
1

SQLskills Immersion Event
IEPTO2: Performance Tuning and Optimization

Module 5: SQLOS Scheduling and
CPU Performance Tuning

Jonathan Kehayias
Jonathan@SQLskills.com

2
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Understanding Windows scheduling
 Server hardware and NUMA
 CPU scheduling under SQLOS
 DMV monitoring
 Troubleshooting CPU performance issues
 Using Resource Governor to limit CPU usage

2

3
© SQLskills, All rights reserved.

https://www.SQLskills.com

Traditional SMP Systems

 Processors share front-side bus or cross bar
 Memory access uniform across all CPU cores

CPU CPU CPU CPU

Memory

Controller

I/O

Controller

4
© SQLskills, All rights reserved.

https://www.SQLskills.com

SQLOS Under SMP

SQLOS

SOS_MemoryNode

SOS_Scheduler

SOS_Worker

SOS_Task

SOS_Scheduler

SOS_Worker

SOS_Task

SOS_Scheduler

SOS_Worker

SOS_Task

SOS_Scheduler

SOS_Worker

SOS_Task

SOS_CPUNode

3

5
© SQLskills, All rights reserved.

https://www.SQLskills.com

The Case for Non-Uniform Memory Access (NUMA)

 Modern CPUs operate faster than the memory to which they are
attached

 Only one processor can access memory at a time for coherency
 As the number of processor cores increases, the cross bar/front-side

bus becomes the system bottleneck starving multiple processors for
memory access

6
© SQLskills, All rights reserved.

https://www.SQLskills.com

Traditional NUMA

 Traditionally NUMA configurations required special hardware (e.g.
IBM xSeries Servers)

 Nodes were physically segregated servers connected by special
interconnect
 Two SMP servers running together as a single system
 Required consideration for I/O and controller placement

CPU CPU CPU CPU

Memory

Controller

I/O

Controller

CPU CPU CPU CPU

Memory

Controller

I/O

Controller Interconnect

4

7
© SQLskills, All rights reserved.

https://www.SQLskills.com

Current NUMA

 Memory controllers are built into the processor die
 Each processor socket presents itself as an individual NUMA node to

the OS unless node interleaving is enable in the BIOS
 Inter-node communication paths are extremely fast and foreign-

memory allocations have a lower impact on overall performance

8
© SQLskills, All rights reserved.

https://www.SQLskills.com

AMD NUMA:
HyperTransport

Memory

Controller

CPU

M
e

m
o

ry

C
o

n
t

ro
lle

r

CPU

M
e

m
o

ry

C
o

n
t

ro
lle

r

CPU

M
e

m
o

ry

C
o

n
t

ro
lle

r

CPU

Memory

Controller

M
e

m
o

ry

C
o

n
t

ro
lle

r

Memory

Controller

Memory

Controller

5

9
© SQLskills, All rights reserved.

https://www.SQLskills.com

Intel Nehalem: QPI

I/O

Controller

M
e

m
o

ry

C
o

n
t

ro
lle

r

CPU

M
e

m
o

ry

C
o

n
t

ro
lle

r
CPU

M
e

m
o

ry

C
o

n
t

ro
lle

r

CPU

M
e

m
o

ry

C
o

n
t

ro
lle

r
CPU

I/O

Controller

10
© SQLskills, All rights reserved.

https://www.SQLskills.com

SQLOS Under Hardware-NUMA

SQLOS

SOS_MemoryNode

SOS_Scheduler

SOS_Worker

SOS_Task

SOS_Scheduler

SOS_Worker

SOS_Task

SOS_Scheduler

SOS_Worker

SOS_Task

SOS_Scheduler

SOS_Worker

SOS_Task

SOS_CPUNode SOS_CPUNode

SOS_MemoryNode

6

11
© SQLskills, All rights reserved.

https://www.SQLskills.com

Is NUMA Important Still?

 Even with enhancements, NUMA still matters
 Separate lazy writer process per NUMA node
 Impact for checkpoint operations
 Latency with remote memory still matters

 Max Degree of Parallelism
 Number of physical cores per NUMA node
 Prevent cross-node scheduling of parallel processing

 Leverage Level-1 cache on die to prevent translation look-aside buffer (TLB)
misses

 The TLB is a CPU cache that memory management hardware uses to improve virtual
address space translation speed

 The TLB maps virtual and physical address spaces to reduce the number of page table
lookups performed, which read multiple memory areas to compute the address
needed

12
© SQLskills, All rights reserved.

https://www.SQLskills.com

Node Interleaving

 The option to run the server in an SMP configuration
 Sufficiently Uniform Memory Architecture (SUMA) configuration

 Memory mapped in 4KB regions to nodes in round-robin even fashion
instead of as a single, sequential block under NUMA

 Beneficial to certain workloads, but should not generally be used with
SQL Server

 Trace Flag 8015 – disables NUMA detection by SQLOS
 Should not be used by most SQL Server workloads
 Limits SQL Server to K-group 0 and 64 CPU’s or less

 Trace Flag 8048 – prior to SQL Server 2016
 Useful when > 8 schedulers per NUMA node or node interleaved
 Partitions CMEM-OBJ heap space per CPU instead of per-NUMA node to

reduce CMEMTHREAD contention
 SQL Server 2016+ dynamically repartitions on contention by default

7

13
© SQLskills, All rights reserved.

https://www.SQLskills.com

Soft-NUMA

 Creates a custom NUMA configuration independent of hardware
NUMA configuration
 Registry settings control soft-NUMA configuration
 Can provide greater performance, scalability, and manageability on SMP as

well as on real NUMA hardware for specific workloads
 ETL world record set using soft-NUMA configuration
 Allows the ability to mask independent nodes to specific TCP ports for

increased performance

 Soft-NUMA nodes can only include processors from a single hardware-
NUMA node

 Automatically configured in SQL Server 2016 by default if > 8 cores
per NUMA Node
 https://blogs.msdn.microsoft.com/psssql/2016/03/30/sql-2016-it-just-runs-

faster-automatic-soft-numa/

14
© SQLskills, All rights reserved.

https://www.SQLskills.com

Automatic Soft-NUMA

 SQL Server 2016 will configure Soft NUMA partitioning automatically
if > 8 cores per hardware NUMA Node
 ErrorLog: Server Automatic soft-NUMA was enabled because SQL Server has

detected hardware NUMA nodes with greater than 8 physical cores.

 Can be disabled using ALTER SERVER CONFIGURATION
 Requires SQL Agent be stopped before issuing command or SQL Agent

shutting down will issue RECONFIGURE and revert the setting
 Execute ALTER SERVER CONFIGURATION
 Restart SQL Server
 Start SQL Agent

 SQL Server 2014 SP2, can enable Automatic Soft NUMA when Trace
Flag 8079 is set as a startup parameter

 https://blogs.msdn.microsoft.com/psssql/2016/03/30/sql-2016-it-just-
runs-faster-automatic-soft-numa/

8

15
© SQLskills, All rights reserved.

https://www.SQLskills.com

SQLOS Under SMP with Soft-NUMA

SQLOS

SOS_MemoryNode

SOS_Scheduler

SOS_Worker

SOS_Task

SOS_Scheduler

SOS_Worker

SOS_Task

SOS_Scheduler

SOS_Worker

SOS_Task

SOS_Scheduler

SOS_Worker

SOS_Task

SOS_CPUNode SOS_CPUNode

16
© SQLskills, All rights reserved.

https://www.SQLskills.com

SQLOS Under Hardware-NUMA with Soft-NUMA

SQLOS

MemoryNodeMemoryNode

Scheduler

Worker

Task

CPUNode

Scheduler

Worker

Task

Scheduler

Worker

Task

CPUNode

Scheduler

Worker

Task

Scheduler

Worker

Task

CPUNode

Scheduler

Worker

Task

Scheduler

Worker

Task

CPUNode

Scheduler

Worker

Task

9

17
© SQLskills, All rights reserved.

https://www.SQLskills.com

SOS Scheduler

 Provides a thin layer between SQL Server and the OS
 Provides cooperative scheduling and I/O processing for SQL Server instead

of preemptive scheduling used by Windows
 Cooperative scheduling: tasks have an execution quantum (duration of time) and

voluntarily yield the CPU to other tasks
 Preemptive scheduling: highest priority task gets the CPU

 Two modes of execution: thread or fiber
 Thread is default
 Fiber can provide performance boost for specific usage scenarios

 Rarely used in production environment
 CLR not supported
 XML not supported

18
© SQLskills, All rights reserved.

https://www.SQLskills.com

SOS Workers (Threads)

 Default configuration of 0
 32-bit SQL Server

 Actual number is: ((NumberOfSchedulers - 4) * 8) + 256

 64-bit SQL Server
 Actual number is: ((NumberOfSchedulers – 4) * 16) + 512

 Current maximum number of workers
SELECT max_workers_count
FROM sys.dm_os_sys_info

 Edge cases for changing default
 Database mirroring on 32-bit servers
 Principal server uses 1 global thread, 2 threads per mirrored database
 Mirror server uses 1 global thread, 2 threads per mirrored database and 1

additional thread per mirrored database for every 4 processors

10

19
© SQLskills, All rights reserved.

https://www.SQLskills.com

Connection NUMA Node Assignment

 Connection scheduling assignment starts at the NUMA node level
 The basic algorithm is a round-robin assignment for new connections

across available NUMA nodes to the listener
 A separate I/O Completion Port (IOCP) listener can be associated to each

NUMA node or a groups of nodes
 It is possible to make a TCP connection followed by a Named Pipe

connection and get connection affinity assignments to the same node

 Within the NUMA node assigned to the connection by the round-
robin algorithm, the connection is assigned to the scheduler with the
smallest load factor
 Load factor is derived from the number of tasks assigned to the scheduler

and can be seen in sys.dm_os_schedulers
 The assigned scheduler becomes the preferred scheduler for the life of the

connection

20
© SQLskills, All rights reserved.

https://www.SQLskills.com

Connection NUMA Node Assignment (2)

IOCP – TCP 1433

NUMA Node 0 NUMA Node 1

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

11

21
© SQLskills, All rights reserved.

https://www.SQLskills.com

Task Scheduler Assignment

 Each new command submitted by a client is assigned a controlling
task in SQLOS

 The associated controlling task is assigned to a scheduler and remains
associated with that scheduler for the life of the command execution

 Task assignment is also based on load factor, or the 120% rule:
 Once the preferred scheduler has120% more load than the other schedulers,

on the same NUMA node, new tasks are assigned to other schedulers within
the same NUMA node

22
© SQLskills, All rights reserved.

https://www.SQLskills.com

Scheduler Licensing Limitations

 SQL Server 2012+ introduced core based licensing limits
 Standard Edition limited to 4 sockets and 16 cores

 VMs created with 8 sockets and 1 CPU per socket will only use 4 schedulers

 Enterprise Server + CAL limited to 20 cores

 Excess cores are assigned a scheduler in SQLOS but the scheduler will
be offline
 Check for NUMA imbalance in sys.dm_os_schedulers
 Manually set PROCESS AFFINITY using ALTER SERVER CONFIGURATION to

balance the number of schedulers ONLINE across NUMA nodes
 Prevents unbalanced connection and task assignment
 http://sqlperformance.com/2012/11/system-configuration/2012-cal-problems

12

23
© SQLskills, All rights reserved.

https://www.SQLskills.com

Connection NUMA Assignment Unbalanced

IOCP – TCP 1433

NUMA Node 0 NUMA Node 1

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

24
© SQLskills, All rights reserved.

https://www.SQLskills.com

Parallel Query Scheduling (1)

 The controlling task always follows the preferred scheduler
assignment rules in SQLOS

 For parallel sub-tasks the decision is based on the ideal node to get
the most resources for the parallel execution (number of available
schedulers, number of available workers, memory, DOP target for the
query)

 Only online nodes are considered for parallel task scheduling
 If the DOP target for the query fits within a single node, the ideal node is

used to execute the parallel sub-tasks
 This may be a different node than the controlling tasks and is not a problem

because the majority of the work is done by the parallel workers which are local
to each other on the same node

 If the DOP target for the query does not fit within a single node, the work is
spread across the available online nodes

13

25
© SQLskills, All rights reserved.

https://www.SQLskills.com

Parallel Query Scheduling (2)

 The internal resource state of the nodes is updated for the query
execution engine approximately every 2 seconds
 A single node can be selected as the destination for multiple parallel queries

when they begin executing at approximate the same time
 Staggering large queries by more than 2 seconds can allow alternate node

choices to be available to the execution engine

26
© SQLskills, All rights reserved.

https://www.SQLskills.com

Parallel Query Placement Decision Logic

 https://blogs.msdn.microsoft.com/psssql/2016/03/04/sql-server-parallel-query-
placement-decision-logic/

SMP
or Connection
Bound

Place threads on one
node
Requires: -T2479

Either the system only has a single node or it is treated as if the
connection node is the only node on the system.

Parallelism is allowed as long as free threads on the node are >=
(dop * branches in query)

Full Place threads on all
nodes

Node zero will always be the starting node. Starting at node id zero
SQL Server loops across schedulers and nodes until all workers are
placed.

DOP is allowed as long as all workers can be placed on the full
system.

Least Loaded
Node

Place threads on the
least loaded node.
Requires: -T2467

Loop over the online nodes determining if there are enough free
threads on any single node to support the current DOP
request. Making sure there are enough schedulers online within
the node to support the request without stacking up requests from
the query on the same scheduler(s.)

Use Next Node Place threads within
node
Requires: -T2468

Find the next node that can service the DOP request.

Unlike full mode, the global, resource manager keeps track of the
last node used. Starting from the last position, and moving to the
next node, SQL Server checks for query placement opportunities. If
a node can’t support the request SQL Server continues advancing
nodes and searching.

Spread Place threads on
multiple nodes

This is the most common decision made by SQL Server. The
decision spreads the workers across multiple nodes as
required. The design is similar to full except the starting position is
based on the saved, next node, global enumerator.

14

27
© SQLskills, All rights reserved.

https://www.SQLskills.com

Scheduler Monitor

 Per node monitoring for issues every 5 seconds
 17883: non-yielding task, single scheduler
 17887: I/O completion stall, single scheduler
 17884: no work progressing, all schedulers
 17888: 50% of same resource, all schedulers

 Ring buffer entries using sys.dm_os_ring_buffers and Extended
Events

28
© SQLskills, All rights reserved.

https://www.SQLskills.com

Scheduling DMVs

 sys.dm_os_schedulers
 sys.dm_io_pending_io_requests
 sys.dm_os_workers
 sys.dm_os_tasks
 sys.dm_os_waiting_tasks
 sys.dm_os_wait_stats

15

Demo

Scheduling DMVs

30
© SQLskills, All rights reserved.

https://www.SQLskills.com

Application Coding

9%

Capacity

11%

Maintenance Jobs

4%

External process

17%

Parallelism

5%Index or Statistics Issues

11%

Known Bugs

9%

Misconfigurations

5%

Query Plan Quality

11%

Unknown

13%

Virtualization

5%

CPU Issue “Themes”

Informal
categorization of
79 “high CPU”
issues from
serverfault.com,
stackoverflow.com
, recent clients,
MSDN forums
(snapshot from
January 2013)

16

31
© SQLskills, All rights reserved.

https://www.SQLskills.com

Defining CPU Performance Issues

 Define the problem space:
 Availability impacted

 For example “pegged CPUs” bring all else to a halt
 Low CPU and no requests completing

 Degradation of overall performance
 Workloads run, but slower than desired (SLAs)

 Capacity and scalability limitations
 Workloads run fine, but throughput has ceiling

 Workload competition
 Some queries run fast, some slow: winners/losers
 One request takes all the resources: the rest suffer

 Capacity constrained
 Power options?
 Over-provisioned virtualization host?

32
© SQLskills, All rights reserved.

https://www.SQLskills.com

Baseline Information (1)

 Physical server
 Sockets, cores, hyper-threading
 Processor model, architecture (32-bit/64-bit)
 NUMA, L2/L3 cache sizes

 Virtual server
 Host info (same as physical SQL Server) and guest VM virtual cores
 Hyper-V CPU Reserve, VMware CPU Reservation
 Hyper-V CPU Relative Weight, VMware CPU Shares
 vCPUs and co-scheduling to other guests

 SQL Server instance configuration settings:
 Max degree of parallelism setting
 Cost threshold for parallelism option
 Processor affinity setting
 Priority boost setting
 Max worker threads setting
 Lightweight pooling setting

17

33
© SQLskills, All rights reserved.

https://www.SQLskills.com

Baseline Information (2)

 CPU power-option settings:
 Windows

 High Performance, Balanced, Power Saving

 ESX
 See VMWare KB article 1018206 (http://kb.vmware.com/kb/1018206)

 Resource Governor configuration (more on this later)
 SQL Server error log

 We’ll discuss CPU related DMVs, but it helps to take a quick look for unusual
errors and warnings prior to going deeper
 You may see downstream errors as well

 Windows Event Logs
 Look for hardware related errors (drivers, failures, degradation)

Demo

CPU-Z, powercfg.cpl, and sys.configurations

18

35
© SQLskills, All rights reserved.

https://www.SQLskills.com

But is SQL Server the Culprit?

 Don’t jump to conclusions until you’ve confirmed that the issue is
indeed SQL Server
 Process: % Privileged Time (kernel mode)
 Process: % User Time (user mode)
 Task Manager
 Or if you’re already connected to SQL, you can rule out SQL itself via

sys.dm_os_ring_buffers (more on this later)

36
© SQLskills, All rights reserved.

https://www.SQLskills.com

Kernel or User Time?

 Validated through Process: high SQL % Privileged Time (sqlservr
object)
 Multiple instances?

 Map SELECT SERVERPROPERTY ('processid') to PID

 sys.dm_os_ring_buffers
 100 – (SystemIdle + ProcessUtilization)

19

37
© SQLskills, All rights reserved.

https://www.SQLskills.com

SQLSERVR Privileged Time Causes

 What could cause high kernel (privileged) time for SQL?
 Filter-drivers inject themselves into the Windows driver stack (Anti-virus,

encryption services)
 E.g. large I/O operations causing high CPU (privileged time)

 Windows Server 2008 R2 Hotfix KB 976700

 Missing firmware updates or drivers
 Defective or significantly insufficient I/O components

Demo

Measuring % User vs. Kernel time

20

39
© SQLskills, All rights reserved.

https://www.SQLskills.com

What About Wait Statistics?

 Wait statistics can point to CPU pressure
 High ratio of signal wait time to resource wait time
 SOS_SCHEDULER_YIELD – when used in conjunction with other diagnostic

data
 CXPACKET – again, when used in conjunction with other diagnostic data

 Otherwise, wait statistics point to contention for other resources
(synchronization, I/O, network, memory, locking)

40
© SQLskills, All rights reserved.

https://www.SQLskills.com

What About Virtualization?

 Is the guest on an over-committed vCPUs on virtual machine host?
 Even if not over-committed – are there co-scheduling issues causing a

Ready state?
 What is CPU Ready Time (VMware) telling you?

 Covered further in IE3, but see CPU Ready Time in VMware and How to
Interpret its Real Meaning (http://bit.ly/UTe7Wr) for further information

21

41
© SQLskills, All rights reserved.

https://www.SQLskills.com

If It *Is* SQL User Time, What Next?

 We next have to first identify which queries are driving the CPU
consumption

 Common patterns:
 One “bad” serial query executed by multiple requests

 Easier to prioritize (no triage required)

 One “bad” parallel query using all schedulers
 Again, this is easier to identify

 Numerous requests consuming schedulers (“death by 1,000 cuts”)
 Look at cumulative worker time (we’ll discuss)

42
© SQLskills, All rights reserved.

https://www.SQLskills.com

Correlation of CPU to I/O

 You may see high CPU queries responsible for minor amounts of I/O
 Calculations, loops, conversions

 You’ll also see high CPU with high I/O
 Resolving an I/O issue often solves your CPU issue as well

 Adding more memory or improving the I/O path may not help you though,
because logical I/O still drives CPU
 A reason why Resource Governor is limited in this scenario

22

Demo

The CPU and I/O relationship

44
© SQLskills, All rights reserved.

https://www.SQLskills.com

Resist the Urge to Do the Following…

 Not sure of the root cause yet? Don’t fall back on the following
“solutions” unless you want to risk masking the root cause:
 Update all statistics
 Rebuild all indexes
 Restart SQL Server

 Example: you see high CPU so you blindly update all statistics and that
“solves the problem” (for now)
 Why is this a problem?

 The statistics caused the problem procedure to recompile, removing the actual
issue (e.g. parameter sniffing), and the recompiled plan is “good” but will revert to
“bad” at a future time (problem not solved!)

23

45
© SQLskills, All rights reserved.

https://www.SQLskills.com

The Observer Effect

 When possible, demote SQL Profiler and Trace in favor of other
methods in order to avoid adding your own overhead

 Factors which increase overhead:
 Types of events tracked (e.g. Showplan XML Statistics Profile)
 Volume of requests
 Use of SQL Profiler versus server-side traces
 Distance of SQL Profiler to the server
 Number of concurrent traces

46
© SQLskills, All rights reserved.

https://www.SQLskills.com

Live Troubleshooting Advice

 Its okay to use pre-canned queries and procedures, but be sure you
understand what exactly they’re doing
 Procedures that create intermediate result sets or are calculation-intensive

may not complete execution on a heavily-constrained system
 Understand the core DMVs and don’t be afraid to run them in isolation and

in smaller pairings (execute-collect-execute)

 Don’t forget about the Dedicated Admin Connection (DAC)

24

47
© SQLskills, All rights reserved.

https://www.SQLskills.com

Answering Questions with DMVs (1)

 Which request is running right now?
 sys.dm_exec_requests

 What is it executing?
 sys.dm_exec_sql_text

 Where is it coming from?
 sys.dm_exec_sessions
 sys.dm_exec_connections

 What’s its plan? (careful on this one)
 sys.dm_exec_query_plan or
 sys.dm_exec_text_query_plan (for very large plans)

 Who’s waiting on the scheduler and why?
 sys.dm_os_waiting_tasks

48
© SQLskills, All rights reserved.

https://www.SQLskills.com

Answering Questions with DMVs (2)

 Which queries have taken up the most CPU time since the last restart?

 sys.dm_exec_query_stats
 Aggregate by total_worker_time
 Define averages with execution_count
 If ad hoc workloads, group by query_hash or query_plan_hash
 Use the plan_handle with sys.dm_exec_query_plan to grab the plan

25

49
© SQLskills, All rights reserved.

https://www.SQLskills.com

Answering Questions with DMVs (3)

 Is this query using parallelism?

 sys.dm_os_tasks
 Ordered by session_id, request_id

 sys.dm_exec_query_plan
 Look at plan operators

 sys.dm_exec_query_stats
 Filter total_elapsed_time less than total_worker_time

 Can be a false negative for blocking scenarios – where duration is inflated due to
a wait on resource

50
© SQLskills, All rights reserved.

https://www.SQLskills.com

Resource Governor

 A user-defined classifier function runs at login and evaluates
properties (e.g. name, workstation, database) and assigns incoming
connections to a pre-defined workload group

 A workload group is bound to a resource pool
 A resource pool can be associated with >=1 workload groups
 Monitor resource usage by resource pool and workload group
 Dynamically alter any of the above
 You can use it to:

 Implement quotas, with a chargeback system
 SQL Server hosting partners

 Learn about aggregated resource usage on a system
 Limit concurrent users, parallelism
 Avoid runaway queries
 Guarantee resources for critical workloads

26

51
© SQLskills, All rights reserved.

https://www.SQLskills.com

Concepts: Classification

 Incoming connections are classified into workload groups
 Classification function is a T-SQL user-defined function

 Takes no parameters and returns group name as a sysname type

 Various functions to use for classification:
 HOST_NAME, APP_NAME, SUSER_NAME, IS_MEMBER, new CONNECTIONPROPERTY

 Easy to think of scenarios where connections classified by time of day too
 e.g. batch processing or maintenance

 Registered with the resource governor using:
 ALTER RESOURCE GOVERNOR WITH (
 CLASSIFIER_FUNCTION = <name>)

 NOTE: Once a connection is assigned to a group it cannot be changed (i.e. you
can’t further throttle an active query)

 NOTE: Dedicated Admin Connection bypasses all of this
 Beware of classifier functions (or logon triggers) that take so long to execute

that the query timeout limit is reached

52
© SQLskills, All rights reserved.

https://www.SQLskills.com

Concepts: Resource Pools

 A resource pool is a way to limit resource consumption for one or
more workload groups
 (2008/2008 R2) 18 pools, (2012+) 62 user-definable resource pools
 Syntax: ALTER / CREATE / DROP RESOURCE POOL

 CPU related options (with defaults in bold):
 MIN_CPU_PERCENT = value (0)
 MAX_CPU_PERCENT = value (100)

 Only enforced when multiple workers use a single scheduler
 This can be confusing at first… an opportunistic maximum…

 (2012+) CAP_CPU_PERCENT = value (100)
 Hard cap limit on CPU resource usage

 (2012+) AFFINITY = AUTO
 Attach pool to specific schedulers or NUMA nodes

 For example… WITH (AFFINITY SCHEDULER = (0))

 If using this setting, be sure to reconfigure after CPU changes – VM’s

27

53
© SQLskills, All rights reserved.

https://www.SQLskills.com

Concepts: Workload Groups

 A workload group allows grouping connections into a ‘bucket’
 E.g. batch processes, reports, executives, helpdesk, maintenance

 Syntax: CREATE / ALTER / DROP WORKLOAD GROUP
 Assigned set of resource limits by mapping to a resource pool
 Internal tasks (e.g. checkpoint, ghost cleanup) always are part of the internal

group (cannot be changed)
 No limits on CPU or memory, will pressurize all other groups, regardless of their limits

 Unassigned connections go into the default group
 CPU related options (with defaults in bold)

 IMPORTANCE = {LOW | MEDIUM | HIGH}
 Not the same as thread priority; applies to position in RUNNABLE queue on a single scheduler

for workers from groups using the same pool - LOW:MEDIUM:HIGH = 1:3:9 ratio

 REQUEST_MAX_CPU_TIME_SEC = value (0)
 Max amount of CPU time a request can use before event is fired

 MAX_DOP = value (0)
 Max degree of parallelism. Overrides the sp_configure option

54
© SQLskills, All rights reserved.

https://www.SQLskills.com

MAXDOP Settings

 Server-wide setting applies as a limit…
 Except that DATABSE SCOPED CONFIGURATION (2016+) will override

it
 MAXDOP of the database applied
 Watch out for tempdb and #temp tables – tempdb MAXDOP may apply

 Except that MAXDOP query hint will override it
 And anyone can specify a MAXDOP hint that overrides server-wide and

database scoped MAXDOP

 Except if the query is running under Resource Governor in a workload
group that specifies a non-zero MAX_DOP
 Workload group MAX_DOP cannot be exceeded

28

Demo

Resource Governor and parallelism

56
© SQLskills, All rights reserved.

https://www.SQLskills.com

Limitations

 Works with the Database Engine only
 Single instance only

 Each instance controlled individually

 Controls for CPU usage and memory allocation ONLY
 CPU usage includes CLR, but not pre-emptive operations
 CPU governing occurs per scheduler
 Certain workloads may not be entirely suited, e.g. short-lived OLTP queries

 No way to tell if a specific query was throttled in any way

29

57
© SQLskills, All rights reserved.

https://www.SQLskills.com

Key Takeaways

 Ensure that the server Power Options are configured for High
Performance as a part of the SQL Server installation checklist

 Look at Kernel and User time for the sqlservr process in Performance
Monitor whenever troubleshooting high CPU issues to determine
where the CPU usage is actually going

 Check for Extended Events sessions and SQL Traces running on the
server to verify that observer overhead isn’t part of the problem

58
© SQLskills, All rights reserved.

https://www.SQLskills.com

Review

 Understanding Windows scheduling
 Server hardware and NUMA
 CPU scheduling under SQLOS
 DMV monitoring
 Troubleshooting CPU performance issues
 Using Resource Governor to limit CPU usage

30

Questions?

