
1

SQLskills Immersion Event
IEPTO1: Performance Tuning and Optimization

Module 6: Index Internals
Kimberly L. Tripp

Kimberly@SQLskills.com

2
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Index concepts
 Table structure
 Index internals

 Heaps
 Why cluster
 Table usage
 Employee table case study

 Clustering key columns in nonclustered indexes
 Indexing for Performance

 What do we know?
 What should we do?
 Suggestions for the clustering key!

2

3
© SQLskills, All rights reserved.

https://www.SQLskills.com

Index Concepts: Tree Analogy

 If a tree were data and you were looking for leaves with a certain
property, you would have two options to find that data….

 1) Touch every leaf, interrogating each
one to determine if they held that
property…SCAN

 2) If those leaves (which had that
property) were grouped such that
you could start at the root, move to
the branch and then directly to those
leaves…SEEK

4
© SQLskills, All rights reserved.

https://www.SQLskills.com

Nonclustered Indexes: Book Analogy

 Think of a book with indexes in the back
 The book has one form of logical ordering
 For references you use the indexes in the back… to find the data in

which you are interested you look up the key
 When you find the key you must lookup the data based on its

location… i.e. a “bookmark” lookup
 The bookmark always depends on the (book) content order

Index – Species Common Name

Index – Species Scientific Name

Index – Animal by

Country, Name

Index – Animal by

Continent, Country, Name

Index – Animal by Type, Name

Bird, Mammal, Reptile, etc…

Index – Animals by Habitat, Name

Air, Land, Water

3

5
© SQLskills, All rights reserved.

https://www.SQLskills.com

Seek vs. Scan

 Seek: starts at the root and uses the tree structure to move from top to
bottom

 Scan: moves through the leaf level from left to right (possibly right to
left)

…Leaf

Root page

Level 0

Level 1

Level 2

Intermediate

seek

scan

6
© SQLskills, All rights reserved.

https://www.SQLskills.com

Table Structure Overview

 Heap: a table without a clustered index
 Clustered table: a table with a clustered index
 Nonclustered indexes DO NOT affect the base table’s structure
 However, nonclustered indexes are affected by whether or not the

table is clustered…
 Hint: The nonclustered index dependency on the clustered index

should impact your choice for the clustering key!

4

7
© SQLskills, All rights reserved.

https://www.SQLskills.com

Table Structure: Heap

 Heap: a table without a clustered index
 Records are NOT ORDERED, no doubly-linked list
 Access via Index Allocation Map (IAM)

 IAMs = 8KB page (chain) which tracks object usage
 1 IAM chain per PARTITION (heap or b-tree)
 For each partition, 1 IAM page per file, per 4GB for each allocation unit (data (in-

row), LOB, row-overflow)

 If NO indexes exist then a full table scan is required
 Imagine 80,000 records at 20 rows/per page = 4,000 pages
 Table scan costs at least 4,000 I/Os... (why “at least”?)

…
4,000 pages

of Employees

in no specific

order

189, Jones, …

96, Thomas, …

8959, Smith, …

8, Johnson, …

…

675, Jameson, …

7983, Tanner, …

42, Alberts, …

12345, Kent, …

…

1, Griffith, …

4568, Connelly, …

957, Sanders, …

777, Zender, …

…

30234, Pickett, …

2345, Smith, …

8959, Dawson, …

7893, Uckley, …

…

456, Lange, …

1690, Edwars, …

56789, Young, …

264, Nelson, …

…

872, Vickney, …

507, Hawks, …

12, Folley, …

46999, Ish, …

…

File1, Page 497 File1, Page 498 File1, Page 499 File1, Page 5345 File1, Page 5346 File1, Page 5347

8
© SQLskills, All rights reserved.

https://www.SQLskills.com

Heap: Pros

 Excellent for data loading
 Create empty table
 Use multiple source files to take advantage of parallel data loading
 Parallel index creation, after data load

 Scenario
 800,000 rows in single text.csv file
 Empty HEAP, load data, build CL index, then 2 nonclustered indexes (21.800

sec with 0 to minimal fragmentation)
 Empty clustered table with 2 nonclustered indexes, load data (64.223 sec

with lots of fragmentation)
300% SLOWER

hidden slide
w/extra details

5

9
© SQLskills, All rights reserved.

https://www.SQLskills.com

Heap: Pros

 Effective for “staging” data
 Excellent for loading into a partition for a partitioned table or

partitioned view
 Indexes can be created after load
 Efficient for SCANs ONLY, when no UPDATEs (otherwise, forwarding

pointers so scans become significantly less efficient)
 Space efficient as freed space from deletes is re-used on subsequent

inserts (at the cost of performance)

 See whitepaper: The Data Loading Performance Guide
 http://bit.ly/1D5AOYS

hidden slide
w/extra details

10
© SQLskills, All rights reserved.

https://www.SQLskills.com

Heap: Cons

 Insert performance compromised
 Reclaims space v. perform
 Lookup in IAM/PFS expensive if table has DELETEs and INSERTs

 Scenario
 800,000 rows originally, delete % 17 = 47,058 gaps
 HEAP with NO NC indexes – INSERT 50,000 rows (50.463 sec)
 Clustered table with NO NC indexes – INSERT 50,000 rows (43.168 sec)

15% Faster

See KB Article Q297861

“Poor Performance on a HEAP”

hidden slide
w/extra details

6

11
© SQLskills, All rights reserved.

https://www.SQLskills.com

Heap: Cons

 Fixed 8-byte RID assigned on INSERT
 2 for fileID, 4 for pageID, 2 for slot number (which defines the record offset

on the page)

 Rows can have forwarding pointers
 If modification results in record relocation

 Forwarding pointers
 Benefit in nonclustered index RID Lookup (NC to data)
 Negative for table scans (negative for OLAP/DSS)

 Table with 0 forwarding pointers
 TABLE SCAN I/Os = # of pages in table
 Table with n forwarding pointers
 TABLE SCAN I/Os = # of pages in table

+ n forwarding pointers

hidden slide
w/extra details

12
© SQLskills, All rights reserved.

https://www.SQLskills.com

Heap: Cons

 Scenario (802,942 Rows)
 Alter table – add new VARCHAR column
 Update 14% of the data (both require Table Scans)
 Clustered table

 Update (19.456 sec) 35% Faster 
 Size 75,976KB 170% Larger 

 Heap
 Update (29.903 sec)
 Size 44,680KB

So the clustered table is faster
but seems to waste space (but
with proper maintenance…)
BUT is that the only difference?

hidden slide
w/extra details

7

13
© SQLskills, All rights reserved.

https://www.SQLskills.com

Heap Issues: Why Cluster?

 Heap has overhead
 Space

 Fixed RID assigned on INSERT
 Forwarding pointers (from record relocation)

 Time
 Negative for table scans (negative for OLAP/DSS)

 Optimized for saving space (on INSERT)
 Optimized for data loading – when empty and no updates (parallel data

loading!!!)

 Clustered tables
 Usually a better choice for OLTP or mixed workloads
 Require consistent/automated maintenance

hidden slide
w/extra details

14
© SQLskills, All rights reserved.

https://www.SQLskills.com

What Do We Know?

 Heaps offer excellent benefits for staging tables
 For OLTP/DS tables, user based modifications (not batch),

performance is better with a clustered index
 However, CL indexes require administrative maintenance to alleviate

negatives with regard to space
 Are all clustered indexes going to give the same gains?
 For true performance gains you must have the RIGHT clustered index!

8

15
© SQLskills, All rights reserved.

https://www.SQLskills.com

Clustered Index Overview

 Not required, although highly recommended
 Only one per table
 Physical order applied at creation
 Logical order maintained through a doubly-linked list
 Requires ongoing and automated maintenance
 Need to choose wisely!

16
© SQLskills, All rights reserved.

https://www.SQLskills.com

Clustered Index Key Choice
Historically

 Clustering key chosen to remove hot spots… Why?
 Page-level locking

 Clustering key chosen to improve “range” query performance… Why?
 Low selectivity “ranges” are obviously not bad, but are they the best?

 Dependency on the clustered index was greater… Why?
 SQL Server ONLY used ONE index per table per query
 Adding nonclustered indexes or making nonclustered indexes wider

degraded performance – without adding significant benefits
 Pre-7.0 SQL Server used a VOLATILE RID for lookup (requiring significant

index maintenance on DML – therefore fewer NC were desired)

9

17
© SQLskills, All rights reserved.

https://www.SQLskills.com

Clustered Index Key Choice
Currently

 Clustering key choice DOES NOT need to remove hot spots… Why?
 True row-level locking

 Clustering key choice is NOT the best for “range” queries… Why?
 The CL key only gives ONE “range” query better performance – and only for

queries asking for SELECT *
 Range queries can be answered by better nonclustered indexes
 SQL Server has improved index capabilities as indexes can be joined,

scanned with lookups, aggregates, …

 Dependency on the clustered index has CHANGED… Why?
 Nonclustered indexes INCLUDE the clustering key for lookup

 Unique: each row must be uniquely referenced from NC to CL (should not allow
NULL)

 Narrow: the CL key value is stored within EVERY NC Index
 Static: if the value changes, ALL NC indexes need the change

18
© SQLskills, All rights reserved.

https://www.SQLskills.com

Lookups
How is the Clustering Key Used in Nonclustered Indexes?

Imagine the internals of a nonclustered index on SocialSecurityNumber with 3
different versions of the Employee table with different clustering keys

CL: GUID CL: EmployeeID

SSN Lookup Uniquifier
000-00-0184 Smith 0 (0 bytes)
000-00-0236 Jones 1 (4 bytes)
000-00-0395 Smith 1 (4 bytes)
000-00-0418 Jones 0 (0 bytes)

SSN Lookup

000-00-0184 92CF41D7-17BF-49F7-
B5C8-D3246C19B302

000-00-0236 2F87EEBB-FBA1-4C06-
B7F1-BE63285B5935

000-00-0395 2EF09CA4-6E48-47AA-
A688-3D9FDEA220E0… …

SSN Lookup
000-00-0184 31101
000-00-0236 22669
000-00-0395 18705… …

Each table starts at 80,000 rows over 4,000 pages (due to the average row size of 400 bytes/row and
therefore 20 rows/page). Then EACH/EVERY index must include the (entire) lookup value.

CL: Lastname

The lookup value is non-unique
(and wide as an nvarchar(40)),

what if there are two (or more?)
Smith / Jones / Anderson?

The lookup value
is a GUID = 16 bytes

The lookup value
is an int = 4 bytes

10

19
© SQLskills, All rights reserved.

https://www.SQLskills.com

Nonclustered Index Structures

 A nonclustered index row has a minimum of:
 Header (TagA bytes) = 1 byte (fewer requirements than a data row structure)
 Index columns (What data types? Are they all fixed length?)

 A nonclustered index row might have:
 Null bitmap (minimum of 3 bytes)

 Might be in the tree when the nonclustered index has NULLable columns*
 Only required in the leaf level when the index has NULLable columns*

 Variable block, but only if there are columns that are variable length (this requires
2 bytes for every variable-length column plus a 2-byte count of variable-length
columns)

 NOTE: A uniquifier is considered variable-length so this adds at least the 4-byte
integer. If this is the only variable-length column, 4 additional bytes are needed
for the variable-length offset (2 bytes) + counter (2 bytes)

 *In SQL Server 2012, nonclustered indexes will have always have:
 A null bitmap in the leaf level of the index

 Minimum of 3 bytes -> 1 bit per column (and a 2-byte column count)
 Prior to 2012, a null bitmap only exists if there are NULLable columns in the index
 Upgraded databases won’t add the null bitmap until an index rebuild

20
© SQLskills, All rights reserved.

https://www.SQLskills.com

The Impact of the Clustering Key on the
Nonclustered Index Structures

 Unique clustered index on an int
 B-tree key size: 11 bytes

 1 byte TagA, 4 bytes (int), 6 bytes (page pointer)

 Non-unique clustered index on an int
 Minimum B-tree key size: 11 bytes (same as above)
 Maximum B-tree key size: 19 bytes

 1 byte TagA, 4 bytes (int), 6 bytes (page pointer), 4 bytes for uniquifier, 2 bytes for
variable offset, 2 bytes for counter

 Non-unique, nullable clustered index on an int
 Minimum B-tree key size: 14 bytes

 1 byte TagA, 4 bytes (int), 6 bytes (page pointer), 2 bytes for null bitmap and 1
byte for actual null values (table only has 3 columns)

 Maximum B-tree key size: 22 bytes
 Same as above but add on the 4 bytes for uniquifier, 2 bytes for variable offset, 2

bytes for counter

hidden slide
w/extra details

11

21
© SQLskills, All rights reserved.

https://www.SQLskills.com

Lookups: What is the Impact?
How Does the Clustering Key Impact Nonclustered Indexes?

 Each nonclustered must “include” the entire clustering key either
explicitly (in the nonclustered index definition) or implicitly (SQL
Server adds the columns that are not already present)

 The wider the clustering key, the wider (and probably unnecessarily
wider) your nonclustered indexes

 What about modifications?
 Does this really have that much of an impact??

 Imagine the prior examples on a 10 million row table with 8 NC indexes

Simple calculations for overhead in the LEAF level of the nonclustered indexes based on CL key

Description Width of CL key Rows NC Indexes MB

Unique clustered index on an int 4 10,000,000 8 305.18

Non-unique clustered index on an int (minimum) 4 10,000,000 8 305.18

Non-unique clustered index on an int (maximum) 12 10,000,000 8 915.53

Non-unique, nullable clustered index on an int (minimum) 7 10,000,000 8 534.06

Non-unique, nullable clustered index on an int (maximum) 15 10,000,000 8 1,144.41

hidden slide
w/extra details

22
© SQLskills, All rights reserved.

https://www.SQLskills.com

Lookups
Nonclustered Indexes are Wider!

 Imagine these costs in a real world scenario…
 10 million rows, 8 nonclustered indexes

 What’s the overhead required (and total space) for the bookmark
lookups in the nonclustered indexes:

 With a clustering key of an int (4 bytes)
 With a clustering key of an GUID (16 bytes)
 With a really wide clustering key (6 columns and ~64 bytes)
 NOTE: This is just the overhead of the data type without factoring in nullable/non-

unique.

Simple calculations for overhead in the LEAF level of the nonclustered indexes based on CL key

Description Width of CL key Rows NC Indexes MB

int 4 10,000,000 8 305.18

datetime 8 10,000,000 8 610.35

datetime, int 12 10,000,000 8 915.53

guid 16 10,000,000 8 1,220.70

composite 32 10,000,000 8 2,441.41

composite 64 10,000,000 8 4,882.81

hidden slide
w/extra details

12

23
© SQLskills, All rights reserved.

https://www.SQLskills.com

Lookups
NC Leaf Overhead

 Factor in whether or not
the key is unique or not

 Generally, int / bigint /
datetime, int / datetime,
bigint OR GUID are
likely to be unique

 Composite keys
Did not factor overhead
for variable-width
columns (minimum for
variable block is 2 (for
counter) + 2 for EACH
variable column’s offset
into the variable block

Description Bytes Rows NC
Indexes MB

int * 7 10,000,000 8 534.06
int, non-unique (min) 7 10,000,000 8 534.06
int, non-unique (max) 15 10,000,000 8 1,144.41

bigint * 11 10,000,000 8 839.23
bigint, non-unique (min) 11 10,000,000 8 839.23
bigint, non-unique (max) 19 10,000,000 8 1,449.58

datetime, int * 15 10,000,000 8 1,144.41
datetime, bigint * 19 10,000,000 8 1,449.58

guid * 19 10,000,000 8 1,449.58

composite 32 bytes (comp32) * 35 10,000,000 8 2,670.29
comp32, non-unique (min) 35 10,000,000 8 2,670.29
comp32, non-unique (max) 43 10,000,000 8 3,280.64

0.00
composite 64 bytes (comp64) * 67 10,000,000 8 5,111.69
comp64, non-unique (min) 67 10,000,000 8 5,111.69
comp64, non-unique (max) 75 10,000,000 8 5,722.05

0.00
composite 128 bytes (comp128) * 131 10,000,000 8 9,994.51
comp128, non-unique (min) 131 10,000,000 8 9,994.51
comp128, non-unique (max) 142 10,000,000 8 10,833.74

* Unique

24
© SQLskills, All rights reserved.

https://www.SQLskills.com

PRIOR to 2008R2
Lookups
NC Leaf Overhead

 Factor in nullability and
non-unique…

 int / bigint /datetime,
int /GUID are likely to be
unique

 Composite keys
 Did not factor number

of variable-width
columns (minimum for
variable block is 2 (for
counter) + 2 for EACH
variable column’s offset
into the variable block

Description Bytes Rows

NC

Indexes MB
int * 4 10,000,000 8 305.18

int, nullable 7 10,000,000 8 534.06

int, non-unique (min) 4 10,000,000 8 305.18

int, non-unique (max) 12 10,000,000 8 915.53

int, non-unique (min), nullable 7 10,000,000 8 534.06

int, non-unique (max), nullable 15 10,000,000 8 1,144.41

bigint * 8 10,000,000 8 610.35

bigint, nullable 11 10,000,000 8 839.23

datetime, int * 12 10,000,000 8 915.53

datetime, int, nullable 15 10,000,000 8 1,144.41

guid * 16 10,000,000 8 1,220.70

guid, nullable 19 10,000,000 8 1,449.58

composite 32 bytes (comp32) * 32 10,000,000 8 2,441.41

comp32, nullable 35 10,000,000 8 2,670.29

comp32, non-unique (min) 32 10,000,000 8 2,441.41

comp32, non-unique (max) 40 10,000,000 8 3,051.76

comp32, non-unique (min), nullable 35 10,000,000 8 2,670.29

comp32, non-unique (max), nullable 43 10,000,000 8 3,280.64

composite 64 bytes (comp64) * 64 10,000,000 8 4,882.81

comp64, nullable 67 10,000,000 8 5,111.69

comp64, non-unique (min) 64 10,000,000 8 4,882.81

comp64, non-unique (max) 72 10,000,000 8 5,493.16

comp64, non-unique (min), nullable 67 10,000,000 8 5,111.69

comp64, non-unique (max), nullable 75 10,000,000 8 5,722.05

composite 128 bytes (comp128) * 128 10,000,000 8 9,765.63

comp128, nullable 131 10,000,000 8 9,994.51

comp128, non-unique (min) 128 10,000,000 8 9,765.63

comp128, non-unique (max) 136 10,000,000 8 10,375.98

comp128, non-unique (min), nullable 131 10,000,000 8 9,994.51

comp128, non-unique (max), nullable 139 10,000,000 8 10,604.86 * Unique & non-nullable

hidden slide
w/extra details

13

25
© SQLskills, All rights reserved.

https://www.SQLskills.com

Lookups
Nonclustered Indexes are Wider!

 Or, what about 100 million rows w/12 nonclustered indexes

 You’re looking at GBs of storage, memory, backups and
fundamentally even insert/update performance as well as
maintenance requirements.

 My point – it really does add up! It IS something you want to CHOOSE
and DESIGN!

Simple disk space calculations of *JUST* the CL costs in the NC leaf level!
Description Width of CL key Rows NC Indexes MB
int 7 100,000,000 12 8,010.86

bigint 11 100,000,000 12 12,588.50

datetime, int 15 100,000,000 12 17,166.14

datetime, bigint 19 100,000,000 12 21,743.77

guid 19 100,000,000 12 21,743.77

composite32, nullable 35 100,000,000 12 40,054.32

composite64, nullable 67 100,000,000 12 76,675.42

26
© SQLskills, All rights reserved.

https://www.SQLskills.com

Scenario: What is the Real Cost?
AdventureWorksDW: FactInternetSales

 Clustered index:
 SalesOrderNumber
 SalesOrderLineNumber

 Nonclustered indexes:
 IX_FactIneternetSales_ShipDateKey: ShipDateKey
 IX_FactInternetSales_CurrencyKey: CurrencyKey
 IX_FactInternetSales_CustomerKey: CustomerKey
 IX_FactInternetSales_DueDateKey: DueDateKey
 IX_FactInternetSales_OrderDateKey: OrderDateKey
 IX_FactInternetSales_ProductKey: ProductKey
 IX_FactInternetSales_PromotionKey: PromotionKey

Data type:
nvarchar(20)
tinyint

14

Demo

AdventureWorks
The impact of key choice on nonclustered indexes

28
© SQLskills, All rights reserved.

https://www.SQLskills.com

Scenario: What is the Real Cost?
AdventureWorksDW: FactInternetSales

 Clustered index:
 Nonclustered leaf row REQUIRES variable block

 SalesOrderLineNumber = 7 characters on average (SO12345) which is 14 bytes +
variable (2 bytes in the variable block MINIMUM) but if the variable block is
required then 2 more bytes for counter… 18 bytes

 Nonclustered indexes:
 7 nonclustered indexes – ALL columns (of every index) are non-nullable and

fixed width so…
 14 bytes wasted per row, per index
 7 * 14 = 98 bytes (completely wasted) per row…
 Imagine 10 million rows and 10 nonclustered indexes:

 10000000 * 140 / 1024 / 1024 = 1.335GB of nonsense
 Imagine 100 million rows and 10 nonclustered indexes:

 100000000 * 140 / 1024 / 1024 = 13.35GB of nonsense
 Imagine 1 billion rows and 12 nonclustered indexes:

 select 1,000,000,000 * 154 / 1024 / 1024 = 143.42GB of nonsense

15

29
© SQLskills, All rights reserved.

https://www.SQLskills.com

Clustered Index Criteria
Keeping our Clustering Key as Streamlined as Possible!

 Unique
 Yes: No extra time/space overhead, data takes care of this criteria
 NO: SQL Server must “uniquify” the rows on INSERT

 Static
 Yes: Reduces overhead
 NO: Costly to maintain during updates to the key

 Narrow
 Yes: Keeps the NC indexes narrow
 NO: Unnecessarily wastes space

 Non-nullable/fixed-width
 Yes: Reduces overhead
 NO: Adds overhead to ALL nonclustered indexes

 Ever-increasing
 Yes: Reduces fragmentation
 NO: Inserts/updates might cause splits (significant fragmentation)

30
© SQLskills, All rights reserved.

https://www.SQLskills.com

Clustering on an Identity

 Naturally unique
 Should be combined with constraint to enforce uniqueness

 Naturally static
 Should be enforced through permissions and/or trigger

 Naturally narrow
 Only numeric values possible, whole numbers with scale = 0

 Naturally non-nullable/fixed-width
 An identity column cannot allow nulls, a numeric is fixed-width

 Naturally ever-increasing
 Creates a beneficial hot spot…
 Needed pages for INSERT already in cache
 Minimizes cache requirements
 Helps reduce fragmentation due to INSERTs
 Helps improve availability by naturally needing less defrag

16

31
© SQLskills, All rights reserved.

https://www.SQLskills.com

Clustering Key Suggestions

 Identity column
 Adding this column and clustering on it can be extremely beneficial – even when

you don’t “use” this data
 DateCol, bigint (identity?)

 In that order and as a composite key (not date alone as that would need to be
“uniquified”)

 Great for partitioned tables
 Great for ever increasing tables where you have a lot of date-related queries

 GUID
 NO: if populated by client-side call to .NET client to generate the GUID. OK as the

primary key but not as the clustering key
 NO: if populated by server-side NEWID() function. OK as the primary key but not

as the clustering key
 Maybe: if populated by the server-side NEWSEQUENTIALID() function as it creates

a more sequential pattern (and therefore less fragmentation)
 But, this isn’t really why you chose to use a GUID…

 Key points: unique, static, as narrow as possible, and less prone to require
maintenance – by design

32
© SQLskills, All rights reserved.

https://www.SQLskills.com

Clustering on an Identity
The Bad

 Problem: can create system page contention on allocation when there
are lots of tables that each have high insert volume
 Each table makes its allocation request from the GAM
 Can create contention (especially true in high object creation environments:

eg. Tempdb)

 Solution:
 More effective RAID arrays
 Multiple files in the filegroup (for the large/critical table)
 Isolating the object to its own filegroup

 Potentially this will create a second problem

 Basically, step 1 is that you want to make system allocation as fast as
possible!

17

33
© SQLskills, All rights reserved.

https://www.SQLskills.com

Clustering on an Identity
The Bad

 Problem: can create page latch contention on insert allocation in extremely
high insert volume (usually 500+ per sec, per table)

 Solution: In 2019 CREATE INDEX WITH OPTIMIZE_FOR_SEQUENTIAL_KEY
 Solution: may want to consider SOME distribution of the insert workload

 Good: Create a composite clustering key to create multiple insertion points
 Country, ID: If you do business in 6 countries then there will be 6 insertion points – better

distributing the INSERT “hot spot”
 Negative: you’ll still have some fragmentation; you won’t be getting range-based locality

for scans
 Better: Create multiple insertion points and have each set directed to their own

file/filegroup
 Example 1: Partition by country and place each country’s data on a separate file/filegroup

 Negative: more management overhead and potentially sizing complexity
 Example 2: Hash-based partitioning using a persisted computed column using a simple

modulo (and, can also support un-aligned indexes for nonclustered performance)
 Negative: more management overhead (removes the sizing complexity and offers load

balancing)

 Basically, step 2 is that you want to make page/row allocation as fast as
possible!

 FYI: PAGELATCH_EX waits and heavy inserts: http://tinyurl.com/o4xpxxb

34
© SQLskills, All rights reserved.

https://www.SQLskills.com

Clustering on an Identity
The Bad

 What about “range” queries and optimization?
 Problem: tuning query performance then focuses on nonclustered

indexes and indexed views
 Not really a problem: tuning low-selectivity/range queries with

nonclustered indexes is NOT really a bad thing:
 Faster access to low selectivity range queries
 Nonclustered indexes are used in numerous non-obvious ways (multiple

nonclustered indexes can be joined to cover a query)
 More flexible in definition (i.e. indexed view can include computations,

substrings, etc. BUT [first index] must be CLUSTERED UNIQUE: if view already
has a unique key definition it simplifies the indexed view)

 Fragmented nonclustered indexes are easier to rebuild (only requires a
shared table lock)

 Nonclustered indexes are easier to keep less fragmented – i.e. more frequent
rebuilds and fillfactor helps more because row is narrower/smaller

18

35
© SQLskills, All rights reserved.

https://www.SQLskills.com

Key Constraints Create Indexes

 Primary key constraint
 Defaults to unique clustered
 Only one per table

 Unique key constraints
 Default to unique nonclustered
 Maximum of 249 per table and up to 999 per table in SQL Server 2008+

ALTER TABLE Employee
ADD CONSTRAINT EmployeePK
PRIMARY KEY CLUSTERED (EmployeeID)

ALTER TABLE Employee
ADD CONSTRAINT EmployeeSSNUK
UNIQUE NONCLUSTERED (SSN)

36
© SQLskills, All rights reserved.

https://www.SQLskills.com

Primary Key Does NOT Have to Be
the Clustering Key

 Primary key: relational integrity
 Clustering key: internal mechanism for looking up rows (infamous

bookmark lookup)

 SQL Server enforces uniqueness of a primary key through an index
and defaults to clustered
 (1 CL index per table, 1 PK per table)

 If the primary key is a natural key then you probably want to enforce it
with a nonclustered index

 If the table doesn’t have a column (or small set of columns) that meets
these criteria then consider adding a surrogate [identity] key and then
cluster it!

19

37
© SQLskills, All rights reserved.

https://www.SQLskills.com

Nonclustered Index Overview

 Not required, although critical to achieving optimal performance
 Maximum of 249 per table and increased to 999 per table in SQL

Server 2008+
 Leaf structure separate from base table
 Based on the heap’s fixed RID or clustering key
 Logical order of index entries maintained through a doubly-linked list
 By far the type of index for range queries if it covers the

query!
Don’t ask for *, limit your queries!!!

38
© SQLskills, All rights reserved.

https://www.SQLskills.com

Physical Index Levels
Generic Overview

 Leaf level: contains something for every row of the table in indexed
order

 Non-leaf level(s) or B-tree: contains something, specifically
representing the FIRST value, from every page of the level below.
Always at least one non-leaf level. If only one, then it’s the root and
only one page. Intermediate levels are not a certainty.

B-tree or
Non-leaf level(s)

1-n

…Leaf

Root page

Level 0

Level 1

Level 2

Intermediate

20

39
© SQLskills, All rights reserved.

https://www.SQLskills.com

Employee Table Case Study

 Employee table assessments
 Clustered Employee table

 Physically order data
 Add the B-tree (B+ tree, which means it’s not kept balanced)
 Complete math
 Complete clustered index structure

 Nonclustered unique constraint for SSN
 Build separate leaf level
 Add the B-tree (B+ tree)
 Complete math
 Complete nonclustered index structure

40
© SQLskills, All rights reserved.

https://www.SQLskills.com

Employee Table: Assessments

 Average row size = 400 bytes/row



 80,000 current Employees ∴ rows

8,096 bytes / page
400 bytes / row

= 20 rows/page

80,000 employees
20 rows / page

= 4,000 pages

8KB = 8,192 bytes
Header 96 bytes

8,096 bytes

CREATE TABLE Employee
(
EmployeeID Int NOT NULL Identity,
LastName nvarchar(30) NOT NULL,
FirstName nvarchar(29) NOT NULL,
MiddleInitial nchar(1) NULL,
SSN char(11) NOT NULL,
…other columns…)

21

41
© SQLskills, All rights reserved.

https://www.SQLskills.com

Clustered Employee Table

 Step 1: Physically order data

Review the index level definitions…
Does this seems to match one of the definitions?

Yes!
When a table is clustered

the data becomes the leaf level of the clustered index!

…
4,000 pages of Employees in clustering key order

1, Griffith, …

2, Ulaska, …

3, Johnson, …

…

20, Morrisson, …

21, Ambers, …

22, Johany, …

23, Smith, …

…

40, Griffen, …

41, Shen, …

42, Alberts, …

43, Landon, …

…

60, Lynne, …

79981, Geller, …

79982, Smith, …

79983, Jones, …

…

80000, Kirkert, …

79961, Kiesan, …

79962, Simon, …

79963, Geller, …

…

79980, Debry, …

79941, Baker, …

79942, Shehy, …

79943, Laws, …

…

79960, Miller, …

File1, Page 5982 File1, Page 5983 File1, Page 5984 File1, Page 9979 File1, Page 9980 File1, Page 9981

42
© SQLskills, All rights reserved.

https://www.SQLskills.com

Clustered Employee Table

Step 1: Physically order data
Step 2: Add the tree structure

starting from the leaf level and going up to a root of 1 page
B-tree entry = index key value + pointer + row overhead*

Pointer = page pointer of 6 bytes = 2 for fileID + 4 for pageID
Row overhead varies based on many factors

(min of 1 byte in the row)

Non-leaf level entry for clustered index on EmployeeID = 11
4 bytes for EmployeeID (int) + 6 bytes for page pointer
+ 1 byte for row overhead

How many entries to store?
Remember – a non-leaf level contains one entry for every PAGE of the level below.

8,096 bytes / page
11 bytes / entry + 2 bytes in slot array

622 index entries
per non-leaf level page=

4,000

22

43
© SQLskills, All rights reserved.

https://www.SQLskills.com

Clustered Employee Table

Step 1: Physically order data
Step 2: Add the B-tree

starting at the leaf level and working up to a root of 1 page

= 7 pages in the first B-tree level
4,000 entries to store

622 entries/page

Intermediate level

= 7 pages

File1, Page 5982 File1, Page 5983 File1, Page 5984 File1, Page 9979 File1, Page 9980 File1, Page 9981

…
1, Griffith, …

2, Ulaska, …

3, Johnson, …

…

20, Morrisson, …

21, Ambers, …

22, Johany, …

23, Smith, …

…

40, Griffen, …

41, Shen, …

42, Alberts, …

43, Landon, …

…

60, Lynne, …

79981, Geller, …

79982, Smith, …

79983, Jones, …

…

80000, Kirkert, …

79961, Kiesow, …

79962, Simon, …

79963, Gellock, …

…

79980, Debry, …

79941, Baker, …

79942, Shehy, …

79943, Laws, …

…

79960, Miller, …

1, 1, 5982

21, 1, 5983

41, 1, 5984

…

~12421

~74641

…

79941, 1, 9979

79961, 1, 9980

79981, 1, 9981

File1, Page 12982 File1, Page 12986

…
Pages are filled until they

move to the next page

622 rows, 622 rows,

622 rows, … , 268 rows

44
© SQLskills, All rights reserved.

https://www.SQLskills.com

Clustered Employee Table

Step 2: Complete the B-tree
continuing up to a root of 1 page

…
1, Griffith, …

2, Ulaska, …

3, Johnson, …

…

20, Morrisson, …

21, Ambers, …

22, Johany, …

23, Smith, …

…

40, Griffen, …

41, Shen, …

42, Alberts, …

43, Landon, …

…

60, Lynne, …

79981, Geller, …

79982, Smith, …

79983, Jones, …

…

80000, Kirkert, …

79961, Kiesow, …

79962, Simon, …

79963, Gellock, …

…

79980, Debry, …

79941, Baker, …

79942, Shehy, …

79943, Laws, …

…

79960, Miller, …

File1, Page 5982 File1, Page 5983 File1, Page 5984 File1, Page 9979 File1, Page 9980 File1, Page 9981

…
1, 1, 5982

21, 1, 5983

41, 1, 5984

…

~12421

~74641

…

79941, 1, 9979

79961, 1, 9980

79981, 1, 9981

File1, Page 12982 File1, Page 12986

1, 1, 12982

12441, 1, 12983

24881, 1, 12984

…

74641, 1, 12986

File1, Page 12987

Root

= 1 page

Intermediate level

= 7 pages

B-tree

total overhead in

terms of disk

space

= 8 pages

or < 1%

Leaf level

4,000

pages

23

45
© SQLskills, All rights reserved.

https://www.SQLskills.com

Nonclustered Index
Unique Constraint on SSN

 Leaf level entry for nonclustered index
= NC index column(s) + row lookup ID + row overhead
 Row lookup ID = fixed RID (if heap) or clustering key
 Row overhead = TagA byte (1) + Null block (min of 3) + additional overhead as

needed (are there variable-width columns?)
= TagA (1 byte) + SSN (11 bytes) + EmployeeID (4 bytes) + Null block (3 bytes)
= 19 bytes/entry + 2 bytes in the slot array

 Entries per leaf level page

 Pages for leaf level

8,096 bytes/page
19 bytes/entry + 2 bytes in slot array

385 index entries
per leaf level page=

80,000 rows
385 rows/page

208 pages=

46
© SQLskills, All rights reserved.

https://www.SQLskills.com

Nonclustered Index
Unique Constraint on SSN

 The leaf level of the nonclustered index is built first…
 SQL Server will duplicate the SSN and EmployeeID for EVERY ROW and

order it by the index definition (ascending by default).
 Every INSERT/DELETE will need to touch each nonclustered index; SQL

Server will keep them up-to-date and current.

80,000 – SSN, EmployeeID Pairs = 208 Pages

…
…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

997-07-9915, 4001

…

…

…

…

…

…

…

…

…

…

File1, Page 16897 File1, Page 16898 File1, Page 16899 File1, Page 18110 File1, Page 18111 File1, Page 18112

385
entries

385
entries

385
entries

385
entries

305
entries

000-00-0184, 31101
000-00-0236, 22669

000-00-0395, 18705

013-00-6001, 11932

24

47
© SQLskills, All rights reserved.

https://www.SQLskills.com

Nonclustered Index
Unique Constraint on SSN

 Non-leaf level entry for nonclustered index
= NC index column(s) + row lookup ID* + pointer + row overhead
 *The Row lookup ID is only included when the nonclustered is nonunique =

fixed RID (if heap) or clustering key
 Row overhead = TagA byte (1) + Null block (min of 3) but only when there

are nullable columns in the index row + additional overhead as needed (are
there variable-width columns?)

= TagA (1 byte) + SSN (11 bytes) + pointer (6 bytes)
= 18 bytes/entry + 2 bytes in the slot array

8,096 bytes/page
18 bytes/entry + 2 bytes in slot array

404 index entries
per non-leaf level page=

208 rows
404 rows/page

= 1 page = root

48
© SQLskills, All rights reserved.

https://www.SQLskills.com

File1, Page 19197

208
entries

Root = 1 page

Leaf level
208 pages

Total overhead in terms
of disk space

= 209 pages
or < 5%

Nonclustered Index
Unique Constraint on SSN

…
…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

997-07-9915, 4001

…

…

…

…

…

…

…

…

…

…

File1, Page 16897 File1, Page 16898 File1, Page 16899 File1, Page 18110 File1, Page 18111 File1, Page 18112

385
entries

385
entries

385
entries

385
entries

305
entries

000-00-0184, 31101
000-00-0236, 22669

000-00-0395, 18705

013-00-6001, 11932

25

49
© SQLskills, All rights reserved.

https://www.SQLskills.com

Clustering Key Columns WHERE? (1 of 2)
Where do They Go Within Nonclustered Indexes?

 What if:
CREATE UNIQUE CLUSTERED INDEX IXCL

ON tname (c6, c8, c2)

CREATE NONCLUSTERED INDEX IXNC1
ON tname (c5, c2, c4)

 Leaf level: c5, c2, c4, c6, c8
 KEY/btree: c5, c2, c4, c6, c8

CREATE UNIQUE NONCLUSTERED INDEX IXNC1
ON tname (c5, c2, c4)

 Leaf level: c5, c2, c4, c6, c8
 KEY/btree: c5, c2, c4

 Key points:
 Clustering key columns are added only ONCE to your nonclustered indexes
 Where they are added (leaf only or all the way up the tree) is based on

whether or not the nonclustered is nonunique. When nonunique, the CL key
goes up the tree.

50
© SQLskills, All rights reserved.

https://www.SQLskills.com

Clustering Key Columns WHERE? (2 of 2)
Where do They Go Within Nonclustered Indexes?

CREATE NONCLUSTERED INDEX IXNC1
ON tname (c5, c4)
 Leaf level: c5, c4, c6, c8, c2
 KEY/btree: c5, c4, c6, c8, c2
 Can seek on any left-based subset of the tree:

 c5
 c5, c4
 c5, c4, c6
 c5, c4, c6, c8
 c5, c4, c6, c8, c2

CREATE UNIQUE NONCLUSTERED INDEX
IXNC1 ON tname (c5, c4)

 Leaf level: c5, c4, c6, c8, c2
 KEY/btree: c5, c4
 Can seek on any left-based subset of the tree:

 c5
 c5, c4

If you NEED CL Key columns for seeking…
CREATE NONCLUSTERED INDEX IXNC1

ON tname (c5, c2, c4)
 Leaf level: c5, c2, c4, c6, c8
 KEY/btree: c5, c2, c4, c6, c8
 Can seek on any left-based subset of the tree:

 c5
 c5, c2
 c5, c2, c4
 c5, c2, c4, c6
 c5, c2, c4, c6, c8

CREATE UNIQUE NONCLUSTERED INDEX
IXNC1 ON tname (c5, c2, c4)

 Leaf level: c5, c2, c4, c6, c8
 KEY/btree: c5, c2, c4
 Can seek on any left-based subset of the tree:

 c5
 c5, c2
 C5, c2, c4

CREATE UNIQUE CLUSTERED INDEX IXCL
ON tname (c6, c8, c2)

Same clustered index:

26

51
© SQLskills, All rights reserved.

https://www.SQLskills.com

Index Internals
What Do We Know?

 Clustered index leaf level IS the data
 Nonclustered index leaf level is duplicate data, in a separate structure

and automatically maintained as changes occur
 B-trees are built on top of the leaf level up to a root of one page
 Nonclustered index is based on the clustered Index when the table is

clustered…

Why do we need to know?

reminder slide

52
© SQLskills, All rights reserved.

https://www.SQLskills.com

Index Internals
What Should We Do?

 OLTP tables or mixed workload tables
 Consider a clustered index with an ever-increasing identity column

 Creates a hot spot of activity, ensuring minimal cache requirements
 Inserts won’t cause splits
 The clustering key is already unique

 DSS/analysis tables
 Will want more nonclustered indexes so you still need to be aware of the

clustering key size…

 Characteristics of most/general importance:
 Narrow, unique, and static
 Ever-increasing (reduced insertion points)

reminder slide

27

53
© SQLskills, All rights reserved.

https://www.SQLskills.com

Review

 Index concepts
 Table structure
 Index internals

 Heaps
 Why cluster
 Table usage
 Employee table case study

 Clustering key columns in nonclustered indexes
 Indexing for Performance

 What do we know?
 What should we do?
 Suggestions for the clustering key!

Questions!

