
1

SQLskills Immersion Event
IEPTO1: Performance Tuning and Optimization

Module 4: Versioning
Kimberly L. Tripp

Kimberly@SQLskills.com

2
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Understanding isolation levels
 Isolation in SQL Server

 By default, uses locking
 Optionally, can use versioning (and locking)

 Controlling isolation levels
 Statement-level read consistency
 Transaction-level read consistency
 Overhead/monitoring
 Isolation summary

2

3
© SQLskills, All rights reserved.

https://www.SQLskills.com

Statement Accuracy vs. Data
Accessibility/Concurrency

 Read committed (with locking) does not provide a point in time to
which a statement reconciles
 This will make sense as we discuss the different isolation levels as well as

how they’re enforced (and how long locks are held)

 Sybase (originally) designed “read committed” using the ANSI/ISO
standards
 Read committed also known as “Inconsistent Analysis”
 Their design has both pros/cons:

 Positive: concurrency (data that has not YET been modified, can still be read)
 Negative: the only accuracy is that a row cannot be read if it’s been modified;

there’s no relationship of that read to the overall statement
 Leads to inaccuracies: non-repeatable reads and phantoms

 Oracle is “read committed” by default but they do NOT adhere to the
standards and do not have inconsistent analysis in read committed
(we CAN achieve this behavior)

4
© SQLskills, All rights reserved.

https://www.SQLskills.com

Availability, What About [B]locking?

 ACID transaction design requirements
 Atomicity Consistency Isolation Durability

 Isolation levels (session setting shown in sys.dm_exec_sessions)
 Read uncommitted (1)
 Read committed (2)

 Uses locking (when read_committed_snapshot is not set)
 Uses versioning (when read_committed_snapshot is set)

 Repeatable reads (3)
 Serializable (4)
 Snapshot (5)

 Default isolation level is ANSI/ISO read committed
 NOTE: Default isolation level for Windows Azure SQL Database is read

committed using row versioning (RCSI/read_committed_snapshot)

 SQL Server implementation uses locking for all levels (for writers)

3

5
© SQLskills, All rights reserved.

https://www.SQLskills.com

Isolation Level: Read Uncommitted
Phenomenon: Dirty Reads

 A read transaction can read another transaction’s uncommitted (or in-
flight) changes – resulting in “dirty reads”

 DML statements always use exclusive locking
 SQL Server implementation:

 Row locks are not used (SCH_S locks are used) for the dirty read transaction
and locks against data being accessed are not honored

 Resulting phenomenon:
 Statements execute with the possibility of inaccurate data since the “in-

flight” data read may continue to change or even be invalidated (e.g. rolled
back)

6
© SQLskills, All rights reserved.

https://www.SQLskills.com

Isolation Level: Read Uncommitted
In the Context of a Multi-Statement Transaction

BEGIN TRAN

sql

Q1 = SELECT count(*)
FROM dbo.tname
WHERE country = 'USA'

sql

…

sql

Q2 = SELECT count(*)
FROM dbo.tname
WHERE country = 'USA'

sql

COMMIT TRAN

Read Uncommitted
Q1 > Q2
Q1 < Q2
Q1 = Q2
The data accessed for Q1 and Q2 is
not guaranteed to be committed at
the time the row is read
 Locks are neither acquired nor
honored by Q1 or Q2 and therefore
the data may change between the
two as well as be in-flight (or dirty)
during either read
 Because locks are not honored,
the reader does not have to wait to
read data that’s inflight
Trading off accuracy for
concurrency

time

di
rt

y
re

ad
s

di
rt

y
re

ad
s

4

7
© SQLskills, All rights reserved.

https://www.SQLskills.com

Isolation Level: Read Committed (using Locking)
Phenomenon: Inconsistent Analysis

 Read committed “using locking” is the default behavior in ALL
releases

 In-flight transaction’s data cannot be read by a read committed
transaction – only committed changes are visible

 Modification statements always use locking
 In implementation:

 Locks are released (for readers – not writers) as resources are read, a row may
be read more than once in some scenarios

 Resulting phenomenon:
 Reads are not repeatable through the life of a transaction – as a result a row

may not be read consistently during the life of a transaction
 Don’t have a DEFINABLE point in time to which a query a reconciles…

8
© SQLskills, All rights reserved.

https://www.SQLskills.com

Isolation Level: Read Committed
In the context of a Multi-Statement Transaction

Read Committed
Q1 > Q2
Q1 < Q2
Q1 = Q2
The data accessed for Q1 and Q2
is guaranteed to be ONLY
committed data
 Rows accessed during Q1 are not
locked and therefore may be read
inconsistently even
in Q1 (non-repeatable reads)
 Because only committed data can
be read, the reader may have to
wait if a writer is modifying rows
 Allowing some accuracy while
allowing some concurrency

time

no
 d

irt
y

re
ad

s
no

 d
irt

y
re

ad
s

BEGIN TRAN

sql

Q1 = SELECT count(*)
FROM dbo.tname
WHERE country = 'USA'

sql

…

sql

Q2 = SELECT count(*)
FROM dbo.tname
WHERE country = 'USA'

sql

COMMIT TRAN

5

9
© SQLskills, All rights reserved.

https://www.SQLskills.com

Isolation Level: Repeatable Read
Phenomenon: Phantoms

 In-flight transaction’s data cannot be read and data modified is
accessible only to the repeatable read transaction

 Data read, but not modified is accessible to other transactions for
reads, but not DML

 In implementation:
 Locks are held for the life of a transaction, rows which are read are locked

and can be repeatably read during the life of a transaction

 Resulting phenomena:
 Rows which were not present at the beginning of the transaction can appear

– in the result

10
© SQLskills, All rights reserved.

https://www.SQLskills.com

Isolation Level: Repeatable Read
In the Context of a Multi-Statement Transaction

Repeatable Read
 Q1 < Q2
 Q1 = Q2
 As the rows in Q1 are read, the

shared locks remain
 Only rows accessed by Q1 are

locked; this does not prevent
new rows from entering set
(phantoms)

 Q2 will have at least the same
number of rows as Q1

 Locked rows are not accessible
to other transactions

 Increasing accuracy while
reducing concurrency

time

lo
ck

s
he

ld
da

ta
lo

ck
ed

BEGIN TRAN

sql

Q1 = SELECT count(*)
FROM dbo.tname
WHERE country = 'USA'

sql

…

sql

Q2 = SELECT count(*)
FROM dbo.tname
WHERE country = 'USA'

sql

COMMIT TRAN

6

11
© SQLskills, All rights reserved.

https://www.SQLskills.com

Isolation Level: Serializable
Phenomenon: None

 In-flight transaction’s data cannot be read and data modified is
accessible only to the serializable transaction

 Data read, but not modified is accessible to other transactions for
reads, but not DML

 In implementation:
 Locks are held for the life of a transaction and held at higher levels within

indexes to prevent rows from entering the “set”

 Implementation side effect:
 To prevent rows from entering the “set” of data, the “set” of data needs to be

locked
 If appropriate indexes do not exist then higher levels of locking might be

necessary (i.e. table-level locking)

12
© SQLskills, All rights reserved.

https://www.SQLskills.com

Understanding Isolation Levels
In the Context of a Multi-Statement Transaction

Serializable
 Q1 = Q2
 Rows accessed by Q1 are locked

and cannot change between Q1
and Q2

 Serializable protects the entire set
and does not allow the data
returned from Q1 to change by any
other process – guaranteeing the
state of the data

 Uses locks (indexes/tables) to
guarantee consistency

 Locked rows are not accessible for
modifications to other transactions
– this creates the most blocking

 Absolute accuracy while reducing
concurrency the most

time

locks
acquired

HERE
(but only for

Q1 ∴ Q2)

BEGIN TRAN

sql

Q1 = SELECT count(*)
FROM dbo.tname
WHERE country = 'USA'

sql

…

sql

Q2 = SELECT count(*)
FROM dbo.tname
WHERE country = 'USA'

sql

COMMIT TRAN

7

13
© SQLskills, All rights reserved.

https://www.SQLskills.com

Isolation in Implementation

 SQL Server 2005 added an optional row versioning-based isolation, in
combination with the locking implementation, and now you can
control isolation in essentially four different configurations by
defining the point in time to which you want your statements to
reconcile

 Two end results (and database options) for implementing row-level
versioning:
 Statement-level read consistency

 “Read Committed Isolation Using Row Versioning” (often referred to as RCSI)
 Database option: READ_COMMITTED_SNAPSHOT

 Transaction-level read consistency
 “Snapshot Isolation”
 Database option: ALLOW_SNAPSHOT_ISOLATION

14
© SQLskills, All rights reserved.

https://www.SQLskills.com

Controlling Isolation Behavior

 Default behavior
 Statement-level read consistency OR

“Read Committed Isolation Using Row Versioning”

 Transaction-level read consistency OR “Snapshot Isolation”

 Both database options can be turned on as well:

ALTER DATABASE <database_name>
SET READ_COMMITTED_SNAPSHOT ON
WITH ROLLBACK AFTER 5

ALTER DATABASE <database_name>
SET ALLOW_SNAPSHOT_ISOLATION ON

ALTER DATABASE <database_name> SET READ_COM...
ALTER DATABASE <database_name> SET ALLOW_SNA...

8

15
© SQLskills, All rights reserved.

https://www.SQLskills.com

Versioning: Impact and Overhead

 Versioning overhead is the same in ALL three configurations:
 READ_COMMITTED_SNAPSHOT

 ALLOW_SNAPSHOT_ISOLATION

 Or, with both turned on (the versioning is the same with one or both on)

 Overhead in tempdb can vary
 Always tied to the transactions that require the versions
 Possible for “transaction-level” to require the versions to stick around longer

 Monitor with sys.dm_db_file_space_usage
 Prior to SQL Server 2012 this DMV only worked for tempdb

 RETURNS: database_id, file_id, filegroup_id, total_page_count
allocated_extent_page_count, unallocated_extent_page_count,
version_store_reserved_page_count, user_object_reserved_page_count,
internal_object_reserved_page_count, mixed_extent_page_count

 In SQL Server 2012+, this can be used in any database and returns nulls for
version_store_reserved_page_count, user_object_reserved_page_count, and
internal_object_reserved_page_count

16
© SQLskills, All rights reserved.

https://www.SQLskills.com

Isolation Level: Read Committed (using Locking)
Default Behavior

 All phenomena, except dirty reads, are possible, even in the bounds of
a single select query

 In volatile databases a long-running query may produce inconsistent
results
 Can increase isolation to remove phenomena
 Increasing isolation requires locks to be held longer
 This can create blocking

9

17
© SQLskills, All rights reserved.

https://www.SQLskills.com

Isolation Level: Read Committed (using Versioning)
Database Changed to READ_COMMITTED_SNAPSHOT

 No phenomena are possible in the bounds of a single read committed
statement

 Only used by statements that are in READ COMMITTED isolation
 Statements cannot have lock hints

 Statement-level lock / isolation hints override this
 If your query uses NOLOCK then you do NOT use versions; you must remove lock

hints

 In volatile databases, a multi-statement transaction may yield
different results for subsequent access of the same data

 Each statement is consistent but only for the execution of that
statement, not for the life of the transaction (if the transaction has
multiple statements)

 Each time data is read by a new statement the latest version is used

18
© SQLskills, All rights reserved.

https://www.SQLskills.com

Statement-Level
Read Consistency
 Q1 > Q2
 Q1 < Q2
 Q1 = Q2
 Q1 and Q2 are both guaranteed to

be accurate as of the beginning of
the statement and the “version” of
the row cannot change for the life
of the statement

 RCSI guarantees the accuracy of
the statement but the data can
change and read differently by Q2

time

BEGIN TRAN

sql

Q1 = SELECT count(*)
FROM dbo.tname
WHERE country = 'USA'

sql

…

sql

Q2 = SELECT count(*)
FROM dbo.tname
WHERE country = 'USA'

sql

COMMIT TRAN

Isolation Level: Read Committed (using Versioning)
In the Context of a Multi-Statement Transaction

10

19
© SQLskills, All rights reserved.

https://www.SQLskills.com

Isolation Level: Snapshot Isolation
Database Changed to ALLOW_SNAPSHOT_ISOLATION

 Setting ALLOWS users to ask for versioning by requesting snapshot
isolation
 NOT on by default

 ALL phenomena and ALL default locking behaviors are EXACTLY the
same unless you explicitly ask for versioning through snapshot
isolation

 Once requested, no phenomena are possible in the bounds of a
transaction running under snapshot isolation

 In volatile databases, a multi-statement transaction will always see
the transactionally accurate version which existed when the
transaction started

 Versions must stick around longer
 Multi-statement transactions may have conflicts

20
© SQLskills, All rights reserved.

https://www.SQLskills.com

Isolation Level: Snapshot Isolation
In the Context of a Multi-Statement Transaction

Transaction-Level
Read Consistency
(Snapshot Isolation)

 Q1 = Q2
 Rows accessed by Q1 are

consistent at start of
transaction

 Data isolated at start of
transaction and ensures that
the transaction sees the same
data at Q2, even if changed by
other transactions

 Uses the row version store in
tempdb

 Rows are accessible to other
transactions

time

SET TRANSACTION ISOLATION
LEVEL SNAPSHOT

BEGIN TRAN

sql

Q1 = SELECT count(*)
FROM dbo.tname
WHERE country = 'USA'

sql

…

sql

Q2 = SELECT count(*)
FROM dbo.tname
WHERE country = 'USA'

sql

COMMIT TRAN

11

21
© SQLskills, All rights reserved.

https://www.SQLskills.com

WRITERS: What Happens When? (1 of 2)

 Turning one, or both, versioning options ON will impact writers
 INSERTs

 The inserted row has a 14-byte version tag (with the timestamp and a NULL
version pointer)

 UPDATEs
 BEFORE the modification is made, the current / committed “version” of the

row is placed in the version store in tempdb
 If the current “version” of the row does not have a 14-byte version tag, one is

added (with the timestamp and a pointer to the previous version in the
version store)

 Otherwise the current version tag pointer is updated to point to the
previous version in the version store)

 The row is locked for the duration of the transactions and BECAUSE the row
has a version tag, SQL Server will need to determine what is the appropriate
version of the row that applies to queries

22
© SQLskills, All rights reserved.

https://www.SQLskills.com

WRITERS: What Happens When? (2 of 2)

 DELETEs
 The row is marked as deleted
 If the current “version” of the row does not have a 14-byte version tag, one is

added (with the timestamp and a NULL version pointer))
 Otherwise the current version tag timestamp is updated, and no change is

made to the version pointer
 Queries that began after the time it was deleted, will not see the row
 Queries that began before the time the row was deleted, will see the version

of the row that’s appropriate (the row may have changed before it was
deleted and after other queries – that are still executing – began) so the
version store may still need to be accessed

12

23
© SQLskills, All rights reserved.

https://www.SQLskills.com

READERS: What Happens When?

 Readers are impacted by multiple factors
 In read-committed with locking (neither versioning option is set)

 Readers see the current committed value if the row is not locked
 Readers WAIT if the current state is that it’s exclusively locked (being modified)

and the modifying transaction has not committed
 In read-committed with versioning (read_committed_snapshot is ON)

 Readers will see the version of the row that is appropriate to them; they will see
the version of the row that was committed PRIOR to their STATEMENT start time
(statement-level read consistency)

 REGARDLESS of how read_committed_snapshot is set, IF
allow_snapshot_isolation is ON AND you ASK for a snapshot-based read
with SET TRANSACTION ISOLATION LEVEL SNAPSHOT:
 Readers will see the version of the row that is appropriate to them; they will see

the version of the row that was committed PRIOR to their TRANSACTION start
time (transaction-level read consistency)

 Remember that EVERY statement is implicitly a transaction if it’s NOT within a BEGIN
TRAN / COMMIT TRAN code block so without an explicitly defined transaction, you will
receive “transaction-level read consistency” for each statement!

24
© SQLskills, All rights reserved.

https://www.SQLskills.com

Read Consistency for Multiple Statements

 Imagine running 5 queries (5 large sales reports)
 To what point in time do you want all of the reports to reconcile?

 The point in time the statement starts
 The point in time the transaction starts

13

25
© SQLskills, All rights reserved.

https://www.SQLskills.com

Statement-Level Read Consistency

 Set the READ_COMMITTED_SNAPSHOT database option
 Do nothing else…
 Each query reconciles to the point in time at which it starts

SQL1 – Long-running query (report 1)
SQL2 – Long-running query (report 2)
SQL3 – Long-running query (report 3)
SQL4 – Long-running query (report 4)
SQL5 – Long-running query (report 5)

time

26
© SQLskills, All rights reserved.

https://www.SQLskills.com

Statement-Level Read Consistency

 Set the READ_COMMITTED_SNAPSHOT database option
 Do nothing else…
 Each query reconciles to the point in time at which it starts

EVEN IN A TRANSACTION
All statements reconcile to the point in time that they started

BEGIN TRAN
SQL1 – Long-running query (report 1)
SQL2 – Long-running query (report 2)
SQL3 – Long-running query (report 3)
SQL4 – Long-running query (report 4)
SQL5 – Long-running query (report 5)
COMMIT TRAN

time

14

27
© SQLskills, All rights reserved.

https://www.SQLskills.com

Transaction-Level Read Consistency (1 of 2)

 Set the ALLOW_SNAPSHOT_ISOLATIONdatabase option
 Request snapshot isolation (SET TRANSACTION ISOLATION…)
 All queries reconcile to the point in time the transaction starts (the

first real statement)
REQUIRES THE EXPLICIT TRANSACTION (BEGIN/COMMIT) DEFINITION
All statements reconcile to the point in time that the transaction officially starts

SET TRANSACTION ISOLATION LEVEL SNAPSHOT
BEGIN TRAN
SQL1 – Long-running query (report 1)
SQL2 – Long-running query (report 2)
SQL3 – Long-running query (report 3)
SQL4 – Long-running query (report 4)
SQL5 – Long-running query (report 5)
COMMIT TRAN

time

the official start time
of the tran is not
“begin tran” but the
first statement that
works with data

28
© SQLskills, All rights reserved.

https://www.SQLskills.com

Transaction-Level Read Consistency (2 of 2)

 Set the ALLOW_SNAPSHOT_ISOLATIONdatabase option
 Request snapshot isolation (SET TRANSACTION ISOLATION…)
 All queries reconcile to the point in time the transaction starts
 But… you didn’t say BEGIN TRAN

All statements reconcile to the point in time that the STATEMENT starts!

SET TRANSACTION ISOLATION LEVEL SNAPSHOT

SQL1 – Long-running query (report 1)
SQL2 – Long-running query (report 2)
SQL3 – Long-running query (report 3)
SQL4 – Long-running query (report 4)
SQL5 – Long-running query (report 5)

time

15

29
© SQLskills, All rights reserved.

https://www.SQLskills.com

Read Consistency
Without the Request for Snapshot Isolation

 Set the ALLOW_SNAPSHOT_ISOLATIONdatabase option ON
 WHAT IF YOU FORGET to request snapshot isolation

 If the database option: READ_COMMITTED_SNAPSHOT is ON then, all
queries reconcile to the point in time the statement starts
 This is both with or without an explicit transaction defined

 If the database option: READ_COMMITTED_SNAPSHOT is OFF and you
FORGET to ask for snapshot isolation then, then all queries use read
committed with locking

SET TRANSACTION ISOLATION LEVEL SNAPSHOT
BEGIN TRANSACTION
SQL1 – Long-running query (report 1)
SQL2 – Long-running query (report 2)
SQL3 – Long-running query (report 3)
SQL4 – Long-running query (report 4)
SQL5 – Long-running query (report 5)
COMMIT TRANSACTION

time

30
© SQLskills, All rights reserved.

https://www.SQLskills.com

Read Consistency Without the
Request for Snapshot Isolation

 Set the ALLOW_SNAPSHOT_ISOLATIONdatabase option ON
 WHAT IF YOU FORGET to request snapshot isolation

 If the database option: READ_COMMITTED_SNAPSHOT is ON then, all queries
reconcile to the point in time the statement starts

 If the database option: READ_COMMITTED_SNAPSHOT is OFF and you FORGET
to ask for snapshot isolation then, then all queries use read committed with
locking

SET TRANSACTION ISOLATION LEVEL SNAPSHOT
BEGIN TRAN
SQL1 – Long-running query (report 1)
SQL2 – Long-running query (report 2)
SQL3 – Long-running query (report 3)
SQL4 – Long-running query (report 4)
SQL5 – Long-running query (report 5)
COMMIT TRAN

time

16

31
© SQLskills, All rights reserved.

https://www.SQLskills.com

Allowing Read Committed Using
Statement-Level Snapshot

 Database option
ALTER DATABASE <database_name>
SET READ_COMMITTED_SNAPSHOT ON
WITH ROLLBACK AFTER 5

 No other changes necessary…
 If you use READ COMMITTED – no changes to your queries or your

applications:
 If you “hint” with lock hints (NOLOCK, READUNCOMMITTED, SERIALIZABLE,

etc.) then you must remove these hints
 If you depend on locking – re: queues, readers to wait for change then you

might need to use READCOMMITTEDLOCK
 Changes to blocking… might be extreme!
 However, if this is NOT your performance problem (meaning

concurrency isn’t your bottleneck) then you may hinder performance
 Expect this change in behavior at a cost (10-15%)

32
© SQLskills, All rights reserved.

https://www.SQLskills.com

Allowing Snapshot Isolation

 Database option
ALTER DATABASE <database_name>
SET ALLOW_SNAPSHOT_ISOLATION ON

 Session setting
SET TRANSACTION ISOLATION LEVEL SNAPSHOT

 Changes to applications:
 Request snapshot isolation
 Make sure your transactions have error handling (use TRY…CATCH)

 Test for conflict detection (mandatory = you don’t have a choice, SQL will
error/kill the 2nd updater)

 Expect this change in behavior at a higher cost
 Remember: the biggest problem is poorly written transactions

 Transactions that allow user interaction
 Environments that allow implicit transactions (SET IMPLICIT_TRANSACTIONS ON)

17

33
© SQLskills, All rights reserved.

https://www.SQLskills.com

Row Length Changes

 Cost in row overhead
 When version is needed, 14 bytes added to row
 When indexes are rebuilt OFFLINE, version tags (in row) are removed (may

need to lower the FILLFACTOR to reduce possible fragmentation)
 An ONLINE rebuild actually uses versioning (even if it’s not enabled) to allow the

online operation; version tags are not removed during an ONLINE rebuild

 If versioning, do you depend on locking?
 OK, most of you will say no but if you use queues…
 Tip: Use READCOMMITTEDLOCK hint for queues

 If transaction-level is needed and you have multiple writers (with
snapshot isolation), you can have conflicts?
 Be sure to have error handling/conflict detection, see Snapshot Isolation

whitepaper for details and examples

34
© SQLskills, All rights reserved.

https://www.SQLskills.com

Management/Monitoring

 Version store record in tempdb / version tags in versioned database
 Version store records are removed when no longer needed

 IMPORTANT: versions can only be removed when the low-watermark
SERVERWIDE has moved up (in time). If you do server consolidation (with
multiple databases on the same SERVER) you need to be very careful that you
don’t have one database with really long transactions forcing other database’s
OLTP activity to be KEPT in the version store longer than it was before
consolidation!

 Read committed using statement-level snapshot won’t hold versions as
long, in theory, because only statement-level

 Snapshot isolation may have more impact on tempdb as versions held for
life of transaction (and when poorly written or long-running transactions
exist)

 Lots of long-running transactions IN ANY DATABASE THAT ALLOWS
VERSIONING may stress tempdb

 See whitepaper for examples of queries that can help you monitor the
version store through DMVs

18

35
© SQLskills, All rights reserved.

https://www.SQLskills.com

Isolation: Key Points (1 of 2)

 Consider turning on ALLOW_SNAPSHOT_ISOLATION to determine
OLTP overhead and monitor version-store activity (without changing
any other behaviors)

 Most common to use statement-level read consistency / RCSI / “Read
Committed Isolation Using Row Versioning”
 No problems with update conflicts because every statement uses versions

that are applicable to that statement’s starting time
 Little to no code changes required for statements currently using read

committed with locking; this database option seamlessly makes those
statements switch to using versioning (only statements with hints need to
be changed)

 Often, ALLOW_SNAPSHOT_ISOLATION is also ON but more limited in
use
 Only use “snapshot isolation” for multi-statement reporting “transactions”

 SET TRANSACTION ISOLATION LEVEL SNAPSHOT must be added to the code…
 NO update conflicts if you’re not setting transaction isolation level snapshot with

transactions that make modifications

36
© SQLskills, All rights reserved.

https://www.SQLskills.com

Isolation: Key Points (2 of 2)

 Using locking
 You are always trading off between accuracy and concurrency

 Using versioning
 You increase concurrency and accuracy with overhead in tempdb

 If you are trying to do real-time reporting in an OLTP environment
 You will get inconsistencies/inaccuracies/anomalies in your long running

reads unless you increase locks (which creates more and more blocking)
 You should consider versioning

 You’ll want to make sure you optimize tempdb
 Whitepaper: Working with tempdb in SQL Server 2005
 http://technet.microsoft.com/en-us/library/cc966545.aspx

 You’ll want to make sure you understand versioning
 Whitepaper: SQL Server 2005 Row Versioning-Based Transaction Isolation
 http://msdn.microsoft.com/en-us/library/ms345124.aspx

19

37
© SQLskills, All rights reserved.

https://www.SQLskills.com

Review

 Understanding isolation levels
 Isolation in SQL Server

 By default, uses locking
 Optionally, can use versioning (and locking)

 Controlling isolation levels
 Statement-level read consistency
 Transaction-level read consistency
 Overhead/monitoring
 Isolation summary

Questions!

20

39
© SQLskills, All rights reserved.

https://www.SQLskills.com

Isolation Levels: Quick Review (1 of 2)

 (1): Read uncommitted
 “Dirty reads” – an option ONLY for readers
 Any data (even that which is in-flight/locked) can be viewed

 (2): Read committed using locking (default)
 Only committed changes are visible
 Data in an intermediate state cannot be accessed
 The point-in-time to which your statement reconciles is not guaranteed,

only the state of each row as it’s accessed is guaranteed (committed rows
only)

 (2): Read committed using versioning (read_committed_snapshot)
 Statement-level read consistency
 New non-blocking, non-locking (i.e. SCH_S), version-based statements (in

read committed ONLY)
 The point-in-time to which your statement reconciles is the time it began

40
© SQLskills, All rights reserved.

https://www.SQLskills.com

Isolation Levels: Quick Review (2 of 2)

 (3): Repeatable reads (uses locking)
 All reads are consistent for the life of a transaction
 Shared locks are NOT released after the data is processed – does not allow writers

(does allow other readers)
 Does not protect entire set (phantoms may occur)

 (4): Serializable (uses locking)
 All reads are consistent (from the time the resource is locked) for the life of the

transaction
 Avoids phantoms – no new records
 The point-in-time to which your transaction reconciles is not guaranteed, only the

state of each set (from when it’s first accessed) is guaranteed
 (5): Snapshot isolation uses versioning (db: allow_snapshot_isolation)

 Transaction-level consistency using versioning
 Non-blocking, non-locking, version-based transactions
 The point-in-time to which your transaction reconciles is the time the transaction

began (this must be requested with SET TRANSACTION ISOLATION SNAPSHOT)

21

41
© SQLskills, All rights reserved.

https://www.SQLskills.com

“What If” Scenarios

 Scenario 1: Code changes for transaction-level read consistency made
but the database option allow_snapshot_isolation gets turned off
 Client application code:

SET TRANSACTION ISOLATION LEVEL SNAPSHOT

<executes without error>

BEGIN TRAN

<executes without error>

SELECT * FROM [dbo].[member];

Msg 3952, Level 16, State 1, Line 5

Snapshot isolation transaction failed accessing database
'Credit' because snapshot isolation is not allowed in this
database. Use ALTER DATABASE to allow snapshot isolation.

42
© SQLskills, All rights reserved.

https://www.SQLskills.com

“What If” Scenarios

 Scenario 2: Cross-database transactions with databases of different
versioning configurations
 DB1 – read_committed_snapshot + allow_snapshot_isolation
 DB2 – neither is enabled
 Client application code:

USE [DB1];

GO

SET TRANSACTION ISOLATION LEVEL SNAPSHOT;

GO

BEGIN TRAN

SELECT * FROM [DB1].[schema].[table]; <no problem>

SELECT / UPDATE / ANYTHING FROM [DB2].[schema].[table];

Msg 3952, Level 16, State 1, Line 5

Snapshot isolation transaction failed accessing database
'Credit' because snapshot isolation is not allowed in this
database. Use ALTER DATABASE to allow snapshot isolation.

22

43
© SQLskills, All rights reserved.

https://www.SQLskills.com

“What If” Scenarios

 Scenario 3: Cross-database transactions with databases of different
versioning configurations
 DB1 – read_committed_snapshot + allow_snapshot_isolation
 DB2 – neither is enabled
 Client application code:

USE [DB1];

GO

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

GO

BEGIN TRAN

SELECT * FROM [DB1].[schema].[table]; <no problem>

SELECT / UPDATE / ANYTHING FROM [DB2].[schema].[table];

 NO PROBLEMS!
 Reads in DB1 are read-committed using versions (no waits)
 Reads in DB2 are read-committed using locking (possible [indefinite] waits)

