SQLskills Immersion Event
IEPTO1: Performance Tuning and Optimization

Discussion: Table Design Strategies
Kimberly L. Tripp
Kimberly@SQLskills.com

O o
S@Lskills

o

Database Development and Design

= Whosejob s It?

= Resources
o Pluralsight: SQL Server: Why Physical Database Design Matters

o Author/Presenter: Kimberly L. Tripp, SQLskills.com
o http://pluralsight.com/training/Courses/Description/sqlserver-why-physical-db-design-matters

o Pluralsight: Developing and Deploying SQL Server ISV Applications

o Author/Presenter: Erin Stellato, SQLskills.com
o http://pluralsight.com/training/Courses/Description/sqlserver-developing-deploying-
supporting-isv-applications

* Things to consider
o Data type best practices
o Understanding row width (vertical partitioning)
o Application inconsistencies in types

o The cost of poor design

s, All rights reserved

w.SOLskills.com

O o
S@Lskills -

o

Use the “Right” Data Type

m li : . . :
SySte supp ed data types Find the “right” data type for the job:
L] Binary * Use the smallest (but least restrictive) data type possible
* If the data type varies:
= Character < 5 chars should be fixed width
. | 5-20 chars — questionable
ntegers > 20 char — lean towards variable-width
™ Exa ctnu merics * For Qecimal/ﬁumeric data:
- Find the right range
] Monetary - Standardize on d_e_cimal or numeric
- Understand precision and range
= Date and time types - Consider vardecimal in SQL Server 2005+
. * For date/time data
= Legacy LOB (lmage, (n)text) - Review all choices/ranges in SQL Server 2008+
* For additional space savings consider:
= LOB (”max” types, XML) - Compression in SQL Server 2008+
. . v pe - Columnstore in SQL Server 2012+
. U nlqueldentlfler (GU | D) * Use uniqueidentifier sparingly
* Consider “sparse” attribute for 2008+
= FILESTREAM (vs. LOB) (for Entity Attribute Values [EAV] / flexible design)

Optimal Row Width

= Consider table usage above all else
= Estimate average row length
o Overhead
o Fixed-width columns
o Estimate average from realistic sample data
SELECT avg (datalength (columnname)) FROM tname
o Review min, max and avg. row width of existing and/or sample tables
sys.dm_db_index_physical_stats
= Calculate page density (rows/page):
8,096 bytes/page divided by ??? bytes/row = rows/page
= Calculate wasted bytes - on disk and in memory

(]

S@Lskills

rselnsq server

O °
S@Lskills -

o

Consider a Customer Table With 1,600,000 Rows

stomer;

47 Columns

ustomerPersonal
T 4,600 Bytes/Row
14 Columns Only 1 Row/Page
1,000 Bytes/Row 3,400+ Bytes Wasted
8 Rows/Page ™ 1.6 Million Pages
200,000 Pages 12.8GB Table
1.6GB Table /
istomerProfessional o
18 Columns* 17 Columns*
1,600 Bytes/Row 2,000 Bytes/Row
5 Rows/Page 4 Rows/Page
320,000 Pages 400,000 Pages
2.5GB Table 3.2GBTable

* The PRIMARY KEY column(s) must be made redundant for the additional tables.
Above: 47

inC ;49

total

3 tables.

One, singe Customer table =

12.8GB

or

Customer, vertically partitioned

into three separate tables =7.3GB

* Savings in overall disk space (5.5GB saved)
Not reading data into cache when not
necessary
LOB data can be isolated from more
critical data to support online index
operations (prior to SQL Server 2012
where rebuilds with LOB can be done
online)

* Locks are table-specific therefore less
contention at the row level

Vertical Partitioning

Optimizing row size for:
o Caching: better page density means less memory required
o Locking: only locking the columns that are of interest minimizes even row-

level conflicts

Usage defines vertical

"

partitions” or “sets”
o Logically group columns to minimize joins

o Consider read only vs. OLTP columns (LOB separate from OLTP to allow
online index maintenance (prior to SQL Server 2012) for the critical/OLTP
part of the table)

o Consider columns often used together

If every query requires a join, this isn’t as optimal as it could be but
should still be considered

SQLskill

o

immerse yourself in sql server

Pushing LOBs “Out of Row”

Subtle form of vertical partitioning
Doesn't affect the application

May significantly improve performance
When should you do this:

o You have a lot of “small” LOB values (values under 8KB) that actually create
large rows

o LOBs aren’t returned on most requests so you're filling cache with LOB
values that aren’t being used

Set with sp_tableoption
EXEC sp_tableoption tablename
, 'large value types out of row'
, TRUE

“Place Holder” Rows?
Nullability and INSERT Performance

No default: no specific value required/specified at INSERT
NULL values DO NOT mean empty space (NULL bitmap is stored
separately from the column data)
Working with NULLs
o Accessing columns which allow NULL values can cause inconsistencies when
developers/users are not aware of them
o Math with NULL values can produce interesting results (value - NULL =
NULL)
o ANSI session settings can affect results sets when accessing columns that
allow nulls
Sometimes it’s best to pre-allocate the row if you're using place-
holders (so that updates do not cause massive fragmentation)

O .
S@Lskills -

o

Inconsistencies in Data Types

* Query doesn’t match the column definition
o The case of the implicit_conversion
= Key inconsistencies
o “Probe Residual” in showplan for hash join
o May add a hash value for comparisons
o May add a converted version of a column
o Wastes storage space, index size, backups, ...
= Inconsistencies in any layers can be costly
o Tables
o Stored procedures/functions

o Ad hoc queries/application interface

= Consider tools like Visual Studio for refactoring and static code
analysis

Horizontal / Functionally Partitioning Data

= Breaking a table into smaller / more manageable chunks to:
o Reduce resource contention / limitations
o Improve options / performance for varying access patterns
o Allow more maintenance options and reduce costs / restrictions
o Improve availability and reduce downtime for disaster recovery
o Remove resource blocking or minimize maintenance costs
= Usage defines partitioning pattern / partitioning key
o Usually date-related (but doesn't have to be)
o Distinct data patterns in terms of:
o Usage
o Criticality
o Maintenance
* Queries must specify the partitioning column on every request to aid
in partition elimination

SQLskills

O °
S@Lskills -

o

Functionally Partitioning Data

Sales2010-2016 w Sales VIEW
Sales2017Q1 Table Use UNION ALL to bring data together into a
Sales2017Q2 single View.
Solves many problems:
Sales2017Q3 Sales2017 — * Tables can be isolated (LUNs)
Sales2017Q4 Partitioned Table * Tables can be on read only FGs

* [Table-level] Statistics are more accurate on

// smaller tables
Sales2018

* Limitations in PTs are removed: partition-level

Partitioned Table rebuilds aren’t needed (RW data is in a separate
(read-mostly) table(s))
— * Lock escalation is reduced naturally (partition-
level was added in 2008)
:oo' § § 8 Standalone ¥ “
2lgl2 g transactional / critical Sales201810 Sales201811
tables -> will be

g E E E switched in after they Standalone Table Standalone Table
S &3 = are indexed for RO (RW/“hot” /critical) (RW/“hot” /critical)

Functionally Partitioning Data

Partitioned tables (requirement: Enterprise Edition prior to SQL Server
2016 SP1)

o But, for ALL Enterprise ADMIN features such as online operations — you still need
EE

o Can convert an existing table as an ONLINE operation IF the table doesn’t have
any LOB columns in 2005 / 2008 / R2 (fixed in 2012)

o Might run into problems around “unique” index requirements for PTs in that the
partitioning column must be a member of the key - for all unique indexes

o Cannot do fast switching in 2005 if Indexed Views
o Cannot do fast switching if iFTS desired
= Partitioned views (benefit: available in any edition)

o Might be able to replace an existing table with a view (even for DML) if you meet
the correct criteria

o Might not be able to replace all statements, can programmatically direct modifications
(for INSERTS)

o Conversion may require downtime or time where certain data is inaccessible
o Definitely more work to architect, manage, design — payoff is often worth it!

(]

SQLskills

yourselinsal ser

O °
SGLskills

o 6

Table Design Best Practices

= Communications, DESIGN, consistency!
= Sloppy design (or none!) leads to:
o Performance problems
o Difficulty when performance tuning
= Scalability can only happen with good design

o Tables can be created easily but design takes knowledge:
o Knowing the data
o Knowing the users
o Knowing the system

o Take more time for design/prototyping — the sooner you begin to code, the

longer it's going to take!

o Consider changes over time - if already in place...third-party tools can help
with refactoring, testing, static code analysis!

O o
S@Lskills -

o

