
1

SQLskills Immersion Event
IEPTO1: Performance Tuning and Optimization

Module 1: Database Structures
Paul S. Randal

Paul@SQLskills.com

2
© SQLskills, All rights reserved.

https://www.SQLskills.com

Why Cover Internals?

 Internals aren’t just to geek-out on (although that’s fun to do too!)
 Understanding how data is stored, accessed, and optimized at all

levels is key when architecting a system so that it will perform well
and be more easily maintained
 Explains why some decisions are good or bad…
 Helps to troubleshoot what’s actually happening…
 Gives a clearer understanding in how to design appropriately for SQL Server

 These are the building blocks for understanding the class

2

3
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Records
 Pages
 Extents
 Allocation bitmaps
 IAM chains and allocation units

 Note:
 In-memory OLTP tables have opaque and entirely different set of structures

 Good primer at https://sqlskills.com/p/001

 Columnstore indexes have opaque and entirely different set of structures
 Good primer at https://sqlskills.com/p/002

4
© SQLskills, All rights reserved.

https://www.SQLskills.com

Server Architecture

Deadlock

Monitor
Hosting

API
Resource

Monitor

Lazy

Writer

D
B

C
C

SQLOS

Scheduler

Monitor

Storage Engine

Protocols

Memory

Manager

Buffer

Pool
I/O

Query Processor
Parser and Algebrizer

Query Optimizer

Plan Cache

Query Execution

Access Methods

Pages/Records/Heaps/Indexes/LOB/Bulk Load/Versioning/Allocation/Sort

Transaction Services

Transactions/Files/FGs/DBs/Logging/Recovery/Backup/Restore/DBM/AGs

M
e

t
a

d
a

t
a

S
Q

LO
S

 A
P

I

SQLOS API

Lock

Manager

Thread

Scheduling

3

5
© SQLskills, All rights reserved.

https://www.SQLskills.com

Database Components

 Databases consist of…
 Filegroups consist of…

 Files consist of…
 Extents consist of…

 Pages consist of…
o Records which hold data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

19

20

21

22

23

18

Extent

0
Extent

1
Extent

2

24

25

27

28

29

30

31

26

…

Extent

3

File4

File5

Log

R
e

a
d

-w
ri

t
e

fi
le

g
ro

u
p

File6

File7

File8

R
e

a
d

-o
n

ly

fi
le

g
ro

u
p

s

2021

2019

2018

2017

Primary

File3

2020

File1

File2

6
© SQLskills, All rights reserved.

https://www.SQLskills.com

Record Structure (Non-Compressed)

Null bitmap offset (2 bytes)

Tag bytes (2) Null bitmap
(2 byte count + 1 bit

per column in the record)

Null bitmap lets SQL Server avoid

reading portions of record into CPU

memory for SELECT-list columns

that are NULL. Reduces CPU cycles

used, so performance optimization.

4

7
© SQLskills, All rights reserved.

https://www.SQLskills.com

Record Structure (Non-Compressed)

Null bitmap Offset (2 bytes)

Tag bytes (2) Null bitmap
(2 byte count + 1 bit

per column in the record)

Variable-length column

offset array
(2 byte count + 2 byte pointer per column)

Fixed-length columns Variable-length columns

Column order NOT

usually relevant

during table

creation...

8
© SQLskills, All rights reserved.

https://www.SQLskills.com

Record Structure Details

 One bit in the null bitmap for each column in the record
 Performance optimization
 Added columns without default values are not added to records until the

record is next updated
 Same goes for columns with default values from SQL 2012 onwards

 Null bitmap always exists in data records
 Except when table ONLY has SPARSE columns

 Null bitmap always exists in nonclustered indexes (SQL 2012+)
 Variable length column offset array stores offsets of ends of columns

 To allow easy calculation of the column size without storing it, saves 2 bytes
 No need to store row length, saves 2 bytes

 Cluster keys will become first columns in data record structure
 In a heap, columns are ordered based on column list in CREATE TABLE

notes for
prior slide

5

9
© SQLskills, All rights reserved.

https://www.SQLskills.com

Data Records

 Occur in heaps (tables without clustered indexes) and at the ‘leaf-
level’ of clustered indexes
 Clustered indexes are stored as B-trees, with the lowest level being data

records in data pages (technically B+ trees that are NOT balanced in real-
time)

 Non-unique clustered indexes will contain a hidden ‘uniquifier’ column

 Data records store all the columns of the table row
 Note: ‘row’ == ‘record’ == ‘slot’

Leaf

Non-leaf or upper or b-tree

10
© SQLskills, All rights reserved.

https://www.SQLskills.com

Forwarded/Forwarding Records

 Only occur in heaps
 If a data record is updated to be larger and there is no space on the

page, it is moved to a new page, and the old location has a pointer to
the new location (and the new record has back-link to the old)

 The record in the new location is the ‘forwarded’ record, and the
pointer to it in the old location is the ‘forwarding’ record

 This avoids nonclustered indexes having to be updated, but can lead
to reduced lookup performance

UPDATE

New

data page

Forwarded

record

Forwarding

pointer

Forwarding

record

Back-pointer

6

11
© SQLskills, All rights reserved.

https://www.SQLskills.com

Back-pointers in Index Records

Heap (c1, c2, …, c10) NC index (c2, data record identifier (RID))

SELECT columns

WHERE c2 = <val>

Base table structure NC index pointer (RID)

Heap Physical RID (file:page:slot)

Clustered index Logical RID (cluster key(s))

12
© SQLskills, All rights reserved.

https://www.SQLskills.com

Index Records

 Index records come in two types: leaf and non-leaf
 Leaf-level index records

 Occur in nonclustered indexes only, at the leaf-level
 Store all nonclustered index key columns, plus:

 A link to the matching row in the table (heap or clustered index)
 Any INCLUDEd columns

 Non-leaf-level index records
 Occur in all index types in the levels above the leaf level
 Contain information to assist the Storage Engine in navigating to the correct

point at the leaf level

 Much more on these with Kimberly

7

13
© SQLskills, All rights reserved.

https://www.SQLskills.com

Text Records

 Used to store ‘off-row’ LOB (Large Object) and all row-overflow data
 ‘Off-row’ means the data/index record stores a pointer to the root of a

loose tree structure that holds the LOB data in text records
 Pointer is 16 or 24 bytes, possibly up to 72 bytes in increments of 12 bytes
 Text tree is not a b-tree like an index

Data page Text page

14
© SQLskills, All rights reserved.

https://www.SQLskills.com

Text Records

 For LOB values larger than a page, there’s a loose tree structure

Data page Text page

8

15
© SQLskills, All rights reserved.

https://www.SQLskills.com

In-row vs. Off-row

 Choice can affect performance through low data-density
 How often is the 900-byte CHAR column used?

100 900

.

.

8

.

.

16
© SQLskills, All rights reserved.

https://www.SQLskills.com

In-row vs. Off-row

 Splitting out the uncommonly-used data to off-row means higher
data density for the commonly-used data so better performance

.

.

64

.

.

900

124

9

17
© SQLskills, All rights reserved.

https://www.SQLskills.com

LOB Data Storage Settings

 Regular and legacy types differ for default on/off-row storage
 Legacy types (n/text, image) off-row by default
 Regular types (n/varchar(max), varbinary(max), XML) on-row by default as

long as there is space, and up to 8,000 bytes only

 For legacy LOB data types:
 Use the ‘text in row’ table option (defaults to OFF)
 Beware! Turning the option off is an immediate size-of-data operation

 For regular LOB data types:
 Use the ‘large value types out of row’ option (defaults to OFF)

 sp_tableoption N'MyTable', 'large value types out of row', 'ON'
 sp_tableoption N'MyTable', 'large value types out of row', 'OFF‘

 Existing values are migrated the next time the column is changed

 Should LOB data be stored in-row or off-row? It depends!

18
© SQLskills, All rights reserved.

https://www.SQLskills.com

Versioned Records (Data/Index/Text)

 Used by features that use the versioning system
 E.g. online index operations, snapshot isolation, DML triggers
 E.g. allowing AG readable secondaries – see https://sqlskills.com/p/003

 Latest version of record on a page has 14-byte tag on the end
 Tag contains ‘timestamp’ and pointer into version store
 Can be a chain of previous versions

 Record expansion can cause forwarded records, or fragmentation

UPDATE

Version

store in

tempdb
Tag

Pre-update version of record

10

19
© SQLskills, All rights reserved.

https://www.SQLskills.com

Page Structure

 8,096 bytes available for
records and slot array

 Single record size limit is
8,060 for in-row portion
(+version tag +forwarded
record back-pointer +slot
array entry +future use)

 Slot array stores offsets to rows
 2 bytes per row, stored

sorted in the order defined
by the index keys. No special
order for a heap.

 NOTE: rows do not have to
be stored on the page in
sorted order, only the offsets

Page header

Row 0

012

96

bytes

8,096

bytes
Row 1

Row 2

20
© SQLskills, All rights reserved.

https://www.SQLskills.com

Ghost Records (Data/Index/Text)

 Deleting a record just marks it as ‘ghosted’ (i.e. logically deleted)
 Ghosting occurs in indexes (and in heaps when versioning is enabled)

 Ghosting removes need for key-range locks to protect deleted record

 Ghost record removal occurs after commit by ghost cleanup task
 Records are not physically overwritten, just the space they occupied on a

page is no longer marked as being used, and becomes free space

 Possible for ghost cleanup to never catch-up…
 Could be blocked by long-running query on AG secondary
 Ghost cleanup takes page locks, can cause blocking (2012+ is aggressive)
 Ghost cleanup can be disabled using TF 661, watched using TF 662

 DBCC TRACEON (662 or 661, -1) so background task picks up the trace flag

 Ghost cleanup can be forced using:
 Force an index scan, index rebuild/reorganize, DBCC FORCEGHOSTCLEANUP
 sp_clean_db_file_free_space and sp_clean_db_free_space

11

21
© SQLskills, All rights reserved.

https://www.SQLskills.com

Ghost Record Removal

 Slot entry of deleted record removed and old record is now free space
 Log record: LOP_EXPUNGE_GHOST

Page header

Row 0

012

Row 1

Row 2

Page header

Free space

01

Row 0

Row 1

22
© SQLskills, All rights reserved.

https://www.SQLskills.com

Common Page Types

 Data pages
 Store data records in a heap, or leaf-level of a clustered index

 Index pages
 Store index records at the leaf-level of nonclustered indexes, and non-leaf

levels of all index types

 Text pages
 Store text records
 Actually two types, to support the loose tree structure

 Text tree pages
 Used when values are larger than 8KB

 Text mix pages
 Used to store multiple values when they are less than 8KB (i.e. shared)

 Allocation bitmaps
 PFS, GAM, SGAM, IAM, DIFF_MAP, ML_MAP
 More on these later

12

23
© SQLskills, All rights reserved.

https://www.SQLskills.com

Boot Page

 Most important page in the database
 One per database, page (1:9) [page ID = (file:page-in-file)]
 Stores base metadata about the database as a whole
 Partially mirrored in log file header pages
 Contains pointer to starting point for crash recovery

 More on this in logging module

 Contains information about most recent backups
 Corruption = restore of at least file ID 1, or possible hex editor cut-

and-paste from older restored copy of the same database
 Dump using DBCC PAGE or DBCC DBINFO

 Must also enable trace flag 3604 to get output

24
© SQLskills, All rights reserved.

https://www.SQLskills.com

File Header Pages

 One per data and log file, always first page (i.e. page 0 in every file)
 Log file header page partially mirrors the boot page

 This is what allows a tail-log backup if data files are damaged/destroyed

 Stores metadata about that file
 Corruption = restore of at least that file , or possible hex editor cut-

and-paste from older restored copy of the same database
 More tricky if log file header or file ID=1 header

 Dump using DBCC PAGE or DBCC FILEHEADER
 Must also enable trace flag 3604 to get output

13

Demo

Examining pages and records

26
© SQLskills, All rights reserved.

https://www.SQLskills.com

Using DBCC PAGE and DBCC IND

 DBCC IND dumps a list of pages
 dbcc ind ({ 'dbname' | dbid }, { 'objname' | objid }, { nonclustered indid | 1 | 0 |

-1 | -2 } [, partition_number])

 DBCC PAGE dumps an individual page
 dbcc page ({'dbname' | dbid}, filenum, pagenum [, printopt={0|1|2|3}])
 Requires TF 3604 to get results
 Use WITH TABLERESULTS to get tabular output

 Also new undocumented DMV from SQL Server 2012+
 sys.dm_db_database_page_allocations (equivalent of DBCC IND)

 And new documented DMV from SQL Server 2019+
 sys.dm_db_page_info (equivalent of page header from DBCC PAGE)

14

27
© SQLskills, All rights reserved.

https://www.SQLskills.com

Extents

 Extents exist to make the allocation system more efficient
 Extent is group of 8 contiguous pages, starting at page 0 in data file

 Tracked in allocation bitmaps (IAM, GAM, SGAM pages)

 Mixed extents vs. dedicated extents
 Mixed: pages are shared with up to 8 objects/indexes
 Dedicated: pages are reserved for exclusive use of 1 object/index

 Default behavior before 2016 (unless disabled with TF 1118)
 First 8 pages allocated to a table/index are one-page-at-a-time from

anywhere in the filegroup (i.e. mixed extents)
 Once 8 pages have been allocated, then switch to dedicated extents

 When dedicated extent is allocate, only first page is actually allocated and used

 Mixed extents off by default in SQL Server 2016+
 ALTER DATABASE … SET MIXED_PAGE_ALLOCATION {ON | OFF}

28
© SQLskills, All rights reserved.

https://www.SQLskills.com

PFS Pages and Intervals

 PFS = Page Free Space
 A PFS page tracks (among other things):

 Page allocation state
 Free space for heap data and text pages only

 No point for indexes, as insertion point is dictated by index key

 PFS page tracks 64MB of a data file (called a ‘PFS interval’)
 One byte in the PFS page per data file page, in the first extent
 64MB = 8,088 database pages (8,088 bytes used in the PFS page)

 Each data file is conceptually split into PFS intervals, starting with
page zero in the file

15

29
© SQLskills, All rights reserved.

https://www.SQLskills.com

PFS Intervals

E.g. 320MB file

PFS

interval 1

PFS

interval 5

64MB 64MB 64MB 64MB 64MB

30
© SQLskills, All rights reserved.

https://www.SQLskills.com

PFS Bits

 Each byte contains the following info:
 bits 0-2: how much free space is on the page

 0x00: empty
 0x01: 1 to 50% full
 0x02: 51 to 80% full
 0x03: 81 to 95% full
 0x04: 96 to 100% full

 bit 3 (0x08): is there one or more ghost records on the page?
 bit 4 (0x10): is the page an IAM page?
 bit 5 (0x20): is the page a mixed-page?
 bit 6 (0x40): is the page allocated?
 Bit 7 (0x80): does the page have a row from an aborted transaction (2019+)

 For example, an allocation IAM page will have a PFS value of 0x70
(IAM + mixed + allocated)
 Even on 2016+, where mixed extents are off by default – still used for IAMs

16

31
© SQLskills, All rights reserved.

https://www.SQLskills.com

Allocation Bitmaps

 All other allocation bitmaps have 1 bit per extent over 4GB interval
 Called a GAM interval, easier just to think of it as a 4GB interval
 Equivalent to 511,232 pages in a data file; 63,904 extents; ~3.9GB

 GAM – Global Allocation Map
 Page 2, then every 511,232 pages

 SGAM – Shared Global Allocation Map
 Page 3, then every 511,232 pages

 DIFF Map – Differential Bitmap
 Page 5, then every 511,232 pages

 ML Map – Minimally Logged Bitmap
 Page 6, then every 511,232 pages

 IAM page – Index Allocation Map
 Allocated as needed

32
© SQLskills, All rights reserved.

https://www.SQLskills.com

GAM Intervals

E.g. 10GB file

~4GB ~4GB ~2GB

GAM

interval 1

GAM

interval 2

GAM

interval 3

17

33
© SQLskills, All rights reserved.

https://www.SQLskills.com

GAM Pages

 PFS pages track the allocation state of pages
 GAM pages track the allocation state of extents
 GAM = Global Allocation Map

 Is an extent allocated or not (doesn’t matter what to)
 If the bit is one, it’s available for allocation (i.e. it is currently unused)

 GAM page searches are only done when allocations have reached the
end of the file and there is free space
 Before that, the next extent to allocate is found from a pointer in the FCB

(File Control Block) instead of searching through GAM pages
 I.e., what’s the current highest-allocated extent in the file?

34
© SQLskills, All rights reserved.

https://www.SQLskills.com

SGAM pages

 SGAM = Shared GAM
 “Shared” is what Books Online uses – pronounce it as “es-gam”

 Used to help finding a mixed extent to allocate from
 Exactly the same format as the GAM page but the bitmap semantics

are slightly different
 Bitmap bit is one

 The extent is a mixed extent and *may have* at least one unallocated page
available for use (optimistic algorithm)

 Bitmap bit is zero
 The extent is either dedicated or is a mixed extent with no unallocated

pages (essentially the same situation given that the SGAM is used to find
mixed extents with unallocated pages)

18

35
© SQLskills, All rights reserved.

https://www.SQLskills.com

DIFF and ML Map Pages

 DIFF MAP = Differential Map
 Also called the DCM or Differential Change Map
 All extents that have changed in any way since last full backup
 Any operation that changes an extent marks it as changed in the differential

bitmap for that GAM interval
 Differential backups scan these to know what to back up
 Only reset by a full backup

 ML Map = Minimally-Logged Map
 Also called the BCM or Bulk Changed Map
 Any minimally-logged operation in the BULK_LOGGED recovery model that

changes an extent marks it as changed in the minimally-logged bitmap for
the GAM interval

 The next log backup scans these to know which extents to include, and then
resets the bitmaps

 Both have the same format as GAM pages

36
© SQLskills, All rights reserved.

https://www.SQLskills.com

First Extent in a Data File

 Page 0 = file header page
 Page 1 = first PFS page

 Repeats as page 0 of extent every 1,011 extents

 Page 2 = first GAM page
 Page 3 = first SGAM page
 Page 4 = UNUSED (used to be first fixed page of sysobjects)
 Page 5 = UNUSED (used to be first fixed page of sysindexes)
 Page 6 = first DIFF map page
 Page 7 = first ML map page

 Reserved extent every 63,904 extents that have the four map pages as
pages 2, 3, 6, 7 of that extent, with pages 0, 1, 4, 5 unused

19

Demo

Examining allocation bitmaps

38
© SQLskills, All rights reserved.

https://www.SQLskills.com

IAM Pages

 IAM = Index Allocation Map
 Tracks all extent allocations for a table/index/partition in a GAM

interval in a data file
 Uses the same bitmap format as GAM pages but has different headers
 If the bitmap bit is one, the extent is allocated to whatever grouping

of allocations the IAM page belongs to
 IAM page header contains

 Which GAM interval does the IAM page track extents for?
 Because IAM pages do not have to come from the file they map

 The sequence number and linkages in the IAM chain
 More on this in a few slides

 The single-page slot array
 Unless mixed extents disabled, first 8 allocations to any object/index are mixed

pages and are tracked in this array in the first IAM page for the object/index

20

39
© SQLskills, All rights reserved.

https://www.SQLskills.com

Combining Allocation Bitmaps

 The interplay of bits in the various bitmaps follow rules (remembering
that IAM bitmaps only track dedicated extents):

 DBCC CHECKALLOC (and CHECKDB) validates these relationships

GAM SGAM IAM Comments

0 0 0 Mixed extent with all pages allocated

0 0 1 Dedicated extent (must be allocated to only
a single IAM page)

0 1 0 Mixed extent with >= 1 unallocated page

0 1 1 Invalid state

1 0 0 Unallocated extent

1 0 1 Invalid state

1 1 0 Invalid state

1 1 1 Invalid state

40
© SQLskills, All rights reserved.

https://www.SQLskills.com

Allocating First Page in a Table

 Find an extent to allocate from
 Allocate new extent (or from mixed extent if mixed page)

 Allocate the first data page
 If mixed extents available, find a page from one, otherwise allocate an extent

and allocate first page from it
 Mark it allocated in the PFS (+ mixed if mixed extent)
 (If mixed, mark the extent as a mixed extent in the SGAM)

 Allocate the IAM page
 Mark it allocated + mixed + IAM in the PFS
 Mark the extent as a mixed extent in the SGAM

 In the IAM page, if data page is mixed, enter page ID in the single
page slot array, otherwise set the extent’s bit in the bitmap

 Enter the IAM page ID in the table’s allocation metadata
 Enter the data page ID in the table’s allocation metadata

21

41
© SQLskills, All rights reserved.

https://www.SQLskills.com

IAM Chains

~4GB ~4GB ~2GB

Table A IAM IAM

Table B IAM

File 1

~4GBFile 3

IAM

42
© SQLskills, All rights reserved.

https://www.SQLskills.com

IAM Chains

 Each IAM page maps a 4GB GAM interval of a file
 If the allocations for a particular table/index/partition are from

multiple GAM intervals (in one or more files), multiple IAM pages are
needed to track them

 IAM pages are linked together in an IAM chain
 IAM chains are unordered, except by the time order in which an IAM

page was added to the chain
 But there is a doubly-linked list, with a sequence number, that DBCC

CHECKDB validates and some operations make use of

 In SQL Server 2000 there was one IAM chain per index, but from SQL
Server 2005 onwards it’s way more complicated…

22

43
© SQLskills, All rights reserved.

https://www.SQLskills.com

SQL 2000

IAM Chains in SQL 2000

Table

Index 1

Index 2

.

.

.

Index 250

Index 255

Total possible IAM chains = 251

44
© SQLskills, All rights reserved.

https://www.SQLskills.com

Allocation Changes in SQL 2005+

 Allocation metadata rewritten for SQL Server 2005
 No further changes since then

 Needed to support 3 new features:
 Row-overflow (rows larger than 8,060 bytes)

 One or more variable-length columns pushed off-row

 INCLUDEd columns
 Ability to INCLUDE non-key columns in a nonclustered index

 Partitioning
 Ability to horizontally partition a table or index

 Change from per-table/index IAM chain to multiple IAM chains per-
table/index

 Name changed to allocation unit although nothing else about IAM
pages and IAM chains changed

 Index Allocation Map became a bit of a misnomer

23

45
© SQLskills, All rights reserved.

https://www.SQLskills.com

Allocation Unit Names

 Three types of allocation unit:
 IN_ROW_DATA allocation unit

 Data and index records

 LOB_DATA allocation unit
 Text records for actual LOB columns

 ROW_OVERFLOW_DATA allocation unit
 Text records for variable-length columns stored off-row

 The internal names you might see in some tools are, respectively:
 HoBt – Heap-or-B-tree (pronounced ‘hobbit’ – yes, Lord of The Rings)
 LOB – Large Object
 SLOB – Small-LOB

46
© SQLskills, All rights reserved.

https://www.SQLskills.com

SQL 2005

Allocation Units in SQL Server 2005

Object

Index 1

Index 2

.

.

.

.

Index 250

HoBt

SLOB

LOB

24

47
© SQLskills, All rights reserved.

https://www.SQLskills.com

Total possible IAM chains = 750,000 !!!

(plus XML indexes, indexed views)

Index 1

Partition 1

.

.

.

Partition 1,000

Index 2

.

Index 250

SQL 2005

And with Partitioning…

Object

HoBt
SLOB

LOB

HoBt
SLOB

LOB

48
© SQLskills, All rights reserved.

https://www.SQLskills.com

Total possible IAM chains = 3 million !!!

(plus XML indexes, indexed views)

Index 1

Partition 1

.

.

.

Partition 1,000

Index 2

.

Index 1,000

SQL 2008

And from SQL Server 2008…

Object

HoBt
SLOB

LOB

HoBt
SLOB

LOB

25

49
© SQLskills, All rights reserved.

https://www.SQLskills.com

Total possible IAM chains = 45 million !!!
(plus XML indexes, indexed views)

Index 1

Partition 1

.

.

.

Partition 15,000
Index 2

.

Index 1,000

SQL 2008 SP2+

And from SQL Server 2008 SP2…

Object

HoBt
SLOB

LOB

HoBt
SLOB

LOB

50
© SQLskills, All rights reserved.

https://www.SQLskills.com

Table Metadata

 Used to be sysindexes, sysobjects, syscolumns in SQL Server 7.0/2000
 From SQL Server 2005 onwards these are catalog views
 Real system tables are now:

 sys.sysallocunits
 sys.sysrowsets
 sys.sysrscols
 sys.sysschobjs
 sys.syscolpars
 sys.sysidxstats
 And others…

 Hidden unless you connect using the Dedicated Admin Connection

26

Demo

Examining IAM chains and table metadata

52
© SQLskills, All rights reserved.

https://www.SQLskills.com

Database Physical Version Number

 All databases have a physical version number
 Physical version number is increased during upgrade

 And sometimes by SP features…
 E.g. 2005 = 611/612, 2014 = 782, 2017 = 869, 2019 = 904

 All SQL Server instances have a maximum physical version number
they can understand
 Newer versions introduce new database structures, log records, etc.

 Database compatibility mode/level is irrelevant!
 Only controls behavior of old query syntax

 SQL Server is NOT up-level compatible
 You cannot restore or attach a database with a higher physical version to a

SQL Server that will not understand it

27

53
© SQLskills, All rights reserved.

https://www.SQLskills.com

Resources

 Inside the Storage Engine blog post category
 https://sqlskills.com/p/004

 Anatomy of a record
 Anatomy of a page
 Anatomy of an extent
 GAM, SGAM, PFS, and Other Allocation Maps
 IAM pages, IAM chains, and allocation units
 Ghost cleanup in depth
 Boot pages, and boot page corruption
 File header pages, and file header corruption

 And much more…

54
© SQLskills, All rights reserved.

https://www.SQLskills.com

Review

 Records
 Pages
 Extents
 Allocation bitmaps
 IAM chains and allocation units

28

Questions!

