is what grants memory for queries, and
ensures that the total amount of memory granted is within the server
limit

 Query OPTION min_grant_percent and max_grant_percent available
in SQL Server 2012 SP3, SQL Server 2014 SP2, and SQL Server 2016
 min_grant_percent is guaranteed to the query

 overrides the sp_configure option (minimum memory per query (KB)) regardless
of the size

 max_grant_percent is the maximum limit for a query
 https://support.microsoft.com/en-us/kb/3107401

80
© SQLskills, All rights reserved.

http://www.SQLskills.com

Memory Grant Feedback

 To better manage query memory grants, a feedback mechanism was
introduced in SQL Server 2017 for batch mode operators
 Reduces wasted memory from excessive grants
 Reduces spills to disk from underestimates
 Row mode memory grant feedback was added in SQL Server 2019

 The memory required for a query can be recalculated after query
execution, and the grant numbers are updated in the cached plan
 Recalculation occurs when a query wastes > 50% of memory allocated
 A spill to disk will also force a recalculation

 Memory grants respect the limits set by Resource Governor or query
hints

 Feedback loop can be disabled after multiple executions with variable
memory requirements
 Monitor with Extended Events

41

81
© SQLskills, All rights reserved.

http://www.SQLskills.com

Finding Spill Information

 Extended Events and Trace both include events for tracking Sort and
Hash warnings
 Extended Events provides more detailed information, particularly in SQL

Server 2016
 Additional event fields which include DOP, memory, and tempdb IO, were

ported back to SQL Server 2012 SP3 and SQL Server 2014 SP2
 https://support.microsoft.com/en-us/kb/3107172

 Additional information available in SQL Server 2012 SP3, SQL Server
2014 SP2, and SQL Server 2016 related to tempdb spills from a sort or
hash
 https://support.microsoft.com/en-us/kb/3107400

 Spill diagnostics added to module stats DMVs and statement events in
SQL Server 2017
 https://support.microsoft.com/en-us/kb/4041814/

Demo

Operator memory

42

83
© SQLskills, All rights reserved.

http://www.SQLskills.com

Overview

 Capturing changes in query performance
 Capturing and analyzing plans
 Common operators
 Essential information in a plan

84
© SQLskills, All rights reserved.

http://www.SQLskills.com

Parallelism

 Query optimization can generate either a serial or parallel plan
 First determine cost of a serial plan, and if that cost is greater than CTP,

consider parallel plans
 The Query Optimizer ultimately caches one of them, not both
 Parallel plans can then be used as intended, or run in serial with parallelism

operators removed

 The MAXDOP server setting limits:
 The maximum number of threads that can be used per operator
 It does not limit the total number of threads for the plan

43

85
© SQLskills, All rights reserved.

http://www.SQLskills.com

Identifying Parallelism in the Plan

 When parallelism occurs in query execution, you will see exchange
operators in the plan
 Distribute Streams
 Repartition Streams
 Gather Streams

 You will also see the parallelism icon in the graphic for other
operators that can run in parallel or serial modes

 Not all operators are parallel-aware
 Within the XML Showplan you’ll see RelOp:

 Parallel="true"

86
© SQLskills, All rights reserved.

http://www.SQLskills.com

Exchange Operators

 Distribute Streams
 Takes one input thread and produces multiple output data streams

 Repartition Streams
 Takes in multiple threads and then produces multiple streams out

 Gather Streams
 Takes in multiple threads and produces a single stream out

44

87
© SQLskills, All rights reserved.

http://www.SQLskills.com

NonParallelPlanReason

 Introduced in SQL Server 2012
 Identify why a plan didn’t run in parallel
 Not all-encompassing, but a step in the right direction
 Examples:

 MaxDOPSetToOne (hint or max degree of parallelism)
 EstimatedDOPIsOne (processor affinity)

 Post by Simon Sabin that lists reasons for 2012:
 http://sqlblogcasts.com/blogs/simons/archive/2015/04/26/non-parallelizable-

operations-in-sql-server.aspx

88
© SQLskills, All rights reserved.

http://www.SQLskills.com

Parallelism Performance Aspects

 Not inherently bad or good
 Context matters, for example OLTP vs. DW

 Indicates higher cost query, so that should attract attention
 Some objects and operators inhibit parallelism

 UDFs and TVFs (CLR, scalar, multi-statement), built-in functions (like
OBJECT_ID), TOP

 Watch for data skew across threads
 You can check this in XML or Properties window
 Remember to also check for CXPACKET waits on non-zero thread IDs

 Watch for memory pressure
 Increased memory grant requirements for parallel operations

45

89
© SQLskills, All rights reserved.

http://www.SQLskills.com

Operator Execution Statistics (1)

 In SQL Server 2016 SP1, time and wait type information is added to
the plan

 Within the QueryTimeStats attribute you can see CpuTime and
ElapsedTime

 The top 10 wait types are also included within the WaitStats element
 https://support.microsoft.com/en-us/help/3201552

90
© SQLskills, All rights reserved.

http://www.SQLskills.com

Operator Execution Statistics (2)

 In SQL Server 2014 SP2 and SQL Server 2016 per-operator query
execution statistics are available in the XML
 RunTimeCountersPerThread
 Includes CPU time, elapsed time, IO information
 https://support.microsoft.com/en-us/kb/3170113

46

91
© SQLskills, All rights reserved.

http://www.SQLskills.com

Query Parameters

 The plan contains valuable information on compiled vs. runtime value
 ParameterCompiledValue
 ParameterRuntimeValue

 New attribute, ParameterDataType, added in 2016 SP1
 https://support.microsoft.com/en-us/help/3190761/

 Some queries are very sensitive to different parameters
 Test different values using recompile (or a cold cache) to see if

different plans are created for different values

92
© SQLskills, All rights reserved.

http://www.SQLskills.com

Trace Flags Enabled

 The TraceFlags element is available in SQL Server 2014 SP2 which lists
the trace flags enabled (global or session) at the time of query
compilation (IsCompileTime = true) and execution (IsCompileTime =
false)
 https://support.microsoft.com/en-us/kb/3170115

47

93
© SQLskills, All rights reserved.

http://www.SQLskills.com

Partitioning Plan Interpretation

 Graphical vs. XML output could be misinterpreted
 “Actual Partition Count” = PartitionsAccessed element and PartitionCount

attribute
 “Actual Partitions Accessed” = PartitionRange

94
© SQLskills, All rights reserved.

http://www.SQLskills.com

Data Type Conversions

 Explicit = CONVERT or CAST
 Implicit data type conversion, for example joining two table columns

with different data types
 Data type with higher precedence “wins” and is converted

 Can see CONVERT_IMPLICIT in plan
 In operator or in Compute Scalar
 Or you can find in XML Showplan
 You can parse plans from DMVs
 Not always surfaced!

48

95
© SQLskills, All rights reserved.

http://www.SQLskills.com

Summary: the “Watch List”

 High estimated cost within a query
 Scans (Index/Table)
 Lookups
 Unexpected join selection
 “Thick” lines
 Late filtering or residual predicates
 Sort operations (Query Optimizer

added or not)

 Parallelism and thread skew
 Stop-and-go operators
 Missing indexes
 Warnings
 Implicit data-type conversions
 Parameter sensitivity
 Hint or plan guide usage (forcing

specific plan operations)

96
© SQLskills, All rights reserved.

http://www.SQLskills.com

Key Takeaways

 There are multiple sources for query performance data
 It’s important to understand what data exists where, and what should be

used when

 The Query Store feature provides historical query data within SQL
Server

 Where to start when analyzing a plan is a personal preference, and
something that evolves over time…there is no “right way”

 Query tuning doesn’t just consist of reviewing a plan in isolation, take
advantage of multiple sources of information to improve performance

 Understand what behavior to “expect” for operators you see
repeatedly, and take note of behaviors outside the norm (e.g. nested
loops with under-estimates on the inner loop)

 Delve into plan details via the Properties window, and by mining the
XML for information not easily surfaced in the UI

49

97
© SQLskills, All rights reserved.

http://www.SQLskills.com

Additional Resources

 Pluralsight Course
 SQL Server: Introduction to Query Store

 https://bit.ly/2J42aJP

 SQL Server: Analyzing Query Performance for Developers
 https://bit.ly/2HKaoYo

 SQL Server: Query Plan Analysis
 http://bit.ly/ZyExm6

 Whitepapers
 Statistics Used by the Query Optimizer in Microsoft SQL Server 2008

 http://msdn.microsoft.com/en-us/library/dd535534.aspx

 Optimizing Your Query Plans with the SQL Server 2014 Cardinality Estimator
 http://msdn.microsoft.com/en-us/library/dn673537.aspx

 Books
 SQL Server Execution Plans by Grant Fritchey

98
© SQLskills, All rights reserved.

http://www.SQLskills.com

Additional Resources

 Blogs
 Craig Freedman’s SQL Blog (not updated recently but very good!):

 http://blogs.msdn.com/b/craigfr/

 Conor Cunningham Blog(s):
 http://blogs.msdn.com/b/conor_cunningham_msft/
 http://www.sqlskills.com/blogs/conor/

 Paul White’s Blog
 http://sqlblog.com/blogs/paul_white/

 Benjamin Nevarez
 http://www.benjaminnevarez.com/

50

99
© SQLskills, All rights reserved.

http://www.SQLskills.com

Review

 Capturing changes in query performance
 Capturing and analyzing plans
 Common operators
 Essential information in a plan

Questions?

