
1

SQLskills Immersion Event
IEPTO1: Performance Tuning and Optimization

Module 5: Logging, Recovery, and the
Transaction Log

Paul S. Randal
Paul@SQLskills.com

2
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Transaction log architecture
 Log records
 Checkpoints and recovery
 Transaction log operations
 Recovery models
 Log file provisioning and maintenance

2

3
© SQLskills, All rights reserved.

https://www.SQLskills.com

Basic Terminology

 Transaction: a set of changes to a database
 Commit: finalize a transaction
 Roll back: abort a transaction and undo its effects
 Logging: writing a durable description of changes to a database
 Log record: a description of a single, small change to a database
 Transaction log: the file (or files) where log records are stored
 Crash: when SQL Server shuts down unexpectedly
 Recovery: making a database transactionally-consistent, specifically

after a crash has occurred (i.e. crash recovery)
 Checkpoint: writing changed data-file pages to non-volatile storage

4
© SQLskills, All rights reserved.

https://www.SQLskills.com

Why is Logging Required?

 Logging allows transactions to be made durable and recoverable in
the event of a crash

 Without logging, a database would be transactionally inconsistent,
and potentially corrupt after a crash

 Without logging, how would a transaction roll back?
 Without logging, how would backups work? Replication? Mirroring?

Availability Groups? Log shipping?

 SQL Server 2014+ has non-logged tables, which we’ll discuss later
 The version store in tempdb is completely non-logged, not even the

allocations/deallocations of pages and extents

3

5
© SQLskills, All rights reserved.

https://www.SQLskills.com

Write-Ahead Logging

 SQL Server uses a mechanism called ‘write-ahead logging’
 This ensures that a data-file page change cannot EVER be written to

disk before the log records describing the change are written to disk
 It’s an invariant, even when delayed durability is used in SQL Server 2014+

 Without the write-ahead logging guarantee, how would recovery
work?
 Consider: a data-file page change is written to disk before the log records

describing the change, and then SQL Server crashes
 Without the log records describing the change, how can SQL Server know

whether to leave the data-file page change intact or remove the change?
 And if it has to remove the change, how can that be done without the

description of the change itself?

 Write-ahead logging combined with periodic checkpoints also
increases the efficiency of persisting changes to disk

 Books Online description: https://sqlskills.com/p/036

6
© SQLskills, All rights reserved.

https://www.SQLskills.com

Active

virtual log file

Virtual Log Files

 The transaction log is divided up into chunks called virtual log files, or
VLFs for short

 Newly created VLFs are inactive and unused
 An active VLF cannot be reused until it is made inactive by log clearing

 Except that in a new database, the first VLF is always active
 There must always be at least one active VLF in the transaction log

 There is an 8KB file header page at the start of the transaction log file
 Stores metadata about the file such as size and auto-growth settings

Inactive/unused

virtual log file

Inactive/unused

virtual log file

Inactive/unused

virtual log file

Inactive/unused

virtual log file

Virtual log file 1 Virtual log file 2 Virtual log file 3 Virtual log file 4 Virtual log file 5

4

7
© SQLskills, All rights reserved.

https://www.SQLskills.com

How Many VLFs Do You Get?

 The number and size of the VLFs in a new portion of the transaction
log are determined by SQL Server and cannot be configured
 Under 1MB is irrelevant for discussion
 Under 64MB there will be 4 new VLFs (each ¼ of growth size)
 64MB to 1GB there will be 8 new VLFs (each 1/8 of growth size)
 Above 1GB there will be 16 new VLFs (each 1/16 of growth size)
 This formula applies to the initially-created transaction log, and for each

manual or automatic growth that occurs

 On SQL Server 2014+
 If growth size is less than 1/8 of current log size, only one VLF is created
 See blog post at https://sqlskills.com/p/037 for details

 However, knowing the formula used means you can control how
many VLFs are created
 Too few/many VLFs can cause performance problems with log operations

8
© SQLskills, All rights reserved.

https://www.SQLskills.com

VLF Sequence Numbers

 Each VLF has a 4-byte sequence number, which uniquely identifies it
 Sequence numbers increase by one each time the next VLF is made

active
 The start of the ‘active’ portion of the transaction log begins with the

VLF that has the lowest sequence number and is still active
 The VLF sequence numbers for a new database do not start at 1

 They start with whatever the highest VLF sequence number is in the model
database, plus 1

 It is extremely unlikely you will run out of VLF sequence numbers
 In fact, SQL Server has code that will force the instance to shut down if a VLF

sequence number ever wraps around to zero
 E.g. 1000 VLFs in 10GB log = 2^32/1000 log wraps = 10GB * 4294967 of log =

256MB/s of log for 1300 years

5

9
© SQLskills, All rights reserved.

https://www.SQLskills.com

Active

virtual log file

VLFs and Log Blocks (1)

Inactive/unused

virtual log file

Inactive/unused

virtual log file

Inactive/unused

virtual log file

Inactive/unused

virtual log file

Virtual log file 1 Virtual log file 2 Virtual log file 3 Virtual log file 4 Virtual log file 5

Log blocks, sized from

512 bytes to 60KB

Log records, variably sized

10
© SQLskills, All rights reserved.

https://www.SQLskills.com

VLFs and Log Blocks (2)

 Each VLF contains a VLF header, which includes:
 Whether the VLF is active or not
 The log sequence number when the VLF was created
 The current parity bits for all 512-byte blocks in the VLF

 Start at 64 and switch back-and-forth between 64 and 128
 These are used during crash recovery (discussed later)

 Each VLF contains a series of log blocks
 Log blocks vary in size from 512 bytes, in 512-byte increments, to 60KB
 The log block size is set when one of the following occurs:

 A transaction generates a log record to commit a transaction
 The log block size reaches 60KB without a transaction committing

 Each log block contains log records
 Stored in the order written, in a similar manner to a data-file page
 Log records from multiple transactions can be in a single log block

notes for
prior slide

6

11
© SQLskills, All rights reserved.

https://www.SQLskills.com

Log Sequence Numbers (LSNs)

 LSN = <VLF sequence #>:<log block #>:<log record #>
 VLF sequence number is 4-bytes
 The log block number within the VLF is 4 bytes
 The log record number within the log block is two bytes

 LSNs are ever-increasing
 Each log record has a unique LSN that allows the log record to be

found in the transaction log
 Each data-file page has an LSN in its page header that identifies the

most recent log record whose change is reflected on the page
 This is critical for recovery

12
© SQLskills, All rights reserved.

https://www.SQLskills.com

What are Log Records?

 A log record describes a single change in the database
 Each log record has a unique Log Sequence Number (LSN)
 Log records for concurrent transactions are intermingled in the

transaction log according to when they occurred in time
 Log records are stored in log blocks in the buffer pool until they are

flushed to disk
 There are NO non-logged operations in user/system databases

 In tempdb, version store and workfile operations are non-logged

 Log records never move in the transaction log

7

13
© SQLskills, All rights reserved.

https://www.SQLskills.com

Log Record Contents

 Information in a log record allows it to be redone (rolled-forward) or
undone (rolled-back)
 Crucial for allowing transactions to be rolled back, and for recovery to work

 Log records contain many fields, depending on the type of log record
 There are some fields common between all log records, including:

 The log record type
 The context of the log record, if any
 The transaction ID the log record is part of, if any
 The log record length
 The LSN of the previous log record in the same transaction, if any
 The amount of log space reserved in case the log record must be undone

14
© SQLskills, All rights reserved.

https://www.SQLskills.com

Log Space Reservation

 Every log record that is generated in the forward part of a transaction
must reserve free space in the transaction log to allow the log record
to be rolled back, without the transaction log having to grow

 The log space reservation mechanism is very conservative, always
reserving enough space, and usually more, just in case an unexpected
situation occurs
 E.g. a BEGIN TRAN operation immediately reserves 8.5KB as a fudge-factor

Active

virtual log file

Inactive/unused

virtual log file

Inactive/unused

virtual log file

Inactive/unused

virtual log file

Inactive/unused

virtual log file

Virtual log file 1 Virtual log file 2 Virtual log file 3 Virtual log file 4 Virtual log file 5

Used space Reserved space

8

15
© SQLskills, All rights reserved.

https://www.SQLskills.com

Log Record Types

 There are many types of log records, including:
 LOP_FORMAT_PAGE
 LOP_MODIFY_ROW
 LOP_SET_BITS
 LOP_INSERT_ROWS
 LOP_DELETE_ROWS
 LOP_SET_FREE_SPACE

 Log records that change table/index pages include:
 The allocation unit ID
 The page ID and slot ID on the page
 The after-image, or the before-image and after-image of the changed data

 There may be multiple sets of these in a single log record
 After-images allow redo to occur
 Before-images allow undo to occur

16
© SQLskills, All rights reserved.

https://www.SQLskills.com

Lock Logging

 Some log records include a bitmap of which locks were held when the
described change took place
 Count of the number of locks
 What type and mode of lock

 E.g. a page lock in X mode

 What the lock is on

 During crash recovery and database mirroring/availability group
failovers, these locks will be acquired for all log records that are going
to be undone

 This allows the fast recovery feature in Enterprise Edition

9

17
© SQLskills, All rights reserved.

https://www.SQLskills.com

Log Records in Transactions

 Multiple log records are generated by transactions, always in the
sequence:
 LOP_BEGIN_XACT

 This includes information like the SPID, transaction name, start time
 All transactions started by SQL Server are named to describe the operation
 E.g. AllocFirstPage, DROPOBJ

 Other records…
 LOP_COMMIT_XACT (if the transaction commits)
 LOP_ABORT_XACT (if the transaction rolls back)

 These both include the end time

 Log records in a transaction are linked together backwards by LSN
 This allows the transaction to be rolled back correctly

 Some log records are non-transactional, including:
 PFS free space changes (impossible to reconcile with other transactions)
 Differential bitmap changes (one-way change only)

18
© SQLskills, All rights reserved.

https://www.SQLskills.com

Examining Log Records

 Log records are most easily examined using the fn_dblog table-valued
function

 It is very powerful:
 Returns a tabular result set that can easily be manipulated
 Allows complex predicates to be used
 It scans all transaction log in the active portion of the log

 From the start of the oldest uncommitted transaction to the most recent log
record

 This can be over-ridden using trace flag 2537

 The startLSN and endLSN fields are usually passed as NULL

SELECT * FROM fn_dblog (startLSN, endLSN);
GO

10

Demo

Examining log records with fn_dblog

20
© SQLskills, All rights reserved.

https://www.SQLskills.com

COMPENSATION Log Records

 When a transaction rolls back, the change described by each log
record in the transaction must be undone in the database

 Rollback starts with the most recent log record for the transaction and
follows the previous LSN links until the LOP_BEGIN_XACT log record

 For each log record:
 Perform the ‘anti-operation’ that will negate the effects of the log record
 Generate a log record, marking it as a COMPENSATION log record

 As it is compensating for the log record in the forward part of the transaction

 The COMPENSATION log record’s previous LSN points to the log record prior
to the one it is compensating for
 I.e. it essentially causes the log record to no longer be part of the chain of log

records for the transaction

 The reserved log space for the log record is released

 COMPENSATION log records cannot be undone, only redone

11

21
© SQLskills, All rights reserved.

https://www.SQLskills.com

Rolling Back a Transaction

BT Ins1 Ins2 Ins3

ROLLBACK TRAN;

GO

D3C D2C D1c AT

22
© SQLskills, All rights reserved.

https://www.SQLskills.com

Example Data Modification

 User/app sends an UPDATE query
 Update is highly selective (say, 5 rows on 3 data pages)
 No transaction specified – implicit transaction

 The three data pages are read into the buffer pool
 All necessary locks are acquired

 1 intent-exclusive table-level lock
 3 intent-exclusive page-level locks
 5 update row-level locks

 For each row:
 Update lock is converted to exclusive lock
 Change is made on the data page in memory
 Log record is generated describing the change

12

23
© SQLskills, All rights reserved.

https://www.SQLskills.com

Example Data Modification

 At this point the updates are complete
 The transaction is ready to commit
 Steps are:

 Ensure all log records generated by the transaction are forced write-through
to the transaction log file on disk
 This forces all of the transaction log up to the point of the LOP_COMMIT_XACT

log record to be written to disk, regardless of which transaction it is for
 Write-through is by design and cannot be over-ridden
 Doesn’t happen if the transaction is delayed durable in SQL 2014+

 (Wait for synchronous mirroring/Availability Group if necessary)
 Release all locks held by the transaction
 Acknowledge the commit to the user/application:

 (5 Rows Affected)

24
© SQLskills, All rights reserved.

https://www.SQLskills.com

Log Flush to Synchronous Mirror or AG Replica

Commit

Write to

local log

Transmit to mirror

Write to

remote log

Acknowledge

Committed

in log

Acknowledge

1

2

2

3

4

5

6

7

Log DBDB Log

PRINCIPAL MIRROR

Constantly redoing

on mirror

13

25
© SQLskills, All rights reserved.

https://www.SQLskills.com

Transaction Log Flushes

Active

virtual log file

Inactive/unused

virtual log file

Inactive/unused

virtual log file

Inactive/unused

virtual log file

Inactive/unused

virtual log file

Virtual log file 1 Virtual log file 2 Virtual log file 3 Virtual log file 4 Virtual log file 5

Log blocks

… 128 x 60KB buffers …

Log cache, per database

(plus log pool in 2012+)

Log blocks

Copy (could lead to

LOGBUFFER wait)

Committing thread waits for

WRITELOG (except for sync

AGs: HADR_SYNC_COMMIT)

I/O completion

Asynchronous write to disk

by LOGWRITER thread(s)

(1 thread before 2016,

up to 4 threads in 2016/7,

up to 8 threads in 2019+)

26
© SQLskills, All rights reserved.

https://www.SQLskills.com

Log Tail Caching in SQL Server 2016+

 2016+ has ability to have tail of the log (the blocks being written to)
stored in a file on an NVDIMM drive on Windows 2016
 By adding a second log file that is detected to be on an NVDIMM drive

 Log blocks are written to in memory and mirrored on the NVDIMM
 When a transaction commits, threads consider the log block hardened

and do not need to wait for a flush to occur
 Blocks are written from the NVDIMM file to the log file when full
 If crash, log tail reconstructed from NVDIMM file before crash recovery

 Beware, there’s only one NVDIMM so potential single point of failure
 Not a problem for tempdb

 Provides huge perf boost for workloads bottlenecked on log flushing
 Even more of a boost than Delayed Durability

 See https://sqlskills.com/p/038 for more details on how to enable it

14

27
© SQLskills, All rights reserved.

https://www.SQLskills.com

The Transaction has Committed… Now What?

 All the log records for the transaction have been ‘hardened’ on disk in
the transaction log
 The transaction is durable
 The effects of the transaction can be replayed in the event of a crash

 The data-file pages with the changes on them are still in memory only
 These are called ‘dirty’ pages

 Why are the changed data-file pages not written to disk when the
transaction commits?
 They do not need to be written to disk as the description of the changes

applied to them is already on disk in the transaction log
 Eventually they will be written to the data files to bring the data files up-to-

date with what is in the transaction log

 Changed data-file pages are written to the data files periodically by a
mechanism called ‘checkpoint’

28
© SQLskills, All rights reserved.

https://www.SQLskills.com

Why Do Checkpoints Exist?

 To reduce crash-recovery time
 By having as many up-to-date data-file pages in the database as possible,

this reduces the amount of redo that must be performed

 To batch I/Os to disk and improve performance
 Imagine 1000 update transactions to a single data page
 Is it more efficient to write the data page image to disk after each change

(i.e. 1000 times) or just once, during a checkpoint?

15

29
© SQLskills, All rights reserved.

https://www.SQLskills.com

Clean vs. Dirty Pages

 The buffer pool maintains a set of data-file pages in memory
 Each page has a control structure (called a BUF) associated with it that

tracks ‘state’ for the page, including:
 The database ID the page is part of
 The amount of free space on the page
 Information to support the LRU (Least-Recently-Used) algorithm
 Whether the page is clean or dirty
 A latch structure for in-memory access protection

 ‘Clean’ page has not been changed since last read from/written to disk
 ‘Dirty’ page has been changed and changes are not on disk
 This information can be seen using sys.dm_os_buffer_descriptors
 Checkpoints are concerned with dirty pages

30
© SQLskills, All rights reserved.

https://www.SQLskills.com

Checkpoint Mechanism

 A checkpoint writes ALL dirty pages of a database to disk
 Pages are marked as ‘dirty’ as soon as they are changed
 It doesn’t matter if the transaction that made the change is committed or

uncommitted at the time of the checkpoint
 Pages have their ‘dirty’ bit cleared when written during a checkpoint

 Steps taken are:
 Log that a checkpoint started, and any necessary checkpoint information
 Write all dirty pages for the database to disk, flushing log records if

necessary
 For non-indirect checkpoints, scan all BUFs for dirty pages
 For indirect checkpoints, only flush known dirty BUFs from special list

 Write the LSN of the checkpoint in the boot page of the database in the
dbi_checkptLSN field

 If in the SIMPLE recovery model, try to clear the log (discussed later)
 Log that a checkpoint ended

16

31
© SQLskills, All rights reserved.

https://www.SQLskills.com

Checkpoint Mechanism (2)

 Checkpoints can occur in parallel for multiple databases
 SQL Server 2000 was limited to one checkpoint at a time

 Buffer pool does gather-writes of up to 32 contiguous, dirty pages
(see https://sqlskills.com/p/039) and up to 128 on 2016+

 Checkpoint throttles I/O if I/O latency exceeds 20ms (50ms on 2016+)
 During shutdown, the throttling threshold increases to 100ms
 More in-depth explanation at https://sqlskills.com/p/040

 Documented “-kXX” startup option can be used to set the checkpoint
I/O rate at XX MB/s

 Note that for minimally-logged operations, data-file pages are written
out continuously as they are allocated and formatted with the data on
 This is called ‘eager writing’ and has same sizes as for checkpoint writes
 Minimally-logged operation cannot commit until all eager writing is

completed otherwise the transaction would not be durable

32
© SQLskills, All rights reserved.

https://www.SQLskills.com

Checkpoint and the Log

 When a data-file page is written to disk by a checkpoint, write-ahead
logging guarantees that all log records affecting that page must be
written to the transaction log on disk first

 All log records up to and including the last one that affected the page
are written out, regardless of which transaction they are part of
 Cannot just flush all current log records at the start of the checkpoint as the

checkpoint could take a while and a data-file page may have more log
records affecting it before the checkpoint reaches it to write it to disk

 This means log records are written out in three ways (plus next slide):
 When any transaction commits

 All log records up to and including the commit transaction log record

 When a data-file page is written to disk
 All log records up to and including the last log record to affect the page
 This may also happen from lazywriter activity too

 When a log block hits the maximum size of 60KB and is forcibly ended

17

33
© SQLskills, All rights reserved.

https://www.SQLskills.com

SEQUENCE Objects

CREATE SEQUENCE dbo.Seq1 AS BIGINT MINVALUE 1 CACHE 50

 Current SEQUENCE value is persisted in the log for crash recovery
 If NO CACHE is used, every NEXT VALUE causes a log block flush

 Don’t do this!

 Otherwise, using CACHE x means a log block flush every x uses of
NEXT VALUE
 Default value for CACHE is 50
 Be careful not to choose too small a number
 Balance between log block flushes and your desired recovery of SEQUENCE

values if a crash occurs

34
© SQLskills, All rights reserved.

https://www.SQLskills.com

Types of Checkpoint: Automatic

 Based on recovery interval in minutes (default 1 minute)
 Under SIMPLE recovery model, also when log is 70% full

 Checkpoint will complete in time that minimizes impact to
performance (via I/O throttling discussed earlier)

 Tracked using Buffer Manager: Checkpoint pages/sec
 Can be extremely slow for systems with very large buffer pools as

scans all buffers for database looking for dirty ones
 E.g. when creating a new database, adding a file, VDI-based backup

18

35
© SQLskills, All rights reserved.

https://www.SQLskills.com

Types of Checkpoint: Indirect

 Default for new databases and tempdb for 2016+
 For 2012 and 2014, see https://sqlskills.com/p/042

 Install CU, enable indirect checkpoints, enable TF 3449 to get improvement

 More info in blog post at https://sqlskills.com/p/043

 Finer-grained control of recovery time and stops periodic I/O spikes
 Think of it as a kind of ongoing, rolling checkpoint

 Set using ALTER DATABASE … SET TARGET_RECOVERY_TIME
 Takes precedence over recovery interval setting and is per-database

 Faster than automatic checkpoints as it scans list of known dirty pages
 Tracked using Buffer Manager: Background writer pages/sec
 Can cause bottleneck with very hot tempdb – see

https://sqlskills.com/p/041 (fixed in latest builds of 2016 and 2017)

36
© SQLskills, All rights reserved.

https://www.SQLskills.com

Types of Checkpoint (2)

 Internal checkpoints
 Performed when:

 Data files added or removed
 A database shutdown occurs (for whatever reason)
 Database snapshot created
 Database backup performed (full or differential)

 Manual checkpoints
 Using the CHECKPOINT command
 CHECKPOINT supports a duration parameter

 CHECKPOINT [checkpoint_duration]
 checkpoint_duration is an integer used to define the amount of time in which a

checkpoint should complete
 Governs how many resources are assigned to checkpoint operation

 When not specified checkpoint will complete in the time that minimizes
impact to performance

19

37
© SQLskills, All rights reserved.

https://www.SQLskills.com

Checkpoint I/O Spikes

 The I/O spike from traditional checkpoints might overload the I/O
subsystem

38
© SQLskills, All rights reserved.

https://www.SQLskills.com

Checkpoint Monitoring

 It can be useful to correlate checkpoints occurring with spikes in I/O so
that changes can be made to specific database (or the I/O subsystem)
to alleviate the I/O spike if it overloads the I/O subsystem
 For instance, doing more frequent, manual checkpoints, or configuring a

lower recovery interval on SQL Server 2012+ with indirect checkpoints
 This will produce a more constant I/O load without high spikes that overload

the I/O subsystem
 However, the root cause may be more I/O being performed because of a

change somewhere so do not just accept sudden increase in checkpoint
activity without investigating why it occurred

 Buffer Manager/Checkpoint pages/sec counter is not database
specific so identifying which database is involved requires trace flags
or extended events
 Remember this doesn’t track indirect checkpoints

20

39
© SQLskills, All rights reserved.

https://www.SQLskills.com

Checkpoint Monitoring (2)

 Trace flags:
 Trace flag 3502 writes messages to the error log about which database a

checkpoint is occurring for
 Trace flag 3504 writes more detailed information about how many pages

were written out and the average write latency
 Trace flags 3502 and 3504 can be used together
 Trace flag 3605 is also required otherwise no messages are printed

 These trace flags are safe to use in production for a limited time
 All they do is print messages in the error log

 In SQL Server 2012+, the info printed by 3504 is also printed if a
checkpoint takes longer than the recovery interval

 Extended events:
 checkpoint_begin and checkpoint_end events

Demo

Monitoring automatic checkpoints

21

41
© SQLskills, All rights reserved.

https://www.SQLskills.com

Tempdb Behavior

 Tempdb is recreated on each instance restart so no crash recovery is
ever run

 This means:
 SIMPLE recovery model (unchangeable)
 Redo information is not included in transaction log records
 Log records are not flushed to disk on transaction commit
 Checkpoints do not occur based on recovery interval

 They’re triggered when the log file becomes 70% full

 Checkpoints don’t always flush tempdb data pages to disk (varies by version)

 Changes to tempdb must be logged to allow transactions to roll back
 Beware of indirect checkpoint for tempdb

 Can cause bottleneck – see https://sqlskills.com/p/041

42
© SQLskills, All rights reserved.

https://www.SQLskills.com

SQL Server 2014+: Delayed Durability (1)

 Ability of transaction commit not to cause a log flush
 See MSDN at https://sqlskills.com/p/044

 Trades off reduction in log contention and I/O against possibility of
data loss in the event of a crash through less frequent log flush I/O

 Log is flushed when:
 Internal log buffer fills up to 60KB, or
 A durable transaction commits, or
 You execute sp_flush_log, or
 1ms internal timer expires and I/O subsystem is not overloaded

 Must be configured at the database level:
 ALTER DATABASE … SET DELAYED_DURABILITY =

 DISABLED: the default, all transactions are durable
 ALLOWED: transaction are delayed-durable if set for the transaction

 DELAYED_DURABILITY = OFF | ON (OFF is the default)

 FORCED: all transactions are delayed-durable regardless of per-transaction setting

22

43
© SQLskills, All rights reserved.

https://www.SQLskills.com

SQL Server 2014+: Delayed Durability (2)

 There is a risk of data loss, so be careful when using this
 If you’re allowed any data loss, consider whether it can help
 If not, be extremely wary about enabling this feature

 Synchronous mirrors and Availability Groups behave differently:
 When the delayed durable transaction commits, it DOES NOT WAIT for the

log records to be hardened on the mirror/secondary
 ‘Synchronous’ only applies to fully durable transactions

 Log backups behave differently:
 A log backup only backs up transactions that are durable on disk at the time

of the backup

 Not supported with transactional replication

Demo

Delayed durability effect on performance

23

45
© SQLskills, All rights reserved.

https://www.SQLskills.com

SQL Server 2014+: In-Memory OLTP/Hekaton

 Gives the ability to have tables stored entirely in memory, with
optional logging to give durability, and very fast performance
 See comprehensive MSDN at https://sqlskills.com/p/045
 Test: 1 million individual inserts in 7 seconds compared to 6 minutes

 Can be complicated feature requiring a lot of development work
 Depends what you want to use it for

 Where we’ve seen it used successfully so far with clients:
 Intermediate load database during large ETL processes
 Configured with non-durable in-memory tables for extremely fast load times
 Alleviating PAGELATCH_EX contention (insert hotspots)
 Replacing temporary table usage
 Tempdb in-memory system tables in 2019+

 Advice: read through the comprehensive MSDN section
 Also whitepapers at https://sqlskills.com/p/046, https://sqlskills.com/p/047

46
© SQLskills, All rights reserved.

https://www.SQLskills.com

Making a VLF Active

 When a transaction modifies the database, a log record is written to
the transaction log

 The first log record written to a VLF makes it become active
 A VLF is either wholly active or inactive

 An active VLF cannot be overwritten until it becomes inactive
 A VLF remains active until all log records in it are not needed for:

 Log or data backups
 Transactional replication
 Change data capture
 Database mirroring/availability groups
 Long-running transaction rollback or crash recovery

Active

virtual log file

Inactive/unused

virtual log file

Inactive/unused

virtual log file

Inactive/unused

virtual log file

Inactive/unused

virtual log file

Virtual log file 1 Virtual log file 2 Virtual log file 3 Virtual log file 4 Virtual log file 5

24

47
© SQLskills, All rights reserved.

https://www.SQLskills.com

Log Space Reservation

 As we discussed earlier, each log record that is written to the
transaction log also reserves some free space in the transaction log in
case a compensation log record is required

 The Log Manager guarantees that all uncommitted transactions in the
database can roll back without requiring the transaction log to grow
 As transaction log growth may not be possible, and so the database will be

transactionally inconsistent and hence SUSPECT

 The reserved log space does not make VLFs become active but will
trigger transaction log auto-grows if there is no more space
 As an analogy, consider your bank account with $1,000 in it
 If you know there’s the possibility of having to make a $300 payment on

Wednesday, you cannot spend more than $700 until Wednesday passes
 If Wednesday passes and there was no payment, the $300 is now available
 The reserved log space behaves in the same way in that as soon as the

transaction commits, the reserved space is discarded and is available for use

48
© SQLskills, All rights reserved.

https://www.SQLskills.com

Moving Through the Transaction Log

 As more log records are written, more VLFs become active
 SQL Server tracks:

 Which portion of the transaction log is still required
 The start of the oldest uncommitted transaction
 The most recent log record written

 The oldest uncommitted transaction defines the oldest active LSN and
therefore the oldest active VLF

Active

virtual log file

Active

virtual log file

Inactive/unused

virtual log file

Inactive/unused

virtual log file

Inactive/unused

virtual log file

Virtual log file 1 Virtual log file 2 Virtual log file 3 Virtual log file 4 Virtual log file 5

Min LSN (start of oldest

uncommitted transaction)

Max LSN (last log

record written)

25

49
© SQLskills, All rights reserved.

https://www.SQLskills.com

Tracking Uncommitted Transactions

 DBCC OPENTRAN returns the oldest uncommitted and unreplicated
transaction

 sys.dm_tran_database_transactions returns all uncommitted
transactions for all databases
 Can see how much transaction log space has been reserved for a transaction
 Can see how much total transaction log space is required for a transaction
 Can join with other DMVs to get more comprehensive information
 Blog post with a script: https://sqlskills.com/p/048

50
© SQLskills, All rights reserved.

https://www.SQLskills.com

Transaction Log Clearing

 A VLF can be made inactive once all log records are not required
 This is called clearing (or truncating) the transaction log

 Log clearing is done by a log backup in FULL or BULK_LOGGED
recovery models, or by a checkpoint in SIMPLE recovery model
 2014+: Exception occurs when in-memory tables used(see slide 59)

 All that happens is that zero or more VLFs are marked inactive
 Nothing is zeroed, removed, overwritten (“clearing” is a misnomer)
 The transaction log file size does not change (“truncating” is a misnomer)

 If log clearing does not occur, the transaction log will grow forever

Inactive

virtual log file

Inactive

virtual log file

Active

virtual log file

Active

virtual log file

Inactive/unused

virtual log file

Virtual log file 1 Virtual log file 2 Virtual log file 3 Virtual log file 4 Virtual log file 5

Min LSN (start of oldest

uncommitted transaction)

Max LSN (last log

record written)

26

51
© SQLskills, All rights reserved.

https://www.SQLskills.com

Concurrent Log and Data Backups

 Log backups that occur while a full or differential backup are running
cannot clear the log

 Deferred log clearing happens at the end of the data backup

Time

TLOG

TLOG

TLOG

TLOG

TLOG

TLOG

TLOG

TLOGTLOG

TLOG

Full backup

Deferred log clearing

52
© SQLskills, All rights reserved.

https://www.SQLskills.com

Tracking Transaction Log Space Usage

 Using Performance Monitor, from the Databases performance object:
 Log File(s) Size (KB)
 Log File(s) Used Size (KB)
 Percent Log Used
 Log Growths
 Log Shrinks

 DBCC SQLPERF (LOGSPACE)
 Returns information for all databases including the size and the percentage

used
 Processing of the output requires creating a table and then using INSERT …

EXEC to capture the results

 sys.dm_db_log_space_usage
 Returns information for the current database only

27

53
© SQLskills, All rights reserved.

https://www.SQLskills.com

DBCC LOGINFO

 Undocumented DBCC LOGINFO command to examine VLFs in all
versions of SQL Server
 dbcc loginfo [({'dbname' | dbid})]

 It returns a result set with one row per VLF giving info including:
 FileSize: VLF size, in bytes
 FSeqNo: the VLF sequence number
 Status: whether the VLF is active or not (0 = inactive, 2 = active, 1 is not used)

 Also 4 = ghost VLF on an AG secondary that hasn’t yet replayed a log growth

 CreateLSN: the LSN when the VLF was created (0 = the VLF was created
when the transaction log file was initially created)

 Also new DMVs, but only in SQL Server 2016 SP2+
 sys.dm_db_log_info – info on VLFs, the same as DBCC LOGINFO
 sys.dm_db_log_stats – size and usage info for the log
 These two DMVs allow easier programmatic monitoring of the log

54
© SQLskills, All rights reserved.

https://www.SQLskills.com

Circular Nature of the Transaction Log

 Once the end of the transaction log is reached, it would like to wrap
around and start using the first VLF again, as long as log clearing has
occurred, without having to grow the transaction log file

 The log manager checks the active status of the first VLF in the
transaction log

Inactive

virtual log file

Inactive

virtual log file

Inactive

virtual log file

Active

virtual log file

Active

virtual log file

Virtual log file 1 Virtual log file 2 Virtual log file 3 Virtual log file 4 Virtual log file 5

Min LSN (start of oldest

uncommitted transaction)

28

55
© SQLskills, All rights reserved.

https://www.SQLskills.com

Circular Nature of the Transaction Log (2)

 If the first VLF is inactive, the transaction log can wrap
 Note that VLF 1 is reactivated and becomes VLF 6

 Log records continue to be written
 This post has an example: https://sqlskills.com/p/049

Active

virtual log file

Inactive

virtual log file

Inactive

virtual log file

Active

virtual log file

Active

virtual log file

Virtual log file 6 Virtual log file 2 Virtual log file 3 Virtual log file 4 Virtual log file 5

Min LSN (start of oldest

uncommitted transaction)
Max LSN (last log

record written)

56
© SQLskills, All rights reserved.

https://www.SQLskills.com

Wrapping with Multiple Files

 If multiple transaction log files are configured, they will be used in
order before wrapping back to the start of the first file

29

Demo

Circular nature of the log

58
© SQLskills, All rights reserved.

https://www.SQLskills.com

Crash Recovery

 For each database:
 The boot page is examined to get the LSN of the most recent checkpoint
 The checkpoint log records are examined to get the list of uncommitted

transactions at the time the checkpoint occurred
 Recovery starts from the LSN of the LOP_BEGIN_XACT log record of the

oldest uncommitted transaction at the time of the most recent checkpoint

 Three passes are made through the transaction log:
 First pass examines the log records to see which data-file pages will be

required, and these pages are read into the buffer pool
 Also builds a list of committed and uncommitted transactions and discovers the

‘end’ of the log (described on the next two slides)

 The second pass does redo of log records for committed transactions
 The third pass does undo of log record for uncommitted transactions

 Track recovery in 2016+ with XEvents: see https://sqlskills.com/p/050

30

59
© SQLskills, All rights reserved.

https://www.SQLskills.com

Finding the End of the Transaction Log

 In this case, the transaction log has not wrapped, so as part of the first
pass through the transaction log, crash recovery will encounter a 512-
byte block filled with 0x00s (or 0xC0s in 2016+)
 The white section of VLF 3

 All log blocks that have been written will have parity bits 64

VLF 1 VLF 2 VLF 3 VLF 4

Crash recovery

starts here

Crash recovery

ends here

60
© SQLskills, All rights reserved.

https://www.SQLskills.com

Finding the End of the Transaction Log (2)

 In this case, the transaction log has wrapped, so as part of the first
pass through the transaction log, crash recovery will encounter a 512-
byte block with the old parity bits
 The blue section of VLF 6 will have parity bits 64, whereas the VLF header for

VLF 6 states that the current parity bits are 128

VLF 5 VLF 6 VLF 3 VLF 4

Crash recovery starts here

(most recent checkpoint)

Crash recovery

ends here

31

61
© SQLskills, All rights reserved.

https://www.SQLskills.com

Where Does Crash Recovery Stop?

 Crash recovery does NOT know what the most recent log record is
 It continues reading through the transaction log, following the VLF

sequence, until it encounters one of two things:
 A 512-byte block full of zeroes

 Remember that the transaction log is always zero initialized when created, grown,
or auto-grown

 This is to avoid the possibility of random bytes in the file system looking like a
valid log block and causing recovery to fail

 A 512-byte block that has the parity bits of the previous incarnation of the
VLF
 Remember that the parity bits for a VLF flip back-and-forth between 64 and 128

each time the VLF is made active
 This allows SQL Server not to have to zero out a VLF when it becomes active again

 This mechanism is necessary to avoid SQL Server having to persist the
end of the transaction log somewhere

notes for
prior slide

62
© SQLskills, All rights reserved.

https://www.SQLskills.com

Crash Recovery Visualized

Action required

during crash recovery

None

Checkpoint System failure

1

2

3

4

5

Roll forward

Roll back

Roll forward

Roll back

L D

L+D

L+D

L

L

Each arrow is a transaction

L = Log records written to disk

D = Data file pages written to disk

32

63
© SQLskills, All rights reserved.

https://www.SQLskills.com

Accelerated Database Recovery (ADR)

 New feature in SQL Server 2019
 Targeted at systems with:

 Large transactions with long rollback times, and potential for downtime on
crash/failover

 Large transactions causing excessive transaction log growth

 Basically instantaneous rollback of large transactions and aggressive
log truncation, with a cost…

 Performance, from anecdotal evidence and testing:
 Inserts and deletes may be up to 10% slower
 Updates, depending on column types, may be 2-3x slower

 Space always taken up on the page being changed
 Space may also be taken up in a per-database ‘version store’

 Possibility of page splits from enabling this – see Module 7

64
© SQLskills, All rights reserved.

https://www.SQLskills.com

ADR Mechanism (1)

 Persistent Version Store (PVS)
 PVS is an append-only table in the database

 Can control which filegroup it is created in

 If row change is small, stored on-page as a delta version otherwise stored as
a row in the PVS, and creation is logged so PVS is recoverable
 These are where the performance hit comes from

 Different from regular versioning as PVS is crash-recovered
 Might become large, hence ability to place on a filegroup

 Secondary Log
 In-memory log stream of operations that cannot be versioned

 E.g. system table changes, allocation bitmap updates

 Flushed to disk on checkpoint and transaction commit

33

65
© SQLskills, All rights reserved.

https://www.SQLskills.com

ADR Mechanism (2)

 Aborted Transaction Map
 Which transactions need to be rolled back

 Background processes:
 PVS cleanup and the asynchronous rollback itself (called ‘logical revert’)
 Several other more targeted cleanup processes for the ATM and SLOG

 Queries use ATM and version mechanism to determine what they see
 Aborting a transaction happens instantly
 Crash-recovery/failover appear to skip the long undo phase, so higher

availability

 So it’s a trade off, and make sure to test under load before enabling
 Good explanation at https://sqlskills.com/p/117

66
© SQLskills, All rights reserved.

https://www.SQLskills.com

If the Transaction Log Fills Up…

 What if all VLFs are active and more log records are written?
 The transaction log will auto-grow (if configured and possible)

 More VLFs will be added and log records will be written into them
 Transaction log auto-grow means a pause for zero-initialization

 If the transaction log cannot auto-grow, write activity stops
 Uncommitted transactions will roll back
 Until the transaction log is grown, another transaction log file is added, or

some action is taken to clear the transaction log

 Avoid this situation by allowing the transaction log to clear!

Active

virtual log file

Active

virtual log file

Active

virtual log file

Active

virtual log file

Active

virtual log file

Virtual log file 1 Virtual log file 2 Virtual log file 3 Virtual log file 4 Virtual log file 5

34

67
© SQLskills, All rights reserved.

https://www.SQLskills.com

If the Transaction Log Fills Up…

 What if only some VLFs are active but with a long-running
transaction?

 Eventually used space + reserved space will reach the size of the log
 And then same thing as on previous slide; auto-growth or rollback

Active

virtual log file

Active

virtual log file

Active

virtual log file

Inactive/unused

virtual log file

Inactive/unused

virtual log file

Virtual log file 1 Virtual log file 2 Virtual log file 3 Virtual log file 4 Virtual log file 5

Used space Reserved space

68
© SQLskills, All rights reserved.

https://www.SQLskills.com

Why Did the Transaction Log Fill Up?

 See log_reuse_wait_desc in sys.databases for why the log can’t clear
 Examples are LOG_BACKUP, DATABASE_MIRRORING, NOTHING

 Full list in Books Online at https://sqlskills.com/p/051

 This is the reason why log clearing failed the last time it was attempted
 E.g. it might be ACTIVE_BACKUP_OR_RESTORE but the backup already finished

 Comprehensive blog post on all of them: https://sqlskills.com/p/052

 Reason is printed as part of 9002 error in the error log
 “The transaction log for database 'MyDB' is full due to 'LOG_BACKUP‘”

 Take whatever corrective action can be done:
 Take a log backup (lack of backups is the #1 cause of full transaction logs!)
 Kill a long-running transaction

 List all transactions using code from Ian Stirk at https://sqlskills.com/p/053

 Manually grow the existing log file(s) or add another log file (temporarily)
 Switch to the SIMPLE recovery model as last resort, as it breaks log chain

35

69
© SQLskills, All rights reserved.

https://www.SQLskills.com

AGs/Mirroring and Log Clearing

 AGs and mirroring complicate the log clearing mechanism
 A VLF on the primary cannot be made inactive until the equivalent

VLF on all secondaries has been processed for redo on the secondaries
 Otherwise, if the VLF were made inactive and a log block was written

to it on disk, it would cause the log block to be overwritten on the
secondary as well, breaking redo

 This means that slow secondaries can cause primary log growth to
occur

 AG secondaries also use parallel redo in 2016+, which can cause a
known performance issue
 Look for high waits on DIRTY_PAGE_TABLE_LOCK
 Use trace flag 3459 to disable parallel redo

70
© SQLskills, All rights reserved.

https://www.SQLskills.com

In-Memory OLTP and Log Clearing

 In-memory checkpoint is performed by a separate background thread
 With in-memory tables, in-memory checkpoint does not occur until

1.5GB of log has been generated since last checkpoint
 This means transaction log will not clear until 1.5GB of log has been

generated since last checkpoint

 Latest builds of 2014+, log_reuse_wait_desc shows XTP_CHECKPOINT
 Some builds of 2016/2017 didn’t, which was confusing

 More info at https://sqlskills.com/p/054

36

71
© SQLskills, All rights reserved.

https://www.SQLskills.com

Multiple Transaction Log Files

 If the addition of an extra transaction log file is necessary, remove it
again as soon as possible
 It may seem like an extra transaction log file is not problematic, but it is

 Consider the case of a restore after a disaster
 If the database files are missing, they must be recreated during the restore
 All transaction log files must be zero-initialized after creation, adding to the

downtime while recovering from the disaster
 And then zero-initialized again if a differential backup is restored

 A second transaction log file that was not removed adds further downtime

 Be careful of shrinking multiple transaction log files as small as they
will go as this will prevent the extra file being dropped
 If each file is shrunk to only have a single VLF, the transaction log has to have

at least two VLFs so the second file cannot be dropped
 Fix this by growing both files and then dropping the extra file

72
© SQLskills, All rights reserved.

https://www.SQLskills.com

Minimize the Impact of Logging

 Recovery will take longer if there were a lot of long-running
transactions pending at the time of failure, failover, or restore

 Always try to avoid long-running transactions
 Transactions which span more than one batch
 Transactions that require user interaction
 Nested transactions (these do not actually exist in SQL Server)
 Consider using the BULK_LOGGED recovery model during index

maintenance

 There may be multiple reasons that log clearing cannot occur
 Some operations may generate surprisingly more log records than

expected which can contribute to the transaction log filling up quickly
 E.g. updating an index key column is not an in-place update
 E.g. inserting a record into a table that causes a page split

37

Demo

Runaway log file

74
© SQLskills, All rights reserved.

https://www.SQLskills.com

Recovery Models

 FULL: everything is fully logged
 Log truncation usually not possible until log backup
 Operations like creating or rebuilding an index creates as much log as the

size of the index being created/rebuilt

 BULK_LOGGED: minimal logging for SOME things
 Log truncation usually not possible until log backup
 NOT non-logged, just minimally-logged
 Limited set of operations are (see next slide)
 ALL other operations (i.e. updates, inserts, etc.) take the same log space and

time as the FULL recovery model
 Log backups will NOT be smaller then when in FULL!

 SIMPLE: same logging as for BULK_LOGGED
 Log is cleared/truncated on checkpoint
 No log backups possible

38

75
© SQLskills, All rights reserved.

https://www.SQLskills.com

Minimally-Logged Operations

 There is a small list of operations that can be minimally-logged, with
the main ones listed below
 The complete list is in the Books Online topic ‘The Transaction Log (SQL

Server)’ at https://sqlskills.com/p/051

 Creating, dropping or rebuilding indexes
 Reorganizing indexes is always fully logged

 Bulk-load operations
 BCP, OPENROWSET (BULK, …), BULK INSERT

 SELECT INTO a new permanent table
 LOB data changes with the .WRITE option for an UPDATE statement

 UPDATETEXT/WRITETEXT also, but these are deprecated commands

 Whitepaper: Data Loading Performance Guide
 https://sqlskills.com/p/055
 Complete guide to all necessary conditions for minimal logging

76
© SQLskills, All rights reserved.

https://www.SQLskills.com

Deferred Drop and DROP/TRUNCATE TABLE

 There is a common misconception that these operations are non-
logged or minimally-logged

 They’re both fully-logged but very efficiently logged
 TRUNCATE TABLE can be performed in a transaction and rolled-back
 PFS and GAM updates total 0.35-0.4% of table size being logged

 Either the entire DROP/TRUNCATE occurs immediately
 Only for allocation units less than 128 extents
 Pages and extents are de-allocated and no individual rows are deleted

 Or the operation is performed using the deferred-drop mechanism
 Allocation units moved from table metadata to deferred-drop work queue
 Deferred-drop background task de-allocates pages extents in small chunks
 Added in SQL Server 2000 SP3, avoids running out of memory

 Beware: TRUNCATE resets identity values, DELETE does not

39

77
© SQLskills, All rights reserved.

https://www.SQLskills.com

Why Deallocation Takes Lock Memory

 Before an extent can be deallocated, it must be locked and all page
locks ‘probed’

 The extent lock is held until the end of the transaction

Extent X lock

P
a

g
e

 X
 lo

c
k

P
a

g
e

 X
 lo

c
k

P
a

g
e

 X
 lo

c
k

P
a

g
e

 X
 lo

c
k

P
a

g
e

 X
 lo

c
k

P
a

g
e

 X
 lo

c
k

P
a

g
e

 X
 lo

c
k

P
a

g
e

 X
 lo

c
k

78
© SQLskills, All rights reserved.

https://www.SQLskills.com

Recovery Models and Log Backups

 FULL recovery model
 All changes are fully logged therefore log backups will support:

 Up-to-the-minute recovery by backing up the tail-of-the-log
 Point-in-time recovery with the option STOPAT on restore (marked transactions

or time-based STOPAT)

 BULK_LOGGED recovery model
 Bulk operations are minimally logged

 If the tail-of-the-log contains a minimally logged operation and the data files are
unavailable, the tail-of-the-log backup will succeed but will corrupt the database
when restored

 NO point-in-time recovery possible for the time covered by a log backup
containing a minimally-logged operation

 SIMPLE recovery model does not support log backups

40

79
© SQLskills, All rights reserved.

https://www.SQLskills.com

Point-in-time Restore with Minimal Logging

 A log backup containing a minimally-logged operation can be used as
part of a normal restore sequence

 Restore cannot STOPAT any point covered by that log backup

Time

TLOG TLOG TLOGTLOG

rebuild

Cannot STOPAT anywhere in this interval

Bulk-logged Full

Valid for STOPAT use Valid for STOPAT use

80
© SQLskills, All rights reserved.

https://www.SQLskills.com

Minimal Logging and Disaster Recovery

 If a crash occurs that damages or destroys the data files, and there has
been a minimally-logged operation, tail-of-the-log backup will be
corrupt as it cannot back up the minimally-logged data

Time

TLOG TLOGTLOG

rebuild

Bulk-logged Full

41

81
© SQLskills, All rights reserved.

https://www.SQLskills.com

Switching Recovery Models

 When switching to FULL for the first time, the database behaves as if it
is in the SIMPLE recovery model until the first full backup is performed
 This is called being in ‘pseudo-SIMPLE’
 The transaction log will clear whenever a checkpoint occurs

 The number one cause of transaction log files growing out of control
is that a database has been running in pseudo-SIMPLE and then
someone takes a backup, really switching the database into FULL
 And so it will grow forever unless log backups are also being taken

 Switching between FULL and BULK_LOGGED does NOT break the log
backup chain, and does not affect log shipping
 This is NOT possible with database mirroring or availability groups

 Switching to SIMPLE breaks the log backup chain

82
© SQLskills, All rights reserved.

https://www.SQLskills.com

Switching Out of SIMPLE

 When you switch from SIMPLE to FULL or BULK_LOGGED, you cannot
perform log backups until you perform a data backup

 Yes, you can use a differential backup to do this

Time

TLOG DATA TLOGTLOG

Simple Full

All of this transaction log is lost

42

83
© SQLskills, All rights reserved.

https://www.SQLskills.com

VLF Fragmentation: Too Many VLFs?

 Earlier we saw the formula for how many VLFs are created with each
additional growth/auto-growth

 Excessive VLFs (‘VLF fragmentation’) add overhead to transaction log
activities because finding a VLF means traversing the list of VLFs
 All transaction log activity can be affected, including crash recovery

 Log backups and log readers (replication, change data capture, database
mirroring, availability groups, restoring on log shipping secondary)

 Empirical evidence: https://sqlskills.com/p/056
 Many bugs fixed for crash recovery in all versions

 KB articles: https://sqlskills.com/p/057 and https://sqlskills.com/p/058

 Reported at startup in the error log in SQL Server 2012+
 See blog post about VLF algorithm: https://sqlskills.com/p/037

 What is excessive?
 Depends on log file size: many thousands are not ok

 Careful size management is required

84
© SQLskills, All rights reserved.

https://www.SQLskills.com

VLF Searching During Rollback

 When a transaction rolls back, log records are undone in reverse order
 Finding the next log record means searching from the start of the log

for the right VLF, following the VLF sequence number chain
 The more VLFs, the longer each search takes

…… 10,000 ……

…………………

…
…

…
…

…

43

85
© SQLskills, All rights reserved.

https://www.SQLskills.com

Survey: Transaction Log File Size vs. VLFs

 Source: https://sqlskills.com/p/005

86
© SQLskills, All rights reserved.

https://www.SQLskills.com

Too Few VLFs?

 Too few VLFs mean they may be very large and can affect ability to
resize the transaction log

 Consider a transaction log that was created as 100GB initially
 It will have 16 VLFs, each 6.25GB
 Usually not be a problem unless the log shrinks and now there are only two

very-large VLFs

 On SQL Server 2014+
 If growth size is less than 1/8 of current log size, only one VLF is created
 See blog post at https://sqlskills.com/p/037 for details

 Careful size management is required

44

87
© SQLskills, All rights reserved.

https://www.SQLskills.com

Log File Provisioning

 Only ONE transaction log file is necessary
 Log write activity is NOT parallelized so no perf gain from multiple files

 Jonathan Kehayias proved this and blogged about it (https://sqlskills.com/p/060)

 Only time another log file may be needed is if transaction log runs out of
space and there is no other option

 Isolate transaction log file from data files to avoid possible I/O
subsystem contention problems
 Potentially place the transaction log on a very fast I/O subsystem like an SSD

 New log space stamped with 0x00s pre-2016 and 0xC0s in 2016+
 See blog post at https://sqlskills.com/p/061

 Choose an appropriate RAID level
 RAID 5 not recommended as log is write-heavy, and poor failure protection
 RAID 1 is good, RAID 10 is better for failure protection

 This is especially true for SSDs, where placing the transaction log on RAID 0 on a
single SSD, or RAID 1 over two sub-parts of an SSD, is not acceptable

88
© SQLskills, All rights reserved.

https://www.SQLskills.com

Estimating Transaction Log Size

 Pre-allocate the log to an appropriate size
 What is ‘appropriate’? There is no one-size-fits-all answer or formula!

 Estimate transaction log size based on:
 Transaction log generation rate from the regular workload
 Recovery model
 Log and data backup schedules
 HA/DR technologies that may affect log clearing
 The size of the largest single insert/update/delete transaction

 E.g. a single-statement transaction affecting millions of rows
 E.g. a multi-statement transaction performing many operations

 The size of the largest bulk-load or index-rebuild operation

 Create the transaction log with a moderate auto-growth size and
monitor the transaction log size until it reaches a steady state
 Now fix any potential VLF fragmentation

45

89
© SQLskills, All rights reserved.

https://www.SQLskills.com

Configuring Transaction Log Auto-Growth

 Auto-growth should be configured for transaction log files for the
emergency case where monitoring fails
 If log fills up and cannot auto-grow, all write activity in the database stops

 Consider that new log space has to be zero-initialized
 This takes time and pauses write activity as no new log records can be

generated if auto-grow triggered the growth

 The auto-growth size to use needs to take into account:
 Potential for workload delays from having the growth amount set too high
 Potential for VLF fragmentation from having the growth amount set too low
 Log generation rate so it may fill again and require more auto-growth

 Default is 10% prior to SQL Server 2016 (8MB initial and 64MB
autogrow)

 Do not use a percentage as the growth amount will increase over time
 There is no one-size-fits-all answer or formula!

90
© SQLskills, All rights reserved.

https://www.SQLskills.com

Survey: Transaction Log Size Management

 Source: https://sqlskills.com/p/062

46

91
© SQLskills, All rights reserved.

https://www.SQLskills.com

Tempdb Exception…

 Tempdb log resets to the last set size on restart
 Tempdb log is NOT entirely zero initialized on restart

 See https://sqlskills.com/p/063

 Tempdb log VLF count is reset on restart
 See https://sqlskills.com/p/064

92
© SQLskills, All rights reserved.

https://www.SQLskills.com

Transaction Log File Shrinking

 The only way to reduce the transaction log size is DBCC SHRINKFILE
 Do not use the EMPTYFILE option as it has no effect
 Do not use the NOTRUNCATE option as it will not shrink the file

 Shrinking a transaction log file simply removes inactive VLFs from the
end of the file
 Shrinking does not move or remove log records
 Transaction log shrinking is completely different from data file shrinking in

that no index fragmentation is caused

 Shrink will terminate when it encounters an active VLF
 Knowledge Base article 907511 describes transaction log shrinking

 https://sqlskills.com/p/065

 Do not regularly shrink the transaction log
 If it keeps growing again, leave it at the steady-state size
 Otherwise it is repeatedly having to zero-initialize the newly-added space

47

93
© SQLskills, All rights reserved.

https://www.SQLskills.com

Removing VLF Fragmentation

 Execute DBCC LOGINFO to find the number of VLFs
 Number of rows = number of VLFs

 If excessive (> many hundreds or thousands) then need to remove
some to prevent performance problems
 Excessive is relative to transaction log size

 Free up log space by first clearing the log
 If the recovery model is FULL or BULK_LOGGED then perform a log backup

 This should remove the inactive portion of the log as long as there are no long-
running transactions

 If the recovery model is SIMPLE then perform a CHECKPOINT
 Again, as long as there are no long-running transactions

 If the highest active VLF after the log clearing is towards the end of the
transaction log file, perform another log clearing to make the log manager
wrap the log (and maybe another, and another)

94
© SQLskills, All rights reserved.

https://www.SQLskills.com

Removing VLF Fragmentation (2)

 Manually shrink the transaction log file
 DBCC SHRINKFILE (logfilename)
 A second or third log clearing operation may be necessary to make the

highest active VLF near the start of transaction log file
 This can be difficult to do on a busy production system

 Modify the transaction log file size to a more appropriate size in one
or more increments, as described previously
 ALTER DATABASE dbname MODIFY FILE (NAME = name, SIZE = new_size);
 Remember to keep the resulting VLF sizes around 512MB or less

48

Demo

Removing VLF fragmentation

© SQLskills, All rights reserved.
https://www.SQLskills.com 96

© SQLskills, All rights reserved.
https://www.SQLskills.com

Review

 Transaction log architecture
 Log records
 Checkpoints and recovery
 Transaction log operations
 Recovery models
 Log file provisioning and maintenance

 Blog posts: https://sqlskills.com/p/066
 TechNet: Understanding Logging and Recovery in SQL Server

 https://sqlskills.com/p/067

 Pluralsight: SQL Server: Understanding Logging, Recovery, and the
Transaction Log

49

Questions!

