
1

SQLskills Immersion Event
IEPTO1: Performance Tuning and Optimization

Module 11: Cardinality Estimation Issues
Kimberly L. Tripp

Kimberly@SQLskills.com

2
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Selectivity and estimates
 Query complexity
 Estimates from statistics

 Sampling
 The histogram
 Filtered statistics
 Uneven distribution

 Migrations / Upgrades / Regressions
 Appendix: Changes to Cardinality Estimation (CE) in SQL 2014

2

3
© SQLskills, All rights reserved.

https://www.SQLskills.com

It Starts with Selectivity

 Not just based on the number of rows returned
 Always relative to the number of rows possible (based on input)
 Determined by your predicates:

 A single predicate is relatively easy (but, still has potential problems)
 Sampling
 Existence
 Accuracy (in larger and / or skewed sets)

 Multiple predicates – quickly complicates the problem
 Formulas exists in each of the models with optional trace flags to use different

estimates

 Determined by your joins:
 What is the likelihood of a match?

 PROBLEM: Lots of things to consider, lots of choices for SQL to make
and NONE of those decisions work ALL the time

4
© SQLskills, All rights reserved.

https://www.SQLskills.com

Selectivity Makes or Breaks Your Plan

 The more complicated the predicates, the joins, etc. the harder it is to
calculate how those translate up the chain of operations

 In complicated plans, each individual operator estimates its cost
based on the estimate passed as input

 Each estimate is a major factor in deciding:
 Physical operator algorithms
 Plan shapes (such as join orders)

 If the estimates are wrong then the entire plan can be a mess…

hidden slide
w/extra details

3

5
© SQLskills, All rights reserved.

https://www.SQLskills.com

Legacy CE Model Assumptions (1 of 2)

 A value queried is expected to exist (inclusion)
 If there’s a step = yes, it exists and the step’s value will be used
 If the value falls within a step then the average (uniformity) will be used

 For values that don’t exist – this average might be WAY off
 Imagine that a step covers the values from 101 to 200

 There are 250K rows in that range
 There are 5 actual values = 115, 135, 167, 172, 195
 The average will be 250K / 5 = 50K
 The “estimated” number of rows for EVERY value possible (102, 103, 104, etc.) will

be 50K even though there are only 5 values (they expect that you’re querying a
EXISTING value)

hidden slide
w/extra details

6
© SQLskills, All rights reserved.

https://www.SQLskills.com

Legacy CE Model Assumptions (2 of 2)

 Statistics from separate columns are not correlated (independence)
 Column city and column state are NOT related

 1/3 of your data is for IL and 1/4 of your data is for Chicago
 How much of your data is for Chicago, IL?

 We think ¼
 Minimum (1/4) must be correct because we know ALL of the Chicago rows

are in IL

 The CE thinks 1/12
 .33 x .25 = .0825

 1/5 of your data is for KS and 1/8 of your data is for Kansas City
 How much of your data is for Kansas City, KS?

 This is more interesting though, right? Harder to estimate…

NOTE: Multi-column statistics or a composite index can solve these problems. And,

there are trace flags to handle the first situation: TF 4137 in legacy CE / TF 9471 in

new CE; this tells the QO to use the minimum and not the calculation / independence.

hidden slide
w/extra details

4

7
© SQLskills, All rights reserved.

https://www.SQLskills.com

Estimates from Statistics

 Impossible to estimate correctly – ALL of the time
 Assumptions may work for some scenarios and are AWFUL for others
 Don’t worry as much about the precise calculation
 Things to think about when you have “statistics” problems:

 Are they current?
 Are they being updated automatically with AUTO_UPDATE_STATS or manually

with an automated script?
 Should we increase the frequency for updating these statistics?

 Were they created using sampling?
 Does it improve the estimation if I use FULLSCAN instead of sampling?

 Which CE model are you using?
 Does using the other CE model fix the problem?

 Can you rewrite the query and get a better estimate / plan?
 Can you create a new index (or better [maybe filtered] statistics) to help

improve the estimate / plan?

8
© SQLskills, All rights reserved.

https://www.SQLskills.com

Sampling: Always Good?

 Using *actual* showplan tooltip – estimate v. actual rows
 If query performance is poor AND the actual is significantly OFF from

the estimate then you might want to verify the statistics creation
(rows v. rows scanned)

 If statistics were based on a sampling and performance is improved
after statistics have been updated with FULLSCAN, then you might
want to turn off auto updating for this index (using
STATISTICS_NORECOMPUTE at the index-level or NORECOMPUTE at
the statistics-level) and schedule an UPDATE STATISTICS WITH
FULLSCAN instead

UPDATE STATISTICS …
WITH FULLSCAN

5

9
© SQLskills, All rights reserved.

https://www.SQLskills.com

Changes to Sampling Over the Versions

 Prior to SQL Server 2016, sampling was not parallelized
 Often, prior to 2016, it was better (even faster) to FULLSCAN with parallelism

(when possible / off hours) than it was to serialize with sampling
 In 2016 and higher, parallelism is used when the database compatibility

model is 130 or higher
 Default sample size is tied to the size of the data
 If you find it’s not yielding good numbers, you can TRY increasing

sample size until you get a good percentage (note, this may still have
problems for other values / steps)
 Once you find an adequate sample size, use PERSIST_SAMPLE_PERCENT =

ON to retain that sample size on subsequent rebuilds, including auto
updates

 Using RESAMPLE, on the whole table uses the persisted sample sizes
(per statistic) to update statistics

 To sample or not to sample…

10
© SQLskills, All rights reserved.

https://www.SQLskills.com

Very Large Tables (VLTs) Present Problems

 There are numerous problems that large tables present, some of the
more frustrating are related to statistics
 Incremental builds in partitioned tables help but don’t solve the accuracy

problem with the histogram
 The accuracy problems created because of the limited number of steps in

the histogram (more on this coming up)

 What if you had MORE but smaller tables…
 Current month (highly volatile / relatively small)

 Easier to update more frequently
 Fewer problems with estimates and min / max values

 Prior months (less volatile / relatively small when isolated)
 Easier to update with updates less and less frequent as time moves forward

 Eventually, data moves into read-only state
 Final update statistics with FULLSCAN

6

11
© SQLskills, All rights reserved.

https://www.SQLskills.com

Concerns Around the Histogram

 Stores ACTUAL values from the FIRST (and only first) column of the key
 Sometimes referred to as the leading column of the index
 Sometimes referred to as the high-order element of the index

 Never stores more than 201 steps (up to 200 distinct/actual values
plus 1 NULL values row – if the column allows NULLs)

 Even when your table has more than 200 distinct values, you may
have fewer than 200 steps

 Values chosen aren’t evenly distributed
 Internally, during statistics creation, SQL compresses steps to make room for

more. They try to track “interesting” values/anomalies but the more
compression that occurs, the more they lose outliers

 Has the best information – but how good is it?
 This is really the issue. And, unfortunately, it depends – mostly on how

skewed the data distribution is…

Important: Describes the entire table… even when partitioned

12
© SQLskills, All rights reserved.

https://www.SQLskills.com

Data Distribution Matters

 Even distribution is easy
 Think about “line items per sales order”

 That’s probably fairly consistent at 2 or 3

 Un-even distribution is HARDER
 Think about sales per product

 This is all over the place – and varies over time as well…

 Think about sales per customers
 Again, all over the place – and, again, varies over time…

 The histogram does a MUCH better job having steps and average
distribution per step but what if there are well over 200 distinct values
(tens of thousands) and millions of rows with heavy skew between
steps?

 Simply put, the averages just aren’t going to cut it anymore…

7

Demo

Understanding the histogram
What information is stored in the histogram?
How does SQL Server use it?

14
© SQLskills, All rights reserved.

https://www.SQLskills.com

Demo: Key Points

 Very useful to help the optimizer assess the usefulness of an existing
index (whose histogram is not as accurate due to skew [and probably
table size])

 Take a slightly skewed example: sales by customer
 Sales: 30,923,776
 Customers: 18,484
 Average = 30,923,776 /18,484 = 1,673
 All density (from density_vector of statistics) = 5.410084E-05 multiplied by

rows = 1,673
 Skew  high: 30,000+ (only ~6), Low: ~500 (thousands)
 Not every value can possibly be represented in 200 steps (for histogram)
 Occasionally, they’ll be wrong – average might not be good enough… enter

 filtered statistics
 Not an index, just a statistics blob… (smaller, easier to maintain, more

accurate over that set)

8

15
© SQLskills, All rights reserved.

https://www.SQLskills.com

Assessing Level Of Data Skew

 Can we access the histogram – programmatically?
INSERT TemporaryWorktable

EXEC (“DBCC SHOW_STATISTICS … WITH HISTOGRAM”)
 Should be easy enough? (er, famous last words)

 RANGE_HI_KEY (if you want to analyze it against the base table, needs to be the
same data type as the base table)

 LOTS of dynamic string execution and different lookups to reconstruct data types
(including collations)

 Which, by the way – has a slightly different syntax when in a CAST clause vs. in a
column definition

 End result: [sp_SQLskills_AnalyzeColumnSkew]
 Plus, [sp_SQLskills_AnalyzeAllLeadingIndexColumnSkew]

 Both need to be added to master and marked as system objects:
EXEC [sys].[sp_MS_marksystemobject]

'sp_SQLskills_AnalyzeAllLeadingIndexColumnSkew'

16
© SQLskills, All rights reserved.

https://www.SQLskills.com

Assessing Level of Data Skew

 Parameters and uses for this:
[sp_SQLskills_AnalyzeColumnSkew]

@schemaname sysname = NULL
, @objectname sysname = NULL
, @columnname sysname = NULL
, @difference int = 1000
-- Min diff between average and largest difference in that step

, @factor decimal(5, 2) = 2.5
-- Min factor of the difference against the average

, @numofsteps tinyint = 10
-- Min number of steps that have to meet this/these

, @percentofsteps tinyint = 10
-- Minimum PERCENT of steps that have to meet this/these

, @keeptable char(5) = 'FALSE'
-- If TRUE keeps ALL of the worktables

, @tablename nvarchar(520) = NULL OUTPUT
-- Fully delimited name of the worktable in tempdb

 Lots of options and relatively low impact (requires an index that has
the column specified [@columnname] as the leading column)

9

17
© SQLskills, All rights reserved.

https://www.SQLskills.com

Scripts: Key Points

 Not everyone will have skewed data
 Might already suspect you have a problem

 Poor estimates where you’ve tried:
 Updating statistics more frequently
 Updating statistics with FULLSCAN more frequently
 Adding OPTION (RECOMPILE) to your code
 But… it still didn’t work – the estimates were still off

NOTE: There are still other things it could be. But, here’s where this proc can really help you to
understand what your data really looks like!

 Target only specific (probably large [over 50-60GB]) tables
 NOTE: It’s not the size of the table that’s important here – even a small table

that’s 100-200MB can show signs of skew. But, the performance problems
that result from a small table just aren’t as noticeable.

 Don’t forget to clean up the worktables in tempdb:
EXEC [sp_SQLskills_HistogramTempTables] @management = 'DROP'

18
© SQLskills, All rights reserved.

https://www.SQLskills.com

Filtered Statistics For The Entire Table? (1)

 We’ve determined there’s skew – now what?
 Manually create a whole bunch of filtered stats?

 How do we break down the data?
 How do we account for new rows?
 How do we maintain this?

 Here’s the idea – imagine 20,000 customers (1 to 20,000)

CREATE STATISTICS FilteredStat
ON [schemaname].[tablename] ([columnname])
WHERE [columnname] >= 1
AND [columnname] < 2000

2001 to
4000

4001 to
6000

6001 to
8000

8001 to
10000

10001 to
12000

12001 to
14000

14001 to
16000

16001 to
18000

18001 to
20000

Sales table (one large table)

10

19
© SQLskills, All rights reserved.

https://www.SQLskills.com

Filtered Statistics For The Entire Table? (2)

 So, that seemed simple
 Not all data is as simple as an ever-increasing integer
 Most data actually changes… (what happens with new rows over 20,000)
 How would we automate this process?

 End result:
[sp_SQLskills_CreateFilteredStats]

 Needs to be added to master and marked a system object:
EXEC [sys].[sp_MS_marksystemobject] 'sp_SQLskills_CreateFilteredStats'

 Requires a couple of other procedures:
 [sp_SQLskills_CreateFilteredStatsString]
 [sp_SQLskills_DropAllColumnStats]

20
© SQLskills, All rights reserved.

https://www.SQLskills.com

Automating Filtered Statistics Creation

 Parameters and uses for this:
[sp_SQLskills_CreateFilteredStats]

@schemaname sysname = NULL
, @objectname sysname = NULL
, @columnname sysname = NULL
, @filteredstats tinyint = 10
-- Number of filter chunks to define

, @everincreasing bit = 0
-- depending on whether or not your table is ever increasing

, @maxforfs sql_variant = NULL
-- Projected value to extend out until the next redistribution

, @fullscan varchar(8) = NULL
-- Generate the statistic using a FULLSCAN or SAMPLE

, @samplepercent tinyint = NULL
-- If @fullscan = SAMPLE, do you want to override SQL’s sample

 Lots of options and relatively low impact to create (will leverage an
existing index; fullscan might require that index to end up in cache)

 Might not give you any benefits and it will need to be maintained!

11

21
© SQLskills, All rights reserved.

https://www.SQLskills.com

Scripts: Key Points

 Must supply values, cannot use only the defaults
 You’ll need to estimate a new max value based on:

 How long you want these filtered statistics to live
 How much data churn/change you see in these values

 Each time you run this, ALL SQLskills-created, column-level, filtered
statistics previously created are deleted.
 Other, user-created, filtered statistics are NOT deleted – you will want to

remove those as they might overlap with these and cause problems

 If you want to clean up the SQLskills-created, filtered stats:
EXEC [sp_SQLskills_DropAllColumnStats]

@schemaname = N'dbo'
, @objectname = N'factinternetsales'
, @columnname = N'customerkey'
, @dropall = N'TRUE'

22
© SQLskills, All rights reserved.

https://www.SQLskills.com

How Many Filtered Indexes/Stats?
Per Table

 SQL Server 2000
 Columns: 1,024
 Nonclustered indexes: 249
 Statistics: 249 (shared with nonclustered)

 SQL Server 2005
 Columns: 1,024
 Nonclustered indexes: 249
 Statistics: 2,000 (referenced in sys.stats)

 SQL Server 2008/R2
 Columns: 30,000
 Nonclustered indexes: 999
 Statistics: 10,000 (30,000 in R2)

hidden slide
w/extra details

12

23
© SQLskills, All rights reserved.

https://www.SQLskills.com

Valid Index IDs

 Table always has at least one index id
 For a heap the index id is always 0
 For a clustered table the index id is always 1
 Nonclustered indexes can start at 2

 999 nonclustered indexes per table
 Index ids start with 2 but statistics use the same counter range
 Index ids 251 through 255 are reserved (from prior use cases)

 NOTE: 255 was used in earlier releases but 251-254 have never been used (at least
not that I know of )

 30,000 statistics per table (SQL Server 2008 R2+)
 Index and statistics ids run from 2 to 250 and from 256 to 31005

 NOTE: The datatype used is int (sys.indexes.index_id and sys.stats.stats_id).
Technically they could support more...

hidden slide
w/extra details

24
© SQLskills, All rights reserved.

https://www.SQLskills.com

This Is So Cool…
But, It Won’t Always Work… Sigh

 Session setting requirements for filtered indexes do NOT apply to the
creation OR usage of filtered statistics

 Interval subsumption problems
 Might be able to do a query rewrite but this is kind of a nightmare

 Might be able to add recompile
 Might be able to add a plan guide

 To be honest, there are better – architectural ways – to handle very
large tables with skew problems
 Don’t have very large tables

 Create multiple tables and union them together as a view
 Partitioned Views (UNION ALL and constraints)

13

25
© SQLskills, All rights reserved.

https://www.SQLskills.com

Session Settings Requirements
APPLY Only to Filtered Indexes (NOT Filtered Statistics)

 See BOL topic: Set Options that Affect Results
 Session settings control behavior – and the result of some

computations
 Data in these persisted structures must be consistent (which is why

these apply to filtered indexes)
 Session settings that must be on:

 ANSI_NULLS
 ANSI_WARNINGS
 QUOTED_IDENTIFIER
 CONCAT_NULL_YIELDS_NULL
 ANSI_PADDING
 ARITHABORT

 Session setting that must be off:
 NUMERIC_ROUNDABORT

Msg 1934, Level 16,
State 1, Line 1

CREATE INDEX failed because the
following SET options have
incorrect settings:
'QUOTED_IDENTIFIER'. Verify that
SET options are correct for use
with indexed views and/or indexes
on computed columns and/or
filtered indexes and/or query
notifications and/or XML data
type methods and/or spatial index
operations.

hidden slide
w/extra details

26
© SQLskills, All rights reserved.

https://www.SQLskills.com

Client Consistency Requirements
APPLY Only to Filtered Indexes (NOT Filtered Statistics)

 Consistency with table(s), view and the clustered index (on the view)
creation OR table and the filtered index
 All tables on which the view is based, the view itself and the index must be

created with the correct session settings set or the index cannot be created
on the view

 Consistency with base table access
 All INSERT, UPDATE and DELETE statements must be executed with correct

session settings or the insert, update or delete will fail

 Consistency with query access
 All queries that SELECT against views with indexes (or tables with filtered

indexes) must access them with the correct session settings set otherwise
the data will need to be recalculated, rejoined or recomputed

hidden slide
w/extra details

14

27
© SQLskills, All rights reserved.

https://www.SQLskills.com

Interval Subsumption (1 of 2)
Filter use (per query)

 Filters (indexes/statistics) cannot be used when the query’s predicate
is not a subset of a SINGLE filter interval:
 Filtered index: January data

 WHERE [date] >= '20110101' AND [date] < '20110201'
 Filtered index: February data

 WHERE [date] >= '20110201' AND [date] < '20110301'
 Predicates and their usage:

 WHERE [date] = '20110115' YES
 WHERE [date] BETWEEN '20110105' AND '20110115' YES
 WHERE [date] BETWEEN '20110115' AND '20110215'

NO, cannot use multiple filtered objects

 BAD NEWS: This is why there’s no such thing as partition-level
statistics. SQL Server cannot combine the filtered indexes and use
them individually. So, you need a table-level index (that’s partition-
aligned) but the statistics are less accurate.

28
© SQLskills, All rights reserved.

https://www.SQLskills.com

Interval Subsumption (2 of 2)
Filter use (per query)

 Filtered statistics examples:
 Filtered statistic over a range:

 WHERE ([CustomerKey]>= 11000 AND [CustomerKey] < 11566)
 Filtered statistic over a range:

 WHERE ([CustomerKey]>= 11566 AND [CustomerKey] < 12363)
 Predicates and their usage:

 WHERE [c].[CustomerKey] IN (11509, 11503, 11123) YES
YES, all values are in only ONE filtered statistic

 WHERE [c].[CustomerKey] IN (11509, 12345)
NO, cannot use multiple filtered objects
WORKAROUND: Use dynamic string execution to UNION ALL the individual
values

 Predicates and their usage:
 WHERE [c].[CustomerKey] BETWEEN 11500 AND 11600

NO, cannot use multiple filtered objects
GOOD NEWS: The larger the range, the less you need to use the more accurate
values (averages are fine when they’re over larger ranges)

15

Demo

Interval subsumption
When won’t SQL Server use a filtered object?
Is there a workaround?

30
© SQLskills, All rights reserved.

https://www.SQLskills.com

The Bad News…

 Filtered indexes/filtered stats: stats may get HORRIBLY out of date:
 SQL Server ONLY tracks a colmodctr NOT related to the filtered set or size. As

a result, the stats (even filtered stats) are only invalidated when the
threshold has been reached

 For better performance, you need to automate and control their updates (do
NOT rely on “auto update statistics”)

 Good news is that they’re relatively small and creating a job to automated
them is relatively easy!

 See this blog post:
https://www.SQLskills.com/BLOGS/KIMBERLY/post/Filtered-indexes-and-
filtered-stats-might-become-seriously-out-of-date.aspx (http://bit.ly/1knEE2)

 Stored procedures and sp_executesql will not use filtered objects
unless you recompile the statement [add OPTION (RECOMPILE)]

 Forced parameterization (the database option) will generalize
statements and many filters won’t be eligible during optimization

 Similar summary, don’t go wild with this feature; it has powerful – but
specific – uses!

16

31
© SQLskills, All rights reserved.

https://www.SQLskills.com

Evenly Distributed Data?

 Scenario
 You have 90 rows in a table
 10 rows have a value of x for column 6
 Where (physically) in this table are these 10 rows?

 They could be evenly distributed throughout the table…

 But, what if they’re not?

32
© SQLskills, All rights reserved.

https://www.SQLskills.com

Scenario: Unevenly Distributed Data

 Scenario
 AdventureWorksDW201x: FactInternetSales has 60,398
 2,541 rows have a null for ShipDateKey
 60,398/2,541 = 23.7 (1 in 23.7 rows is NULL)
 Nonclustered index on ShipDateKey
 Nonclustered index on OrderDateKey

 What does SQL Server do?

SELECT MIN([fis].[OrderDateKey])
FROM [dbo].[FactInternetSales2] AS [fis]
WHERE [fis].[ShipDateKey] IS NULL

17

33
© SQLskills, All rights reserved.

https://www.SQLskills.com

Even Distribution: Always Even??

 Table scan is always an option
 Use an index on ShipDateKey to look up the actual date for all orders

where ShipDateKey is NULL
 This means a bookmark lookup must be run for EVERY NULL so that we can

get the OrderDateKey
 The worktable then needs to be sorted to find the lowest order date

 Use an index on OrderDateKey as only 1 on 23.7 sales have a NULL for
ShipDateKey
 SQL Server estimates that they’ll find a NULL within 23.7 rows and they

won’t need a worktable
 This sounds better…

 But the rows are not evenly distributed!

34
© SQLskills, All rights reserved.

https://www.SQLskills.com

Evenly Distributed Data??

18

35
© SQLskills, All rights reserved.

https://www.SQLskills.com

Always Better: Indexes

 Statistics cannot be used to directly access data but:
 They can only HELP the optimizer determine a better plan
 They can help determine best join order

 Statistics are just estimates, they help MOST of the time but:
 There are limitations
 They take time to create, update, store…

 Indexing can often be A LOT better…

CREATE INDEX [ShipDateOrderDateInd_SeekableForMin]
ON [dbo].[FactInternetSales2]

([ShipDateKey], [OrderDateKey])

36
© SQLskills, All rights reserved.

https://www.SQLskills.com

= 1 ms

= 478,678 I/Os
= 2,221 ms

= 123,895,432 I/Os
= 67,285 ms

Always Better: Indexes

= 606,948 I/Os
= 250 ms

= 348 I/Os
= 32 ms

= 3 I/Os
= 0 ms

GREEN HINT

19

37
© SQLskills, All rights reserved.

https://www.SQLskills.com

Always Better: The RIGHT Indexes

 Every SINGLE QUERY can be indexed to make THAT SINGLE query fast
 You can’t index EVERY query unless you’re read-only/decision

support, and even then you’re limited by disk space (but that’s about
it…lots of indexes – yeah!)

 But a better choice is prioritizing and determining which queries
really need indexes!

 But, think about the least expensive fixes first
 Is it a cached plan? Maybe just a caching problem!
 Is it out-of-date stats? Might just need to increase the frequency of updates!
 Is it sampling? Change to fullscan!
 Or, it is more difficult  add statistics, change code, add indexes

38
© SQLskills, All rights reserved.

https://www.SQLskills.com

Compatibility Model and Cardinality Estimation
Models (1 of 2)

 Legacy CE model: refers to the model introduced with SQL Server 7.0
and used through SQL Server 2012 (shows as 70 in showplan)

 New CE model: refers to the model introduced in SQL Server 2014
 80 = SQL Server 2000
 90 = SQL Server 2005
 100 = SQL Server 2008 and SQL Server 2008 R2
 110 = SQL Server 2012

 Not every version supports every compatibility model
 When restored, a database KEEPs the compatibility mode that’s set in the

database when it was backed up (it is NOT upgraded)
 Exception: if the compatibility mode you were using is no longer supported then

it’s updated to the minimum compatibility model supported by the version of
SQL Server where you restored

 Resource: Optimizing Your Query Plans with the SQL Server 2014
Cardinality Estimator by Joe Sack http://bit.ly/1mFDB2t

 120 = SQL Server 2014
 130 = SQL Server 2016
 140 = SQL Server 2017
 150 = SQL Server 2019

20

39
© SQLskills, All rights reserved.

https://www.SQLskills.com

Compatibility Model and Cardinality Estimation
Models (2 of 2)

 From SQL Server BOL:
ALTER DATABASE (Transact-SQL) Compatibility Level

Product Database Engine
Version

Default Compatibility
Level Designation

Supported Compatibility
Levels

SQL Server 2019 (15.x) 15 150 150, 140, 130, 120, 110, 100

SQL Server 2017 (14.x) 14 140 140, 130, 120, 110, 100

Azure SQL Database 12 150 150, 140, 130, 120, 110, 100

Azure SQL Database
Managed Instance 12 150 150, 140, 130, 120, 110, 100

SQL Server 2016 (13.x) 13 130 130, 120, 110, 100

SQL Server 2014 (12.x) 12 120 120, 110, 100

SQL Server 2012 (11.x) 11 110 110, 100, 90
SQL Server 2008 R2 10.5 100 100, 90, 80
SQL Server 2008 10 100 100, 90, 80
SQL Server 2005 (9.x) 9 90 90, 80

SQL Server 2000 (8.x) 8 80 80

40
© SQLskills, All rights reserved.

https://www.SQLskills.com

Database Scoped Configurations

 SQL Server 2016 introduced “scoped configurations”
ALTER DATABASE SCOPED CONFIGURATION
LEGACY_CARDINALITY_ESTIMATION = { ON | OFF | PRIMARY }

 Creates confusion because now there’s more than one place to look
 Compatibility mode can be set to the NEW cardinality estimation model
 Database can still run the legacy CE using the scoped configuration

 Compatibility mode confusion:
 Meant to allow time for syntax changes after upgrade (time for you to fix your code but still upgrade)
 Optimizer fixes as of RTM

 Post-RTM fixes can be enabled with the scoped configuration option QUERY_OPTIMIZER_HOTFIXES

 Prior to 2014 that was it… in 2014 the compatibility model also changes to the new CE if set to 120 or
higher and to get the optimizer hotfixes you’d turn on trace flag 4199

 SQL Server 2016 adds the scoped configuration to separate these:
 Your database compatibility mode can be in 130, 140, or 150 – so you get optimizer

fixes/enhancements (not related to cardinality)
 You can enable the “legacy CE”
 IMPORTANT: If you need to downgrade your compatibility mode to get something to “work”

(outside of CE) then the SQL team considers that to very likely be a bug!

21

41
© SQLskills, All rights reserved.

https://www.SQLskills.com

Trace Flags vs. Query Hints

 Trace flags are meant more for administrative use
 Some are “global” only and do nothing at the session level

 See BOL under: scope “global only”
 Using DBCC TRACEON (#, -1) sets a trace flag globally but only until next restart
 Set as a startup option (-T #) if you want this set for each service restart

 Check FIRST to see if there’s a better way to set these AND re-check on each SP
/ upgrade

 Query hints are a MUCH better way of enabling these behaviors:
 OPTION clause for your query
 SELECT …

OPTION (USE HINT (‘query_hint’, ‘query_hint’)
 Example – instead of using trace flag 9481

SELECT …
FROM …
OPTION (USE HINT ('FORCE_LEGACY_CARDINALITY_ESTIMATION'))

42
© SQLskills, All rights reserved.

https://www.SQLskills.com

Legacy Cardinality Estimation Model:
Cardinality Estimation, Compatibility Mode, and Query Hints

 YUCK: Service-wide trace flag on start up (set in service manager)
 -T 9481

 Testing?: Temporary, but server-wide trace flag
 DBCC TRACEON (9481, -1)

 Better: Session-level Testing!  DBCC TRACEON (9481)
 SQL Server 2014: any compatibility mode less than 120
 SQL Server 2016+:

 Any compatibility mode less than 120
 Database compatibility mode >= 120 but scoped database configuration

option is on: ALTER DATABASE SCOPED CONFIGURATION
LEGACY_CARDINALITY_ESTIMATION = { ON | OFF | PRIMARY }

 Seeing which CE you’re using: (Properties Window with Showplan)
 CardinalityEstimationModelVersion: 70 (legacy)

22

43
© SQLskills, All rights reserved.

https://www.SQLskills.com

New Cardinality Estimation Model (1 of 2)
Cardinality Estimation, Compatibility Mode, and Query Hints

 Yuck: Service-wide trace flag on start up  -T 2312
 Testing: Temporary / server-wide trace flag  DBCC TRACEON (2312, -1)
 Better: Session-level Testing!  DBCC TRACEON (2312)
 SQL Server 2014: compatibility mode 120
 SQL Server 2016+:

 Any compatibility mode greater than or equal to 120
 Each compatibility mode has optimizer fixes AND sometimes subtle changes /

fixes to the cardinality estimation model
 If you want to use the cardinality estimation model for that database

compatibility model
 OPTION (USE HINT ('FORCE_DEFAULT_CARDINALITY_ESTIMATION'))
 Overrides using the legacy cardinality estimation model when set through the

database scoped configuration

 Continued on next slide

44
© SQLskills, All rights reserved.

https://www.SQLskills.com

New Cardinality Estimation Model (2 of 2)
Cardinality Estimation, Compatibility Mode, and Query Hints

 If you want to get ONLY the RTM optimizer fixes for that version
 OPTION (USE HINT ('QUERY_OPTIMIZER_COMPATIBILITY_LEVEL_n'))
 Does NOT affect the cardinality estimation model when set through the

database scoped configuration

 If you want to get the optimizer hotfixes post-RTM
 OPTION (USE HINT ('ENABLE_QUERY_OPTIMIZER_HOTFIXES'))
 Does NOT affect the cardinality estimation model when set through the

database scoped configuration
 Equivalent to trace flag 4199 (for more information see: DBCC TRACEON - Trace

Flags (Transact-SQL)

 Seeing which CE you’re using: (Properties Window with Showplan)
 CardinalityEstimationModelVersion: #

 120 = SQL Server 2014
 130 = SQL Server 2016
 140 = SQL Server 2017
 150 = SQL Server 2019

23

45
© SQLskills, All rights reserved.

https://www.SQLskills.com

Migrations / Upgrades / Regressions

 Option 1: Least surprise
 Upgrade existing databases (through backup / restore)
 Leave their existing compatibility level intact

 Restoring / attaching does not “upgrade” the compatibility level
 When troubleshooting, test trace flag 2312 against queries whose estimates are

inaccurate (see if they benefit from the new CE model)
 If so, add the OPTION hint in the specific query that benefits

 Option 2: Better / safer process + with ideal testing (2016 and higher)
 Change to that version’s compatibility level 130+ (for optimizer fixes)
 Set the legacy CE using the scoped configuration option
 TEST (using the query hints to see where beneficial)
 Change to the new CE by turning the database scoped configuration off

LEGACY_CARDINALITY_ESTIMATION = OFF

 TEST (possibly using the legacy CE if you find a query that needs it)
 Add the optimizer fixes post RTM with the database scoped configuration option
 TEST

46
© SQLskills, All rights reserved.

https://www.SQLskills.com

Review

 Selectivity and estimates
 Query complexity
 Estimates from statistics

 Sampling
 The histogram
 Filtered statistics
 Uneven distribution

 Migrations / Upgrades / Regressions
 Appendix: Changes to Cardinality Estimation (CE) in SQL 2014

24

47
© SQLskills, All rights reserved.

https://www.SQLskills.com

Resources

 Whitepaper: Optimizing Your Query Plans with the SQL Server 2014
Cardinality Estimator by Joe Sack http://bit.ly/1mFDB2t

 Books Online: ALTER DATABASE (Transact-SQL) Compatibility Level
 Books Online: DBCC TRACEON - Trace Flags (Transact-SQL)
 Books Online: Hints (Transact-SQL) – Query
 Automating the analysis skew (from histograms)

 Online PASS Recording: https://www.pass.org/
 Choose “All Recordings” from the “Learn” drop-down
 Then, enter a filter (left side) of Tripp (or, “skewed data”)
 Watch my PASS Summit 2013 presentation:

Skewed Data, Poor Cardinality Estimates, and Plans Gone Wrong

Questions!

25

Thank you!
We hope to see you at another Immersion Event!

SQLskills Immersion Event
IEPTO1: Performance Tuning and Optimization

Appendix: Changes to Cardinality
Estimation (CE) in SQL 2014

Kimberly L. Tripp
Kimberly@SQLskills.com

26

51
© SQLskills, All rights reserved.

https://www.SQLskills.com

Changes to Cardinality Estimation (CE) in SQL 2014

 CE model assumptions
 Correlation for multiple predicates – legacy CE model
 Correlation for multiple predicates – new CE model
 Minimum Estimate (Eliminate CE Calculation)
 Modified out-of-range value estimation (both models)
 Join estimate algorithm changes
 Simple containment
 Base containment
 Estimates from Join-Containment Queries (both models)
 Cardinality Estimation Models

52
© SQLskills, All rights reserved.

https://www.SQLskills.com

CE Model Assumptions

 Independence
 Filters are uncorrelated in absence of statistics indicating otherwise

 Uniformity
 Values in a histogram step are evenly distributed (spread) and have the same

frequency

 Inclusion
 When using a column-equal-constant predicate, it is assumed the value

actually exists

 Containment
 When estimating an equality join, it is assumed that there is a maximum

overlap of distinct values (think “PK-to-FK” relationship”)

27

53
© SQLskills, All rights reserved.

https://www.SQLskills.com

Correlation for Multiple Predicates
(Legacy CE model)

 “Independence” assumption at work…

 Selectivity of conjunctive predicates are computed as the
multiplication of individual selectivities

 Result: calculation expects even distribution across the predicates𝑝𝟎 ∗ 𝑝𝟏 ∗ 𝑝𝟐 ∗ 𝑝𝟒

54
© SQLskills, All rights reserved.

https://www.SQLskills.com

Correlation for Multiple Predicates
(New CE model)

 Predicates are sorted by selectivity, keeping only the four most
selective predicates for use in the calculation

 Successive predicate is then “softened” = The calculator name
references “ExponentialBackoff” – which is defined as “an algorithm
that uses feedback to multiplicatively decrease the rate of some process,
in order to gradually find an acceptable rate.”Rows ∗ 𝑝𝟎 ∗ 𝐏𝐎𝐖𝐄𝐑 𝑝𝟏,𝟎.𝟓∗ 𝐏𝐎𝐖𝐄𝐑ሺ𝑝𝟐,𝟎.𝟐𝟓ሻ ∗ 𝐏𝐎𝐖𝐄𝐑ሺ𝑝𝟑,𝟎.𝟏𝟐𝟓ሻ

 𝑝𝟎 = most-selective predicate
 𝑝𝟏 = second most-selective predicate (back off by 1/2)
 𝑝𝟐 = third most-selective predicate (back off by 1/4)
 𝑝𝟑 = forth most-selective predicate (back off by 1/8)

28

55
© SQLskills, All rights reserved.

https://www.SQLskills.com

Side-by-side CE Example w/Parameters & Variables

SELECT …
WHERE c1 = @v1 AND c2 = @p1

 Selectivity of c1 based on the density_vector (average number of rows
for a given c1 value) is 25% or 1/4

 Selectivity of c2 based on the histogram (parameter sniffing) is 1/10

 Legacy CE
 1/4 * 1/10 = 1/40

 New CE
 Most selective (1/10) multiplied by the next most selective with the fraction

squared
 1/10 * 1/16 = 1/160

56
© SQLskills, All rights reserved.

https://www.SQLskills.com

Minimum Estimate (Eliminate CE Calculation)

 Trace Flag 4137 introduced in SQL Server 2008 and available through
SQL Server 2012
 See KB: 2658214

FIX: Poor performance when you run a query that contains correlated AND
predicates in SQL Server 2008 or in SQL Server 2008 R2 or in SQL Server 2012

 Not really a “fix” but an alternative to how estimates are handled with
multiple conjunctive predicates (ANDs not ORs)

 Instead of letting the CE do the estimation, this TF causes SQL Server to use
the minimum number (from the two tables) as the estimate (instead of the
CE model’s calculation)

 In SQL Server 2014, trace flag 4137 cannot be used unless you’re in a
compatibility mode less than 120

 In SQL Server 2014, if you want to use the minimum estimate (for
conjunctive predicates) you can use trace flag 9471

 Better to use the hint (trace flags more for FYI / searching code!):
'ASSUME_MIN_SELECTIVITY_FOR_FILTER_ESTIMATES'

29

57
© SQLskills, All rights reserved.

https://www.SQLskills.com

Table-valued Parameters and Poor Estimates

 When a TVP’s rowset is estimated (prior to execution), the data set is
empty
 There is absolutely no way to know how many rows will match (there’s no

statistics, there’s no data, there’s just nothing that can be used)
 SQL Server uses heuristics to estimate rows

 Legacy CE estimates 1 row
 New CE estimates 100 rows

 Inside of your code, some people (traditionally) have used OPTION
(RECOMPILE) to have the statements that use TVPs to get their
estimates updated at runtime
 Pro: better estimates -> better plans
 Con: additional CPU to recompile

 New option (2012SP2+ / 2014CU3+): trace flag 2453 (eliminates
recompilation if current value similar to last value)
 New Trace Flag to Fix Table Variable Performance

58
© SQLskills, All rights reserved.

https://www.SQLskills.com

Modified Out-of-Range Value Estimation

 Legacy CE Model
 “Ascending key problem” - query predicates reference newly inserted data

that falls out of the range of a statistic object histogram
 Can result in under-estimates
 Trace flags 2389 and 2390 to enable automatic generation of statistics for

ascending keys

 New CE Model
 Assumption that histogram out-of-range rows DO exist
 Uses the density vector to get the average frequency (calculated by

multiplying the number of rows by the all density)
 Trace flag 4139 is an option in the New CE

 Better to use the hint (trace flags more for FYI / searching code!):
'ENABLE_HIST_AMENDMENT_FOR_ASC_KEYS'

30

59
© SQLskills, All rights reserved.

https://www.SQLskills.com

Modified Out-of-Range Value Estimation
(Legacy CE model)

60
© SQLskills, All rights reserved.

https://www.SQLskills.com

Modified Out-of-Range Value Estimation
(Legacy CE model)

31

61
© SQLskills, All rights reserved.

https://www.SQLskills.com

Modified Out-of-Range Value Estimation
(New CE model)

Rows * All density

= 31465 * .0008896797

= 27.9938

62
© SQLskills, All rights reserved.

https://www.SQLskills.com

Join Estimates

 Simplified join estimation algorithms
 Various changes to how joins are estimated – for example –aligning

histograms on minimum and maximum boundaries instead of step-by-step
alignment

 Legacy CE model: “simple containment” assumption
 In the presence of a non-join filter predicate against a join table, some

correlation is assumed

 New CE model: “base containment”
 Filter predicates on separate tables are NOT assumed to be correlated with

each other

 If you’re in the New CE and want to use simple containment:
'ASSUME_JOIN_PREDICATE_DEPENDS_ON_FILTERS'

32

63
© SQLskills, All rights reserved.

https://www.SQLskills.com

Understanding Join-Containment

Are red products correlated with orders placed on
6/29/2008?

64
© SQLskills, All rights reserved.

https://www.SQLskills.com

“Simple Containment” Assumptions
(Legacy CE model)

Histogram of the Product table’s [ProductID] column is
loaded

Histogram is scaled down by applying the selectivity of the
[p].[Color] = ‘Red’ filter predicate

Histogram of the SalesOrderDetail’s [ProductID] column is
loaded

Histogram is scaled down by applying the selectivity of the
[od].[ModifiedDate] = '2008-06-29 00:00:00.000’ filter
predicate

The two histograms are merged together, assuming
containment

33

65
© SQLskills, All rights reserved.

https://www.SQLskills.com

“Base Containment” Assumptions
(New CE model)

Histogram of the Product table’s [ProductID] column is
loaded without scaling down via filter predicates

Histogram of the SalesOrderDetail’s [ProductID] column is
loaded without scaling down via filter predicates

Join selectivity is computed with the two histograms,
assuming containment

CE computes selectivity of the filter predicates on
[p].[Color] and [od].[ModifiedDate] respectively

Join selectivity, [p].[Color] selectivity and
[od].[ModifiedDate] selectivities are multiplied in order to
calculate the final result

66
© SQLskills, All rights reserved.

https://www.SQLskills.com

Estimates from Join-Containment Queries

Legacy CE New CE

51.5437 rows 24.5913

