
1

SQLskills Immersion Event
IEPTO1: Performance Tuning and Optimization

Module 10: Indexing Strategies
Kimberly L. Tripp

Kimberly@SQLskills.com

2
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Indexing for performance
 Design strategies
 Overall strategies

 Using the tools for tuning
 SET STATISTICS IO ON
 Showplan
 Missing indexes

 Indexing for AND
 Indexing for OR
 Indexing for joins
 Indexing for aggregates
 Indexed views v. columnstore indexes
 Rowstore indexes v. columnstore indexes

2

3
© SQLskills, All rights reserved.

https://www.SQLskills.com

Indexing for Performance

 Extremely challenging
 Users lie
 Workload specific

 Data modifications are impacted by indexes (indexes add overhead to
INSERTs/UPDATEs/DELETEs)

 The type and frequency of the queries needs to be considered
 This can change over time
 This can change over the course of the business cycle

 Need to have an understanding of how SQL Server works in order to create
the “RIGHT” indexes – you CANNOT just guess!

 To do a good job at tuning you must:
 Know your data
 Know your workload
 Know how SQL Server works!

4
© SQLskills, All rights reserved.

https://www.SQLskills.com

Indexing Strategies at Design

 First and foremost: choose a GOOD clustering key
 Create your primary keys and unique keys
 Create your foreign keys

 Manually index your foreign keys with nonclustered indexes

 Create any nonclustered indexes needed to help with highly selective
queries (lookups are OK for highly selective queries)

 STOP: this is your “design” base
 Add indexes slowly and iteratively over time while learning and

understanding your workload as well as query priorities and always
re-evaluate if/when things change!

3

5
© SQLskills, All rights reserved.

https://www.SQLskills.com

Indexing Foreign Keys (1 of 2)

 Helps referential integrity management
 When a primary key row is deleted, ALL foreign key references must be

checked
 When the foreign key column does not have an index whose key LEADS with the

foreign key definition, then something has to be scanned
 If there’s no index that has the foreign key column in it, the table has to be scanned

 Can be very expensive if there are many foreign key references and/or references
from large tables

 Helps the query optimizer better understand the relationship
between tables when they’re joined
 Foreign key values must exist in the referenced table
 Foreign key values will reference exactly one row

 Can help join performance
 When the more selective criteria is on the primary key table and SQL Server

wants to join TO the foreign key reference

6
© SQLskills, All rights reserved.

https://www.SQLskills.com

ID LN FN MI … DID

1 … … . … …

2 … … . … 63

… … … . … …

345 … … . … …

Employee

Indexing Foreign Keys (2 of 2)

DID Name … City State

1 … … … …

2 … … … …

… … … … …

63 … … Bellingham WA

Department

SELECT [e].[LN], [e].[FN], [d].[DID]
FROM [Employee] AS [e]

JOIN [Department] AS [d]
ON [e].[DID] = [d].[DID]

WHERE [d].[City] = 'Bellingham'

SELECT [e].[LN], [e].[FN], [d].[DID]
FROM [Employee] AS [e]

JOIN [Department] AS [d]
ON [e].[DID] = [d].[DID]

4

7
© SQLskills, All rights reserved.

https://www.SQLskills.com

Indexing Strategies Overall

 Good base table indexes and a very small number of indexes to start
(some performance improvements should be handled by good design
strategies)

 General strategies:
 Narrow indexes have very few uses!

 Be careful that your general strategy is NOT:
 See a WHERE clause, create a single-column index on it
 To automatically create an index on every column (horrible!)
 Guessing… or tuning queries randomly (without workload/index analysis)

 Wider indexes have MANY, MANY more uses!
 I’m not saying that you need to create indexes that have all of your columns in

them but understanding a lot more about internals and how SQL Server works is
VERY important for better performance!

 Columnstore should be considered for large aggregations but lots of other
considerations (SQL Server version, reads v. updates, types of queries)

8
© SQLskills, All rights reserved.

https://www.SQLskills.com

But Will YOUR Queries Use Them?

 Subset of columns = projection
 Do not use * (unless against view)
 Optimizer has more chances for optimizing query when result set is

NARROW (only the required columns)

 Subset of rows = selection
 Use positive search arguments
 Isolate the column to one side of the expression

 USE: MonthlySalary > value/12 (constant, seekable)
 DO NOT USE: MonthlySalary * 12 > value (must scan)

 Be cautious with LEADING wildcards
 USE: LastName LIKE 'S%'
 Avoid just appending %val% to every value (from the app)

 Consider using views, stored procedures and functions to limit the
columns/rows

5

9
© SQLskills, All rights reserved.

https://www.SQLskills.com

Using the Tools

 USE the tools!
 STATISTICS IO
 Showplan/Missing Index DMVs
 Database [Engine] Tuning Advisor
 BEWARE of the limitations of the tools!

 Missing Index DMVs (and therefore showplan) only tune the plan that was
executed – they do not “hypothesize” about alternatives (like DTA does)

 All of the index recommendation from tools tend to go for “the best” choice
rather than good enough choices

 NONE of the tools do index consolidation…

 Resources:
 Search “Bart Duncan Missing”
 Glenn’s DMV Toolkit
 A bit of searching – lots of good stuff out there!

10
© SQLskills, All rights reserved.

https://www.SQLskills.com

SET STATISTICS IO ON (1)

 Scan count: does not mean table scan
 Nothing to do with actual type of access
 Refers to the number of “accesses” an object

 Logical reads: number of page accesses in the data cache – specific to this
query’s execution
 A single page can be accessed many times and EVERY one of these will be

counted
* NOTE: Profiler vs. STATISTICS IO = Profiler includes I/Os performed during the execution
of the query (for example, lookups into the plan cache, accessing metadata, security
information, etc.). Profiler should always be greater than or equal to STATISTICS IO.

 Physical reads: number of page reads that this query had to wait for – from
disk

 Read-ahead reads: secondary process which accesses pages from disk
(“reading ahead” of the query) so that SQL Server/CPU doesn’t have to wait

 Lob (logical, physical, and read-ahead) reads: same as the above but for all
LOB [(n)text, MAX, XML] as well as limited-LOB data types that have
overflowed

6

11
© SQLskills, All rights reserved.

https://www.SQLskills.com

SET STATISTICS IO ON (2)

 Use logical reads as a general “total”
 The cost of getting from A to B in “steps” alone
 Similar to distance

 Does not include any traffic [blocking] encountered along the way
 Does not include any worktables required

 Doesn’t give you the complete picture

 Use as a piece in the query execution information/puzzle
 Usually set in script
 Can change it in SSMS

 Tools, Options, Query Execution, Advanced:
 SET STATISTICS IO ON
 SET NOCOUNT ON

 NOTE: Some of these options can have a profound affect on query performance.
Should not change the ANSI options.

12
© SQLskills, All rights reserved.

https://www.SQLskills.com

Showplan

 Estimated plan
 Gives you the plan that SQL Server came up with through optimization –

without actually executing it

 Actual plan
 Gives you the plan that SQL Server came up with through optimization –

and, executed it
 This is EXACTLY the same plan [shape] as estimated but includes actual

numbers
 Extremely beneficial in finding cardinality estimation issues

 Definitely NOT perfect…
 What are you really seeing with cached plans and stored procedures…

 Plans for COMPILED values not the actual value – these can be the most incorrect

7

13
© SQLskills, All rights reserved.

https://www.SQLskills.com

Missing Index Hints

 The “green hint” in showplan, comes from the missing index DMVs
 Helpful, but

 Not always listed with the query it benefits (consider using SQL Sentry’s Plan
Explorer)

 Gives you the index that reduces the most I/O for the plan that was executed
 Doesn’t consider other join types or join orders; doesn’t always give the best

plan

 Good to try
 If you’re ready to believe it and implement the suggestion consider checking

to see what the Database [Engine] Tuning Advisor (DTA) recommends
 Don’t just trust it; must consider consolidation

 Review existing indexes
 Could you create a slightly-wider but better index? Possibly removing one or

more existing indexes?
 The more you tune – the more you’ll find “similar” recommendations

14
© SQLskills, All rights reserved.

https://www.SQLskills.com

Indexing for AND

 AND progressively limits the SET
 All conditions MUST be true
 Indexing strategies

 Evaluate columns in WHERE clause
 Index any single highly selective set
 Index a combination of columns to yield a highly selective set

 Order should be based on the most commonly combined criteria (if all SARGs use
equality)

 Order should be based on the most selective *predicate* criteria (if SARGs use
varying operators such as >, < or LIKE)

 If no combination of criteria create a selective set AND it’s a high priority
query, consider covering the query
 SQL Server may use index intersection to intersect two relatively small sets (HASH

Join), this is likely to be achieved without trying

8

15
© SQLskills, All rights reserved.

https://www.SQLskills.com

SELECT m.Member_No, m.FirstName, m.Region_No
FROM dbo.Member AS m
WHERE m.FirstName LIKE 'K%'

AND m.Region_No > 6
AND m.Member_No < 5000

Index Options

 Table scan (always an option)
 Clustered on member_no so a full table scan is unnecessary
 SQL Server can “seek” with a partial table scan

 NC index on firstname (K% is not very selective)
 NC index on region_no (region_no > 6 is 1/3 of the table)

 What does SQL Server do?

16
© SQLskills, All rights reserved.

https://www.SQLskills.com

Index Intersection

 Think of each of your nonclustered indexes as sets (as mini tables
ordered by the key of the index)

 All nonclustered indexes “include” the clustering key in the leaf level
of the index

 If we could “join” (or intersect) these sets on their common element
(member_no) then we could find the data that we need…

 And, our query only wants these columns
 The intersection of these two indexes covers our query!

region_nofirstname

firstname, member_no region_no, member_no

9

17
© SQLskills, All rights reserved.

https://www.SQLskills.com

Index Intersection

 Not the fastest option available for performance
 Requires more than 1 index to get to the data
 Potentially requires tempdb space (HASH match)
 Not something for which I strategize but something that might happen with

lower priority queries that aren’t covered and for those it’s PERFECT

 If it’s a high priority query, you should consider doing with 1 index
what you’re currently doing with 2!
 No temp table
 Only one index to seek/scan

18
© SQLskills, All rights reserved.

https://www.SQLskills.com

Index Options

firstname, mno, rno rno, mno, firstname

firstname, rno, mno rno, firstname, mno

mno, firstname, rno

mno, rno, firstname

Both seek for K% Both seek for rno > 6 Both seek for mno <

5000

= =

= =

All indexes are the same size (same columns) but the ORDER of the columns is different

rno = region_no

mno = member_no

(1/26)

(1/26)

(1/3)

(1/3)

(1/2)

(1/2)

10

19
© SQLskills, All rights reserved.

https://www.SQLskills.com

What’s Best Depends On the QUERY!

 An index that has firstname first is better for THIS query because it’s
the most selective SET (based on the query, not the data itself)

 An index with region_no first is good, possibly better if the firstname
might accept leading wildcards such as
 WHERE firstname LIKE ‘%e%’

 Not as big of a fan of having member_no first
 It’s the most selective data column (it’s unique) but, we already have a

clustered index on member_no
 If a highly selective query were to run then SQL Server could seek into the

clustered index…
 If ALL of the queries supply all three of the parameters then region_no or

firstname first would help more queries!

 Remember, ALL 6 are better than 2 or even a partial table scan!

20
© SQLskills, All rights reserved.

https://www.SQLskills.com

Summary: Key Order – How Do You Decide?

 First and foremost – it depends on the usage of the columns
 If you ALWAYS supply LastName and sometimes supply FirstName

 LastName, FirstName is better than FirstName, LastName

 Second – it depends on the types of predicates (equality?)
 If EVERY query ALWAYS supplies ALL conditions and those conditions are

accessed with equality conditions, it does NOT matter:
WHERE LastName = ‘Tripp’ AND FirstName = ‘Kimberly’

 Then, it doesn’t matter (these two indexes are REDUNDANT in this case):
 LastName, FirstName
 FirstName, LastName

 Third – what about inequality?
 Once you start adding predicates that want inequality (LIKE, <, >, etc.) then

you might only benefit (or, be able to seek on) the first condition. So, the 2nd

and 3rd condition might be OK just to be in the INCLUDE

11

21
© SQLskills, All rights reserved.

https://www.SQLskills.com

Indexing for OR

 What is OR doing?
 Gather individual sets
 Bring together and ensure that any row that appears in multiple places is

only displayed once
 Sound familiar?

 IN is just a simplified series of OR conditions
 If an index exists to help search on each condition and EVERY specific value

is HIGHLY selective, then it will use an index every condition
 If any condition is not selective enough to use the index then a scan will be

performed

22
© SQLskills, All rights reserved.

https://www.SQLskills.com

Indexing for OR

 For ideal performance tuning, treat each OR as a different query
 Each condition CAN use an index

 Each condition has to be selective enough to use the index
 If there are 6 conditions and 5 are selective but 1 isn’t then why would SQL

Server use 5 different indexes and then still do a table scan…
 If you have an IN then SQL Server can use the same index multiple times but

if some of the conditions are selective and one are more are not then you hit
the same issue as above – why would SQL Server use an index AND do a
table scan!

 The final step is that an OR cannot return duplicates – SQL Server
MUST determine if any rows are in more than one result set.
 This often requires a temp table and a sort…

12

23
© SQLskills, All rights reserved.

https://www.SQLskills.com

Indexing for OR
OR is Similar to UNION

 OR removes duplicate rows based on row’s unique identifier (RID or
clustering key)

 UNION removes duplicate rows based on the SELECT list
 This is NOT good enough… you must add the row’s key to the SELECT

list if you choose to use UNION
 If you’re joining multiple tables, you should consider adding EACH

table’s key to the query
 OR always removes duplicates

 What if you know there are no duplicates
 What if you don’t care if duplicates are returned

 Consider UNION ALL

Be sure to test this thoroughly as your
queries are semantically different when you

change from OR to UNION

24
© SQLskills, All rights reserved.

https://www.SQLskills.com

Using the Tools for Join Tuning

 Understand how to break down a join
 Understand how to force your join for performance comparisons
 Understand the pros/cons of the showplan recommendations
 Understand how to best use DTA for a more well-rounded

recommendation
 Use DTA from SSMS to see all of the recommendations
 Know how to use DTA’s recommendations iteratively!

13

25
© SQLskills, All rights reserved.

https://www.SQLskills.com

Indexing for Joins

 Multiple possible join strategies: do you need to care?
 Items on which to focus:

 Most expensive table in the join (you have to start somewhere?!)
 Most expensive join in the plan (it’s probably downstream from the most

expensive table and a join on that table)
 Once you know the problem table AND the problem join, focus on tuning

that particular table within that specific join!

26
© SQLskills, All rights reserved.

https://www.SQLskills.com

Best Options for Joins: Phase I

 One join strategy might use Table1’s SARG1 index to Table2’s join key
index (loop join)

 Another could use Table2’s SARG1 index to Table1’s join key index
(loop join)

 Another could use only the join key indexes (merge)
 What’s best depends on the data!
 If ALL four indexes exist then the optimizer has the best choices

Table1 Table2

SARG1

Join Col PK

SARG2

Join Col FK

Do you already have
individual indexes on
each and all of these
columns?

Foreign key???

14

27
© SQLskills, All rights reserved.

https://www.SQLskills.com

Cover the Combination: Phase II

 Not using these indexes?
 Performance still stinks?
 Cover the combo

 Problem table (SARG, join): priority for the SARG
 Problem table (join, SARG): priority for the join

 Only works when the cardinality of the join is low

Still not working?Table1 Table2

SARG1

Join Col PK

SARG2

Join Col FK

28
© SQLskills, All rights reserved.

https://www.SQLskills.com

Cover the Query: Phase III

 Covering the query/queries
 Cover the combo first, THEN add the additionally requested columns,

with INCLUDE
 Problem table (SARG, join): priority for the SARG
 Problem table (join, SARG): priority for the join

Table1 Table2

SARG1

Join Col PK

SARG2

Join Col FK

15

29
© SQLskills, All rights reserved.

https://www.SQLskills.com

Bringing It All Together (Long Demo)

 Pulling apart a plan and describing a lot while I do it…
 Hard-coding a query to create a base-line to go against
 Deciding where to start

 Analyzing where we have a problem(s)
 Finding the problem table
 Finding the problem join

 Evaluating whether or not an index is a good idea
 Reviewing/debating the “green hint”
 Using DTA from SSMS to see if the hint is different

30
© SQLskills, All rights reserved.

https://www.SQLskills.com

Table Scans – Are They Necessary?

 Is the table scan because you’re returning the entire table/all columns?
 Or, it is because the right indexes don’t exist?
 What table has the highest cost?

16

31
© SQLskills, All rights reserved.

https://www.SQLskills.com

Joins – Are All of the Joins Hash Joins?

 Are all of these hash joins because you’re tables are large?
 Or, are they because the right indexes don’t exist?
 What join has the highest cost?

32
© SQLskills, All rights reserved.

https://www.SQLskills.com

Manual Tuning Process

 Find the most expensive table in the query (charge)
 Are there any SARGs – consider what the key would look like with these

SARGs independent of the join conditions

 Find the most expensive join in the query (charge joining to member)
 Figure out which join is the join that your problem table is joining to

 Phase I should be already done
 Phase II should be considered

CREATE NONCLUSTERED INDEX Charge_PriorityForSARG
ON [dbo].[charge] ([charge_amt], [member_no])

CREATE NONCLUSTERED INDEX Charge_PriorityForJoin
ON [dbo].[charge] ([member_no], [charge_amt])

 Phase III adds any columns not already present, to the INCLUDE
INCLUDE ([statement_no], [provider_no])

17

33
© SQLskills, All rights reserved.

https://www.SQLskills.com

Tuning Goal

 Find the most expensive table in the query (charge)
 Find the most expensive join in the query (charge joining to member)
 Try to tune CHARGE for its join to member… How?

 Review the green hint:
CREATE NONCLUSTERED INDEX MissingIndexDMVRecommendation
ON [dbo].[charge] ([charge_amt])
INCLUDE ([member_no],[provider_no],[statement_no])

 Double-check using DTA (Query, Analyze Query in DTA):
CREATE NONCLUSTERED INDEX [DTA_K6_K7_K3_K2]
ON [dbo].[charge]
([member_no], [charge_amt], [statement_no], [provider_no])

 Notice how similar these indexes are?
 What do they do, how do they differ?

34
© SQLskills, All rights reserved.

https://www.SQLskills.com

Result of Manual and Tool-based Tuning

 The missing index DMVs (via the green hint in showplan) came up with:
CREATE NONCLUSTERED INDEX MissingIndexDMVRecommendation
ON [dbo].[charge] ([charge_amt])
INCLUDE ([member_no],[provider_no],[statement_no])

 Manually, we came up with:
CREATE NONCLUSTERED INDEX Charge_PriorityForSARG
ON [dbo].[charge] ([charge_amt], [member_no])
INCLUDE ([statement_no], [provider_no])

CREATE NONCLUSTERED INDEX Charge_PriorityForJoin
ON [dbo].[charge] ([member_no], [charge_amt])
INCLUDE ([statement_no], [provider_no])

 The Database Tuning Advisor came up with:
CREATE NONCLUSTERED INDEX [DTA_K6_K7_K3_K2]
ON [dbo].[charge]
([member_no], [charge_amt], [statement_no], [provider_no])

18

35
© SQLskills, All rights reserved.

https://www.SQLskills.com

Benefits of These Indexes?

 The green hint/the Missing Index DMVs recommendation:
 Leads with the column charge_amt
 This removes the table scan and changes to an index seek
 This allows filtering by our search argument (charge_amt > 2500)
 PRO: This helps tune the plan that was chosen/executed
 CON: They did not hypothesize for alternatives

 The DTA’s recommendation:
 Leads with the column member_no
 This removes the table scan and changes to an index seek
 This allows the join to change to a loop join
 PRO: This significantly reduces the cost/time for the join

 Of the tools – what’s better? What gives better performance?
 DTA, but, our index was even a bit better given that you can’t seek beyond

charge_amt (as the SARGs against it are range-based)

36
© SQLskills, All rights reserved.

https://www.SQLskills.com

Database [Engine] Tuning Advisor

 It’s not always perfect
 It sometimes yields the same index recommendation that the missing

index DMVs
 It often OVER recommends indexes (this is why you want to use it

ITERATIVELY after really analyzing where to begin)
 It doesn’t recommend any forms of index consolidation

 This is one of the reasons that a lot of development environments end up
over-indexed

 IF you end up creating the index that was recommended for a
particular table, then, go ahead and create the statistics that are
recommended for that table
 DTA can create multi-column statistics
 The can give the optimizer other (sometimes VERY useful) ways of using the

recommended index!

19

37
© SQLskills, All rights reserved.

https://www.SQLskills.com

Join Strategies

 Loop join
 Iterative search on the inner table based on the number of rows that match in the

driving table
 Usually best when the driver (outer table [chosen by SQL Server]) is small

 Merge join
 Processing both tables at the same time using suitably sorted indexes
 Usually best when the RIGHT indexes exist

 An index on EACH table that LEADs with the same column (the column being joined) is
necessary

 Hash join
 Two-phase operation (build, then probe): build table (smaller set) and probe

table (larger set) allowing SQL to join extremely large sets – in MEMORY (can spill)
 Either side can use indexes to make the sets smaller
 When this occurs on reasonably small tables then it sometimes mean that good

indexes don’t exist
 Key points: the strategy I demonstrated works for ALL join types

 You do not need to know or care about the specific strategy… just give SQL
Server the best information from which to choose!

38
© SQLskills, All rights reserved.

https://www.SQLskills.com

Indexing for Aggregations

 Two types of aggregates:
stream and hash

 Try to achieve stream to minimize overhead in temp table creation
 Computation of the aggregate still required
 Lots of users, contention and/or minimal cache can aggravate the

problem!

20

39
© SQLskills, All rights reserved.

https://www.SQLskills.com

Aggregate Query

 Member has 10,000 rows
 Charge has 1,600,000 rows

SELECT c.member_no AS MemberNo,
sum(c.charge_amt) AS TotalSales

FROM dbo.charge AS c
GROUP BY c.member_no

40
© SQLskills, All rights reserved.

https://www.SQLskills.com

Aggregate Query
Table Scan + Hash Aggregate

 Table scan of charge table
 Largest structure to evaluate
 Worst case scenario

 Worktable created to store intermediate aggregated results: OUT OF
ORDER (HASH)

 Data returned OUT OF ORDER unless ORDER BY added
 Additional ORDER BY causes another step for SORT, and sorting can

be expensive!

SELECT c.member_no AS MemberNo,
sum(c.charge_amt) AS TotalSales

FROM dbo.charge AS c
GROUP BY c.member_no

21

41
© SQLskills, All rights reserved.

https://www.SQLskills.com

Worst Case

Clustered index scan
(table scan)
1,600,000 rows

Hash aggregate
yields 9,114 rows
out of order

Sort
only has to sort
9,114 rows instead
of 1,600,000 rows

Return data

Table 'charge'.

Logical reads 9,335

42
© SQLskills, All rights reserved.

https://www.SQLskills.com

Aggregate Query
Index Scan + Hash Aggregate

 Out of order covering index on charge table
 Index exists which is narrower than base table
 Used instead of table to cover the query

 Worktable still created to store intermediate aggregated results: OUT
OF ORDER (HASH)

 Data returned OUT OF ORDER unless ORDER BY added
 Additional ORDER BY causes another step for SORT, and sorting can

be expensive!

SELECT c.member_no AS MemberNo,
sum(c.charge_amt) AS TotalSales

FROM dbo.charge AS c
GROUP BY c.member_no

22

43
© SQLskills, All rights reserved.

https://www.SQLskills.com

Not as Bad

COVERING
Index scan
1,600,000
narrower rows

Hash aggregate
yields 9,114
rows out of
order

Sort
only has to sort
9,114 rows
instead of
1,600,000 rows

Return data

Table 'charge'.

Logical reads 3,770

44
© SQLskills, All rights reserved.

https://www.SQLskills.com

Aggregate Query
Index Scan + Stream Aggregate

 Covering index on charge table (in ORDER of GROUP BY clause)
 Index exists which is narrower than base table
 Used instead of table to cover the query
 Covers the GROUP BY so data is grouped

 Less work to aggregate results IN ORDER
 Data returned IN ORDER unless ORDER BY/ joins added
 Adding an ORDER BY identical to the GROUP BY does NOT cause any

additional step for sorting!

SELECT c.member_no AS MemberNo,
sum(c.charge_amt) AS TotalSales

FROM dbo.charge AS c
GROUP BY c.member_no

23

45
© SQLskills, All rights reserved.

https://www.SQLskills.com

Much Better!

COVERING
Index scan
1,600,000
narrower rows

Stream
aggregate
also yields
9,114 rows
IN ORDER

NO SORT
REQUIRED

Return data

Table 'charge'.

Logical reads 3,770

46
© SQLskills, All rights reserved.

https://www.SQLskills.com

See the Difference?

24

47
© SQLskills, All rights reserved.

https://www.SQLskills.com

Concerns

 Hash aggregates
 More temp tables
 More contention in tempdb
 Larger tempdb required
 Performance varies on each execution

 Stream/hash aggregate
 Aggregate needs to be computed

Is there a better way?
Indexed views (2000+)
Columnstore indexes (2012+)

Demo

What kinds of gains can you get?
Will it be worth it?

25

49
© SQLskills, All rights reserved.

https://www.SQLskills.com

Views/Indexes: Quick Review

 Views
 Named, saved SELECT statement
 Tabular data set
 Data definition (no ORDER BY unless TOP is used)

 Indexes
 Clustered (only 1 per table)

 Defines order and structure of data
 Leaf level = data (of the table)

 Nonclustered (249/999 per table)
 Separate and duplicated data
 Automatically maintained
 Order and structure defined per index

50
© SQLskills, All rights reserved.

https://www.SQLskills.com

Indexed Views v. Columnstore

• Limited uses in non-Enterprise Editions
• Must be analyzed / created “per query”

– More complicated to create
– More storage required
– More administrative overhead /

maintenance
– More costly to maintain during inserts /

updates

• Requires certain session settings to be set

• Some limitations across versions:
• BOL: Features Supported by Editions

• Only one can be created per table
– Super easy to create
– A lot LESS storage required (compression)
– Less administrative overhead / maintenance
– Might not be able to do inserts / updates

– 2012: read-only nonclustered
columnstore ONLY

– 2014: adds read-write CLUSTERED
columnstore indexes but these don’t
allow any other indexes / keys

– 2016+: is really a MUCH better option

• No session setting requirements

Indexed views Columnstore indexes

26

51
© SQLskills, All rights reserved.

https://www.SQLskills.com

Columnstore Indexes by SQL Server Version

 SQL Server 2008 is the lowest (IMO) version for large tables, performance,
scalability
 Added data compression (row and page compression)
 Added filtered indexes / filtered statistics
 Fixed fast-switching for partition-aligned, indexed views

 SQL Server 2012 adds read-only, nonclustered columnstore indexes
 Some frustrating “batch-mode” limitations for partitioned views (UNION ALL)

 If you’re using PVs then you should upgrade!

 SQL Server 2014 adds updateable, clustered columnstore indexes
 Many of the most frustrating limitations with CS fixed – for example, UNION ALL

supports batch mode (which means you can use these with partitioned views)
 Added “incremental statistics” to help reduce when to rebuild as well as time to

rebuild

 SQL Server 2016+ takes columnstore indexes even further with
updateable, nonclustered, columnstore indexes and row-based,
nonclustered indexes with clustered, columnstore indexes!

hidden slide
w/extra details

52
© SQLskills, All rights reserved.

https://www.SQLskills.com

Row-based Indexes v. Column-based Indexes

 Support data compression
 Row compressed
 Page compressed

 Can support point queries / seeks
 Wide variety of supported scans

 Full / partial table scans (CL)
 Nonclustered covering scans (NC)
 Nonclustered covering seeks with partial

scans (NC)

 Biggest problems
 More tuning work for analysis: must

create appropriate indexes per query and
then consolidate

 Must store the data (not as easily
compressed)

 Significantly better compression
 Columnar data stored together, often allows much

higher level of compression
 COLUMNSTORE / COLUMNSTORE_ARCHIVE

 Supports large scale aggregations
 Support partial scans w/“segment”

elimination
 Only the needed columns are scanned
 Data is broken down into row groups (roughly 1M

rows) and segments can be eliminated
 Combine w/partitioning for further elimination
 Parallelization through batch mode processing

 Biggest problems
 Minimum set for reads is a row group (no seeks)
 Limitations of features for batch mode by version (fixes

in 2014 and 2016)
 Limitations with other features (less and less by SQL

Server version)

Rowstore indexes Columnstore indexes

27

53
© SQLskills, All rights reserved.

https://www.SQLskills.com

Summary

 Ask for ONLY the data you need
 Limit the rows requested with effective WHERE clause criteria
 Limit the columns requested with effective SELECT lists

 Work with your developers / architects to create better base
structures

 Be sure to use key indexes / constraints
 Nonclustered for primary key (if, it’s not the clustered)
 Nonclustered for the unique keys (one might actually be your clustered?)
 MANUALLY index your foreign keys

 Add nonclustered for highly selective SARGs
 Consider covering for high priority/low selectivity
 Test, test, test!

54
© SQLskills, All rights reserved.

https://www.SQLskills.com

Review

 Indexing for performance
 Design strategies
 Overall strategies

 Using the tools for tuning
 SET STATISTICS IO ON
 Showplan
 Missing indexes

 Indexing for AND
 Indexing for OR
 Indexing for joins
 Indexing for aggregates
 Indexed views v. columnstore indexes
 Rowstore indexes v. columnstore indexes

28

Questions!

