
1

SQLskills Immersion Event
IEPTO1: Performance Tuning and Optimization

Module 9: Statistics – Internals and
Updates

Kimberly L. Tripp
Kimberly@SQLskills.com

2
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Cost-based optimization
 Data access patterns
 Statistics

 What do they look like?
 What are they telling us?
 How do you see them?
 When / how do they get created?
 When / how do they get updated?

 Additional resources

2

3
© SQLskills, All rights reserved.

https://www.SQLskills.com

Statement Execution Simplified

1. Parse
2. Standardization / normalization / algebrization query tree
3. Cost-based optimization (statistics are used to come up with

optimization plan as well as lock granularity)
4. Compilation
5. Execution: at runtime, if the resources don’t exist to support the lock

level then escalation occurs to TABLE level (by default)

1 2 3 4 5

Optimization = Compilation

Optimization: this is really where you can have the

greatest impact and where the most interesting

events can occur…

4
© SQLskills, All rights reserved.

https://www.SQLskills.com

Cost-Based Optimization

 Find a reasonable subset of possible algorithms to access data based
on:
 The query
 Any joins
 Any SARGs
 Data selectivity
 Join density

 The more information the optimizer has the better…
 How do you provide the BEST information?
 One of the best ways to “influence” your query plans is through

effective statistics (and better indexes)

 Understanding optimization / estimation is important for
troubleshooting a wide variety of solvable query problems!

: sometimes a rewrite helps (join rewritten as sub-query or vice versa)
: sometimes a derived table helps (sub-query in the FROM clause)

: sometimes rewriting SARGs helps (well-defined predicates)

3

5
© SQLskills, All rights reserved.

https://www.SQLskills.com

Performance Problems

 Query performance inconsistencies
 Execution time varies
 Statement’s execution plan varies
 IO / CPU metrics vary

 Variations due to:
 Statement execution method
 Parameters
 Time (fragmentation, statistics not current, plan not valid)

 Sledgehammer approaches
 Updating statistics
 Rebuilding indexes
 Clearing cache

6
© SQLskills, All rights reserved.

https://www.SQLskills.com

Troubleshooting Methodologies

 Is this a CACHED plan method?
 Stored procedure
 sp_executesql

 Test to see if the optimal plan varies from the cached plan?
 EXECUTE <procedure> <params>

 EXECUTE <procedure> <params> WITH RECOMPILE

 NOTE: execute with recompile does NOT allow the parameterization
embedding optimization [doesn’t optimize as effectively as OPTION
(RECOMPILE) so there are features that might not be leveraged EXCEPT
when using OPTION (RECOMPILE) at the statement level]

 Do you get a different plan for the second?
 Parameter sensitivity (“sniffing”) problem

 Long term solution is to changing the code

4

7
© SQLskills, All rights reserved.

https://www.SQLskills.com

Troubleshooting Methodologies

 Is this a poorly performing but NEW (non-cached) plan?
 AdHoc statement
 First execution
 Plan doesn’t change when using WITH RECOMPILE

 Use ACTUAL EXECUTION
 Estimated plan vs. actual plan

 Be sure to check executions * rows (not just estimated rows vs. actual rows)

 Problems / solutions that can be exposed by incorrect row estimations
 Statistics out-of-date -> updating scenarios
 Estimate is incorrect because of skewed data -> filtered statistics scenarios
 Estimate is incorrect because of estimation algorithm -> cardinality estimation

scenarios

8
© SQLskills, All rights reserved.

https://www.SQLskills.com

Selectivity

 Not just based on the number of rows returned
 Always relative to the number of rows in the table (usually expressed

as a percentage)
 Low number of rows = high selectivity

 Any index is useful if even ONE condition is highly selective!

 High number of rows = low selectivity
 What is considered low selectivity? 5%, 10%, 15%???

 Remember the tipping point – it’s a very low percentage (usually 1-2%) where
SQL Server deems a result set to be not selective enough

 Must consider some form of covering

5

9
© SQLskills, All rights reserved.

https://www.SQLskills.com

Understanding Selectivity
How Would YOU Find This Data?

 Imagine a table of employee data, for a Chicago company
 The table is clustered by EmployeeID
 Imagine executing this query?

 When is an index on "City" useful?
 When the data is selective ENOUGH…

SELECT e.*
FROM dbo.EmployeesPersonalAddresses AS e
WHERE e.city = 'Chicago'
WHERE e.city = 'Glenview'
WHERE e.city = 'Peoria'

not selective enough

selective enough

not an easy answer

More importantly, how does

SQL Server know?

10
© SQLskills, All rights reserved.

https://www.SQLskills.com

What Kinds of Statistics Exist?

 Statistics on indexes
 Auto-created, column-level statistics

 Named _WA_SYS_
 Paul’s blog: How are auto-created column statistics names generated?

(http://bit.ly/1gjY28K)
 Created automatically when a missing statistics event is encountered
 Permanent objects in the database, will get auto-updated if database option

is set
 User-created statistics

 Created by you…
 Could have been recommended by DTA and named _dta_stat_

 Hypothetical indexes
 Created during DTA’s analysis phase
 Dropped by letting DTA complete successfully
 Can be created manually for “what if analysis using auto pilot”

6

11
© SQLskills, All rights reserved.

https://www.SQLskills.com

DBCC AUTOPILOT

 Check out the Simple Talk article Hypothetical Indexes on SQL Server
(http://bit.ly/1fi472d)

CREATE INDEX <name> ON <tablename> (<columns>)
WITH STATISTICS_ONLY = -1
GO
DBCC AUTOPILOT(0, <dbid>, <objectid>, <indexid>)
GO
SET AUTOPILOT ON
GO
RUN QUERY TO TEST INDEX USAGE?
(output is showplan xml unless graphical plan on)
GO
SET AUTOPILOT OFF

12
© SQLskills, All rights reserved.

https://www.SQLskills.com

What Do They Look Like?

Name Updated Rows Rows Sampled Steps Density Average key length String Index

MemberName Oct 10 2008 1:02AM 10000 10000 26 0 21.5526 YES

All density Average Length Columns

0.03846154 5.6154 Lastname

0.0001 16.5526 Lastname, Firstname

0.0001 17.5526 Lastname, Firstname, MiddleInitial

0.0001 21.5526 Lastname, Firstname, MiddleInitial, member_no

RANGE_HI_KEY RANGE_ROWS EQ_ROWS DISTINCT_RANGE_ROWS AVG_RANGE_ROWS

ANDERSON 0 385 0 1

BARR 0 385 0 1

CHEN 0 385 0 1

… … … … …

ZUCKER 0 384 0 1

1 2

3

4

Statistics Header

Density Vector

Histogram

Overall,

this is

weird

data?!

7

13
© SQLskills, All rights reserved.

https://www.SQLskills.com

How Do You See Them? (1)

DBCC SHOW_STATISTICS (tname, statname)

 Gives you ALL the statistical details
 Number of rows and number of rows on which the statistics were based
 Densities for all LEFT based subsets of column, including the CL key (last – if not

already somewhere in the index)
 Histogram for high order element

sp_autostats tname

Index Name AUTOSTATS Last Updated

[member_ident] ON 2008-08-26 17:18:12.59

[member_corporation_link] ON 2008-08-26 17:18:12.67

[member_region_link] ON 2008-08-26 17:18:12.79

[MemberName] ON 2008-10-29 11:13:29.22

[_WA_Sys_00000003_0CBAE87ON 2008-10-29 11:28:32.31

14
© SQLskills, All rights reserved.

https://www.SQLskills.com

Statistics Header

• Updated: date last updated (or, created)
• Rows: number of rows relating to the statistical set (at the time of

creation)
• Rows Sampled: number of rows used to generate the sample set
• Steps: number of rows in the histogram (<= 201)
• Density: not used or useful, from earlier versions
• Average key length: average of entire key incl. columns internally

added
• String Index: may be useful for strings under 80 characters. For

strings longer than 80 characters, only the first 40 and last 40
characters are used for the string summary. For large strings,
accurate frequency estimates for substrings that appear only in the
ignored portion of a string are not available

• Filter Expression: if filtered index then this is the expression for set
• Unfiltered Rows: number of rows in the table at the time the statistic

was created (same as rows if the index is not filtered)

Straightforward
information;
key things to
look at are:

updated,
rows vs. rows
sampled, and

whether or not
the index is

filtered

hidden slide
w/extra details

8

15
© SQLskills, All rights reserved.

https://www.SQLskills.com

Density Vector

 Based on a left-based subset of key columns, details the distribution
of data

 Rows * All density = average number of rows given that column or
combination of columns
 Index LastName, FirstName will have average for last names alone as well as

the combination of last names and first names
 Index FirstName, LastName will have average for first names alone as well as

the combination of first names and last names
 The density vector value for the combination will be the same

 Density information
 Density for LastName = 0.03846154

[10,000 Rows * 0.03846154 = 384.6154 rows returned on average]
 Density for LastName, FirstName combo – what does that tell you?

16
© SQLskills, All rights reserved.

https://www.SQLskills.com

Histogram

 Up to 201 total steps with each step’s density information
 Up to 200 distinct, actual values from the table
 1 row for NULLs if the column allows NULL values

 Histogram has the most detail about the first column (sometimes
referred to as the high-order element [LastName])
 Anderson 385 rows
 Barr 385 rows

 Cannot modify characteristics of statistic structures
 Steps chosen / total number of steps
 How it’s built (step compression)
 Updating can only be done when the entire set is evaluated

 Update statistics
 Index rebuild (not reorg)

 New in SQL Server 2016 (13.x) SP1 CU2: sys.dm_db_stats_histogram

More details about the
histogram are coming up in

the problems / solutions
section (Module 11)!

9

17
© SQLskills, All rights reserved.

https://www.SQLskills.com

Are They Really True?

 For LastName

 For LastName, FirstName

 What does this tell you about FirstNames?

SELECT AVG(Counts.GroupCounts)
FROM (SELECT COUNT(*) AS GroupCounts

FROM dbo.member AS m
GROUP BY m.LastName) AS Counts

SELECT AVG(Counts.GroupCounts)
FROM
(SELECT COUNT(*) AS GroupCounts
FROM dbo.member AS m
GROUP BY m.LastName, m.FirstName)
AS Counts

hidden slide
w/extra details

18
© SQLskills, All rights reserved.

https://www.SQLskills.com

Statistics Usage

 Estimations for known values
 Histogram step value: EQ_ROWS
 Histogram value in step range: AVG_RANGE_ROWS
 Distinct value estimation (TUPLE_CARDINALITY)

 1 / All density

 Unknown values
 Density vector average

 Density * Rows

 Selectivity for a set (indirect index usage)
 Index statistics are often used from the index that the query uses
 Column-level or index-level statistics can be analyzed independently to

determine other possible algorithms (even when not covered)

10

19
© SQLskills, All rights reserved.

https://www.SQLskills.com

Histogram Step Value

SELECT [m].*

FROM [dbo].[Member] AS [m]

WHERE [m].[LastName] = 'Chen'

DBCC SHOW_STATISTICS
('Member', 'MemberName')

WITH HISTOGRAM;

20
© SQLskills, All rights reserved.

https://www.SQLskills.com

Histogram Value In Step Range

SELECT [m].*

FROM [dbo].[member] AS [m]

WHERE [m].[corp_no] = 404;

DBCC SHOW_STATISTICS
('Member', 'member_corporation_link')

WITH HISTOGRAM;

4 rows for value 403 | 5 rows for value 407 | 14 rows between 403 and 407 but not including 403 or 407
14 rows between 403 and 407 over 2 distinct values = 7 rows “on average”
404 / 405 / 406 will estimate 7… is that correct?

11

21
© SQLskills, All rights reserved.

https://www.SQLskills.com

Distinct Value Estimation

SELECT DISTINCT [m].[corp_no]

FROM [dbo].[member] AS [m];

DBCC SHOW_STATISTICS
('Member', 'member_corporation_link')

WITH DENSITY_VECTOR;

All density * rows = average
1 / All density = tuple_cardinality
1 / 0.0025 = 400

22
© SQLskills, All rights reserved.

https://www.SQLskills.com

Unknown Values (1)

DECLARE @Lastname varchar(15) = 'Chen';

SELECT [m].*

FROM [dbo].[Member] AS [m]

WHERE [m].[LastName] = @Lastname;

DBCC SHOW_STATISTICS
('Member', 'MemberName')

WITH DENSITY_VECTOR;

All density * rows = average
0.03846154 * 10000 = 384.615

12

23
© SQLskills, All rights reserved.

https://www.SQLskills.com

Unknown Values (2)

DECLARE @Lastname varchar(15) = 'Fish';

SELECT [m].*

FROM [dbo].[Member] AS [m]

WHERE [m].[LastName] = @Lastname;

DBCC SHOW_STATISTICS
('Member', 'MemberName')

WITH DENSITY_VECTOR;

All density * rows = average
0.03846154 * 10000 = 384.615

24
© SQLskills, All rights reserved.

https://www.SQLskills.com

Indirect Index Usage (Set Selectivity)

SELECT [m].[LastName], [m].[FirstName],
[m].[MiddleInitial], [m].[Phone_no],
[m].[City]

FROM [dbo].[Member] AS [m]

WHERE [m].[FirstName] LIKE 'Kim%'

OPTION (QUERYTRACEON 3604, QUERYTRACEON 9204, RECOMPILE);

 Table scan (always an option)
 No indexes exist for SEEKING (no index with first name as the high-

order element)
 What about scanning the NC index which has first names in it?
 What would be the best algorithm?

Output to the client Statistics used Re-evaluate

13

25
© SQLskills, All rights reserved.

https://www.SQLskills.com

How Do You See Them? (2)

 Query [sys].[indexes]
 Use OBJECT_ID and INDEX_ID as input to STATS_DATE

 Query [sys].[stats] (preferred)
 Shows ALL statistics (index-level, column-level, hypothetical, etc.)
 Use OBJECT_ID and STATS_ID as input to STATS_DATE

 Use STATS_DATE ([object_id], [index_id]) in a query
 Nice quick way to see JUST the date the statistics were last updated
 Nice to check periodically and automatically

 Use [sys].[dm_db_stats_properties] (2008R2 SP2+, 2012 SP1+)
 Great for automation routines

26
© SQLskills, All rights reserved.

https://www.SQLskills.com

How Do You See Them? (3)

 Programmatically pull tabular sets from DBCC SHOW_STATISTICS …
 STAT_HEADER

 Number of rows v. rows sampled and number of steps
 Last updated date

 DENSITY_VECTOR
 Left-based density subsets
 Averages given left-based combinations of index key

 STAT_HEADER JOIN DENSITY_VECTOR
 Presents the details from STAT_HEADER and DENSITY_VECTOR as a single row
 All Density = TABLE_CARDINALITY/TUPLE_CARDINALITY

(for each left-based subset starting ending at that ordinal position)

 HISTOGRAM
 Up to 201 total steps with each step’s density information

 Up to 200 distinct actual values from the table
 1 row for NULLs if the column allows NULL values

hidden slide
w/extra details

If you want some

examples of how to do

this, see the SQLskills

procedures for

analyzing data skew.

14

27
© SQLskills, All rights reserved.

https://www.SQLskills.com

Statement Execution: Statistics Events

1 2 3 4 5

Optimization = Compilation

Missing Statistics Event
If auto_create_stats is enabled then SQL Server (the QO) will WAIT while statistics are
created

Invalidated Statistics Event
• If auto_update_stats_async is disabled AND auto_update_statistics is enabled

then SQL Server will WAIT while statistics are updated
• If auto_update_stats_async is enabled then SQL Server will optimize based on the

invalidated statistics AND kick off an update (which will be used by subsequent
users)

• If both methods for updating statistics are disabled then the query will optimize
using the invalidated statistic and a warning will be generated (visible in [xml]
showplan)

28
© SQLskills, All rights reserved.

https://www.SQLskills.com

When Are They Created?

 Automatically
 For all Indexes
 When “auto create statistics” is ON AND when the optimizer thinks that

statistics would be a good idea (often when an column is in a SARG or a join
and does not have an index with that column as the high-order element)

 Manually
 sp_createstats
 Using CREATE STATISTICS

Tip: Leave Auto Create Statistics ON

15

29
© SQLskills, All rights reserved.

https://www.SQLskills.com

Manually Creating Statistics

 For secondary columns of an existing index:
 Gives the optimizer more options for using existing indexes

 Scanning an index for highly selective secondary values

 Can make index usage more likely for secondary conditions; helping
understand set selectivity where creating an index is not ideal:
 Don’t warrant a permanent index because the queries are neither frequent

enough or critical enough
 Aren’t selective enough across many values / only some values can benefit

 For columns in search arguments or joins where some are selective
and others aren’t (and again, you’ve decided not to index)
 Can help to determine position of a table in a join

30
© SQLskills, All rights reserved.

https://www.SQLskills.com

sp_createstats

sp_createstats
@indexonly = 'indexonly'
, @fullscan = 'fullscan'
, @norecompute = 'norecompute'

 @indexonly: only create statistics for secondary columns of indexes
 This can help to make non-clustered indexes more useful

 @fullscan: requires more time but will create more accurate statistics
 If off-hours this is a good idea

 @norecompute: the statistics will NOT get automatically updated as
distribution of data changes
 Generally not recommended

 Recommendation:
sp_createstats 'indexonly', 'fullscan'

16

31
© SQLskills, All rights reserved.

https://www.SQLskills.com

What If the Data Changes?

 Automatically updated statistics
 If auto update statistics is ON (for both the DB and the statistic)
 Statistics are invalidated when:

 In versions PRIOR to SQL Server 2016: If a minimum of 500 + 20% of the data changes
 In SQL Server 2016 OR in prior versions with a TF: the threshold is dynamic and tied to

the number of rows in the table (more details coming up)

 Manually update statistics
 Executing UPDATE STATISTICS

 Might want to decrease the frequency of updating for highly volatile tables where
distribution isn’t changing significantly and you see a lot of “statistics” events

 Might want to increase the frequency of updating for large table where distribution
is changing significantly but you’re not reaching 20%

 Consider turning off auto update stats at the statistic-level instead of the
database-level (more granular control); use:
 STATISTICS_NORECOMPUTE on the index definition
 NORECOMPUTE on the statistics definition

32
© SQLskills, All rights reserved.

https://www.SQLskills.com

Auto Update Statistics

 SQL Server 7.0
 Invalidated when sysindexes.rowmodctr reached
 Updated when invalidated (yikes!)

 SQL Server 2000
 Invalidated when sysindexes.rowmodctr reached
 Updated when needed

 SQL Server 2005
 Invalidated when sysrowsetcolumns.rcmodified reached

(column modification counter this is both good and bad…)
 Updated when needed

 SQL Server 2008+
 Invalidated when sysrscols.rcmodified reached
 Updated when needed

hidden slide
w/extra details

If someone challenges you

on the overhead of auto

update statistics it could

be because of the original

(poor) design.

17

33
© SQLskills, All rights reserved.

https://www.SQLskills.com

Asynchronous Statistics Updates

 By default statistics are updated before query compilation (as part of
compilation/optimization) and this can cause a delay in execution

 Can turn “Async Stats Update” on to have the current execution
trigger the update but not wait for the update (unlikely to be a
problem AT the auto-update threshold as it would have likely been a
problem leading up to that threshold)

ALTER DATABASE databasename
SET AUTO_UPDATE_STATISTICS_ASYNC ON

BUG: When you enable the Auto Update Statistics Asynchronously statistics option in a
database of Microsoft SQL Server 2012, Microsoft SQL Server 2008, or Microsoft SQL Server
2008 R2, and then you run queries on the database, a memory leak occurs.
FIXED: Cumulative Update 2 for SQL Server 2012 SP1, Cumulative Update 5 for SQL Server
2012, Cumulative Update 4 for SQL Server 2008 R2 SP2
See KB article: 2778088 http://support.microsoft.com/kb/2778088

34
© SQLskills, All rights reserved.

https://www.SQLskills.com

Dynamic Auto-Updating Threshold

 Server-wide trace flag 2371 prior to SQL Server 2016
 NEW behavior in SQL Server 2016+ if in compat mode 130+
 Originally released in SQL Server 2008 R2 SP1
 Blogged by:

Juergen
Thomas
(SQLCat)
7 Sep 2011

Dynamic threshold
=SQRT(rows * 1000)

18

35
© SQLskills, All rights reserved.

https://www.SQLskills.com

Incremental Stats Updates

 New feature for SQL Server 2014 partitioned tables
 Statistics update triggered when threshold reached at the partition-level

 Build partition-level statistics
 Compress table-level statistics
 Merge partition-level statistics in with table-level statistics
 Resulting table-level statistics are used for estimation

 Positive: statistics updates are triggered a lot earlier for partitions that are
updates (especially useful in ever-increasing tables)

 Positive: less data has to be read for statistics updates (especially useful in
ever-increasing tables)

 Negative: the statistic the optimizer uses for optimization is still limited to
200 steps and can become lossy for earlier partitions
 Article: SQL Server 2014 Incremental Statistics on SQLperformance.com
 http://bit.ly/1uhEbr1

36
© SQLskills, All rights reserved.

https://www.SQLskills.com

Updating Statistics

 Manually: but automated through a job
 Executing sp_updatestats

 Sledgehammer maintenance. Only one row has to have been modified.
 Ola Hallengren’s code

 http://ola.hallengren.com/
 Updating Statistics with Ola Hallengren’s Script by Erin Stellato
 Integrate your own logic into Ola’s code

 @OnlyModifiedStatistics = ‘Y’ (only one row)
 Better to use: @StatisticsModificationLevel = ‘%’

NOTES: You can specify a percentage but you need to do some calculations with the
dynamic threshold to see if this is more or less frequent than auto updating

 OR consider turning off auto-updating (which would use sampling) in favor of your off-
hours job that might use FULLSCAN)

 Auto update stats: only as a safety measure
 As a fallback if your code doesn’t catch EVERY statistic

 Asynchronous update stats
 Unlikely to cause a problem

19

37
© SQLskills, All rights reserved.

https://www.SQLskills.com

Plan Invalidation
 Versions prior to 2012

 If database option: auto_update_stats is ON
 Updating statistics causes plan invalidation

 If database option: auto_update_stats is OFF
 Updating statistics does NOT cause plan invalidation

 If you manually update statistics and have set auto_update_statistics to OFF, add
sp_recompile @tname to your stats scripts (remembering SCH_M problems)

 For more info: Erin Stellato’s links about auto update stats/plan invalidation:
 Statistics and Recompilations: http://erinstellato.com/2012/01/statistics-

recompilations/
 Statistics and Recompilations, Part II: http://erinstellato.com/2012/02/statistics-

recompilations-part-ii/

 SQL Server 2012+
 Plan invalidation is NOT affected by the setting of auto update stats
 Plan invalidation does NOT occur if data has not changed

 Only for UPDATE STATISTICS
 An index rebuild will update statistics as well as cause plan invalidation, even if no data

has changed thus increasing the importance for “only when data has changed” logic in
maintenance routines.

hidden slide
w/extra details

38
© SQLskills, All rights reserved.

https://www.SQLskills.com

Review

 Cost-based optimization
 Data access patterns
 Statistics

 What do they look like?
 What are they telling us?
 How do you see them?
 When / how do they get created?
 When / how do they get updated?

 Additional resources

20

Questions!

40
© SQLskills, All rights reserved.

https://www.SQLskills.com

Additional Resources

 Stats trace flags of interest
 Quite a few of these are in the demo scripts (especially for module 11)
 Many are query-level trace flags – must be sys admin to use

 Unless the code is within a stored procedure (yes, really!)
 Blog Post: Setting CE TraceFlags on a query-by-query (or session) basis

 https://bit.ly/2Kf6AyL

 LOTS of new / semi-new (2016+) query hints to use INSTEAD. I’ve included most
of these for searching against older code, etc. and just as REFERENCE

 REVIEW
 Books Online: DBCC TRACEON - Trace Flags (Transact-SQL)
 Books Online: Hints (Transact-SQL) – Query

 Generating additional statistics output from DBCC SHOW_STATISTICS can be
helpful / interesting

21

41
© SQLskills, All rights reserved.

https://www.SQLskills.com

Stats Trace Flags of Interest

 Statistics used by query (Legacy CE: 9204 / no equivalent in New CE)
 Could use trace flag: 2363

 9292: statistics header loaded
 2388: Additional statistics details (see last slide)
 In SQL Server 2017, CU3 with compatibility mode 120 and higher AND

only with legacy CE OFF – you can see the new plan attributes in
showplan XML: StatisticsInfo and OptimizerStatsUsage

42
© SQLskills, All rights reserved.

https://www.SQLskills.com

Query-level Trace Flags

SELECT m.* FROM dbo.Member AS m
WHERE m.firstname LIKE 'Kim%'
OPTION (QUERYTRACEON 3604, QUERYTRACEON 9204,
QUERYTRACEON 9292, RECOMPILE);

 Only set for that execution
 Affects only that query

 If using a NEW query hint – use this structure:
SELECT …
FROM …
OPTION (USE HINT ('query_hint'))

22

43
© SQLskills, All rights reserved.

https://www.SQLskills.com

Additional Statistics Output

DBCC TRACEON(2388)

DBCC SHOW_STATISTICS
(

'member',

'member_ident'
)

DBCC TRACEOFF(2388)

Returns additional details from statistics
blob. Columns:

 Updated
 Table Cardinality
 Snapshot Ctr
 Steps
 Density
 Rows Above
 Rows Below
 Squared Variance Error
 Inserts Since Last Update
 Deletes Since Last Update
 Leading column Type

