
1

SQLskills Immersion Event
IEPTO1: Performance Tuning and Optimization

Discussion: Table Design Strategies
Kimberly L. Tripp

Kimberly@SQLskills.com

2
© SQLskills, All rights reserved.

http://www.SQLskills.com

Database Development and Design

 Whose job Is It?
 Resources

 Pluralsight: SQL Server: Why Physical Database Design Matters
 Author/Presenter: Kimberly L. Tripp, SQLskills.com 
 http://pluralsight.com/training/Courses/Description/sqlserver-why-physical-db-design-matters

 Pluralsight: Developing and Deploying SQL Server ISV Applications
 Author/Presenter: Erin Stellato, SQLskills.com 
 http://pluralsight.com/training/Courses/Description/sqlserver-developing-deploying-

supporting-isv-applications

 Things to consider
 Data type best practices
 Understanding row width (vertical partitioning) 
 Application inconsistencies in types
 The cost of poor design



2

3
© SQLskills, All rights reserved.

http://www.SQLskills.com

Use the “Right” Data Type

System supplied data types:
 Binary
 Character
 Integers
 Exact numerics
 Monetary
 Date and time types
 Legacy LOB (image, (n)text)
 LOB (“max” types, XML)
 Uniqueidentifier (GUID)
 FILESTREAM (vs. LOB)

Find the “right” data type for the job:
* Use the smallest (but least restrictive) data type possible
* If the data type varies:

< 5 chars should be fixed width
5-20 chars – questionable
> 20 char – lean towards variable-width

* For decimal/numeric data:
- Find the right range
- Standardize on decimal or numeric
- Understand precision and range
- Consider vardecimal in SQL Server 2005+

* For date/time data
- Review all choices/ranges in SQL Server 2008+

* For additional space savings consider:
- Compression in SQL Server 2008+
- Columnstore in SQL Server 2012+

* Use uniqueidentifier sparingly
* Consider “sparse” attribute for 2008+ 

(for Entity Attribute Values [EAV] / flexible design)

4
© SQLskills, All rights reserved.

http://www.SQLskills.com

Optimal Row Width

 Consider table usage above all else
 Estimate average row length

 Overhead
 Fixed-width columns
 Estimate average from realistic sample data

SELECT avg (datalength (columnname)) FROM tname

 Review min, max and avg. row width of existing and/or sample tables
sys.dm_db_index_physical_stats

 Calculate page density (rows/page):
8,096 bytes/page divided by ??? bytes/row = rows/page

 Calculate wasted bytes – on disk and in memory



3

5
© SQLskills, All rights reserved.

http://www.SQLskills.com

Consider a Customer Table With 1,600,000 Rows

14 Columns
1,000 Bytes/Row

8 Rows/Page
200,000 Pages

1.6GB Table

CustomerPersonal

18 Columns*
1,600 Bytes/Row

5 Rows/Page
320,000 Pages

2.5GB Table

CustomerProfessional

17 Columns*
2,000 Bytes/Row

4 Rows/Page
400,000 Pages

3.2GB Table

* The PRIMARY KEY column(s) must be made redundant for the additional tables. 
Above: 47 columns in Customer; 49 columns total between 3 tables.

One, singe Customer table = 
12.8GB
or
Customer, vertically partitioned 
into three separate tables = 7.3GB
• Savings in overall disk space (5.5GB saved)
• Not reading data into cache when not 

necessary
• LOB data can be isolated from more 

critical data to support online index 
operations (prior to SQL Server 2012 
where rebuilds with LOB can be done 
online)

• Locks are table-specific therefore less 
contention at the row level

47 Columns
4,600 Bytes/Row
Only 1 Row/Page

3,400+ Bytes Wasted
1.6 Million Pages

12.8GB Table

CustomerMisc

Customer

6
© SQLskills, All rights reserved.

http://www.SQLskills.com

Vertical Partitioning

 Optimizing row size for:
 Caching: better page density means less memory required
 Locking: only locking the columns that are of interest minimizes even row-

level conflicts

 Usage defines vertical “partitions” or “sets”
 Logically group columns to minimize joins
 Consider read only vs. OLTP columns (LOB separate from OLTP to allow 

online index maintenance (prior to SQL Server 2012) for the critical/OLTP 
part of the table)

 Consider columns often used together

 If every query requires a join, this isn’t as optimal as it could be but 
should still be considered 



4

7
© SQLskills, All rights reserved.

http://www.SQLskills.com

Pushing LOBs “Out of Row”

 Subtle form of vertical partitioning
 Doesn’t affect the application
 May significantly improve performance
 When should you do this:

 You have a lot of “small” LOB values (values under 8KB) that actually create 
large rows 

 LOBs aren’t returned on most requests so you’re filling cache with LOB 
values that aren’t being used

 Set with sp_tableoption
EXEC sp_tableoption tablename

, 'large value types out of row'

, TRUE

8
© SQLskills, All rights reserved.

http://www.SQLskills.com

“Place Holder” Rows?
Nullability and INSERT Performance

 No default: no specific value required/specified at INSERT
 NULL values DO NOT mean empty space (NULL bitmap is stored 

separately from the column data)
 Working with NULLs

 Accessing columns which allow NULL values can cause inconsistencies when 
developers/users are not aware of them

 Math with NULL values can produce interesting results (value – NULL = 
NULL)

 ANSI session settings can affect results sets when accessing columns that 
allow nulls

 Sometimes it’s best to pre-allocate the row if you’re using place-
holders (so that updates do not cause massive fragmentation)



5

9
© SQLskills, All rights reserved.

http://www.SQLskills.com

Inconsistencies in Data Types

 Query doesn’t match the column definition
 The case of the implicit_conversion

 Key inconsistencies
 “Probe Residual” in showplan for hash join

 May add a hash value for comparisons
 May add a converted version of a column

 Wastes storage space, index size, backups, … 

 Inconsistencies in any layers can be costly
 Tables
 Stored procedures/functions
 Ad hoc queries/application interface

 Consider tools like Visual Studio for refactoring and static code 
analysis

10
© SQLskills, All rights reserved.

http://www.SQLskills.com

Horizontal / Functionally Partitioning Data

 Breaking a table into smaller / more manageable chunks to:
 Reduce resource contention / limitations
 Improve options / performance for varying access patterns
 Allow more maintenance options and reduce costs / restrictions
 Improve availability and reduce downtime for disaster recovery
 Remove resource blocking or minimize maintenance costs

 Usage defines partitioning pattern / partitioning key
 Usually date-related (but doesn’t have to be)
 Distinct data patterns in terms of:

 Usage
 Criticality
 Maintenance

 Queries must specify the partitioning column on every request to aid 
in partition elimination



6

11
© SQLskills, All rights reserved.

http://www.SQLskills.com

Sales2010-2016

Sales2017

Functionally Partitioning Data

Sales VIEW
Sales2017Q1

Sales2017Q2
Sales2017Q3

Sales2017Q4

Sales2018

Sales201811

Sa
le

s2
01

80
1

Sa
le

s2
01

80
2

Sa
le

s2
01

80
3

Sales201810

Table

Partitioned Table

Partitioned Table 
(read-mostly)

Standalone Table 
(RW/“hot”/critical)

Standalone Table 
(RW/“hot”/critical)

Use UNION ALL to bring data together into a 
single View. 

Solves many problems:
* Tables can be isolated (LUNs)
* Tables can be on read only FGs
* [Table-level] Statistics are more accurate on 
smaller tables
* Limitations in PTs are removed: partition-level 
rebuilds aren’t needed (RW data is in a separate 
table(s))
* Lock escalation is reduced naturally (partition-
level was added in 2008)…

Sa
le

s2
01

80
9 Standalone 

transactional / critical 
tables -> will be 

switched in after they 
are indexed for RO

12
© SQLskills, All rights reserved.

http://www.SQLskills.com

Functionally Partitioning Data

 Partitioned tables (requirement: Enterprise Edition prior to SQL Server 
2016 SP1)
 But, for ALL Enterprise ADMIN features such as online operations – you still need 

EE
 Can convert an existing table as an ONLINE operation IF the table doesn’t have 

any LOB columns in 2005 / 2008 / R2 (fixed in 2012)
 Might run into problems around “unique” index requirements for PTs in that the 

partitioning column must be a member of the key – for all unique indexes
 Cannot do fast switching in 2005 if Indexed Views
 Cannot do fast switching if iFTS desired

 Partitioned views (benefit: available in any edition)
 Might be able to replace an existing table with a view (even for DML) if you meet 

the correct criteria
 Might not be able to replace all statements, can programmatically direct modifications 

(for INSERTs)
 Conversion may require downtime or time where certain data is inaccessible
 Definitely more work to architect, manage, design – payoff is often worth it!



7

13
© SQLskills, All rights reserved.

http://www.SQLskills.com

Table Design Best Practices

 Communications, DESIGN, consistency!
 Sloppy design (or none!) leads to:

 Performance problems
 Difficulty when performance tuning

 Scalability can only happen with good design
 Tables can be created easily but design takes knowledge:

 Knowing the data
 Knowing the users
 Knowing the system

 Take more time for design/prototyping – the sooner you begin to code, the 
longer it’s going to take!

 Consider changes over time – if already in place…third-party tools can help 
with refactoring, testing, static code analysis!


