
1

SQLskills Immersion Event
IEPTO1: Performance Tuning and Optimization

Module 7: Index Fragmentation
Paul S. Randal

Paul@SQLskills.com

2
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Data access methods
 What is index fragmentation?
 How does index fragmentation happen?
 Detecting index fragmentation
 Avoiding index fragmentation
 Removing index fragmentation

 Beware of people stating that fragmentation is not a problem any
longer, or not a problem with SSDs

 Not true!

2

3
© SQLskills, All rights reserved.

https://www.SQLskills.com

Index Structure

Non-leaf levels

(Index pages)

I

L L

I

L L

I

L L

R

Leaf level

(Data or index pages)

4
© SQLskills, All rights reserved.

https://www.SQLskills.com

Single-record Seek

Matching record

Per-level binary search cost –

see https://sqlskills.com/p/068

3

5
© SQLskills, All rights reserved.

https://www.SQLskills.com

Binary Search

21 records

5 records

6
© SQLskills, All rights reserved.

https://www.SQLskills.com

Fanout

1 million leaf pages

800-byte key

Fanout = 10

100,000

10,000

1,000

100

10

1

6 tree levels

10,000

100

1

80-byte key

Fanout = 100

3 tree levels

4

7
© SQLskills, All rights reserved.

https://www.SQLskills.com

Multi-record Seek/Scan

Matching records (in blue)

8
© SQLskills, All rights reserved.

https://www.SQLskills.com

Allocation Order Scan

Matching records (in blue)

5

9
© SQLskills, All rights reserved.

https://www.SQLskills.com

Side Note: Merry-Go-Round Scans

Scan 2

D A T A

Scan 1

Scan 3

Scan 1

starts

Scan 2

starts

Scan 3 starts

10
© SQLskills, All rights reserved.

https://www.SQLskills.com

Readahead

Matching records (in blue)

Pages at this level contain pointers

to the leaf level pages – in logical

order. This can be used to drive

readahead of the leaf level pages.

6

11
© SQLskills, All rights reserved.

https://www.SQLskills.com

Readahead

 Why use readahead?
 Keep the CPUs busy, maximize throughput, avoid I/O waits
 More efficient to issue 1 x 8-page read than 8 x 1-page reads

 Feedback mechanism to avoid going too far ahead of scan point
 Maximum 1,000 pages ahead

 Driven from parent level during scans
 Parent level pages contain logically-ordered links to the leaf level

 Uses variable read sizes, up to 4MB read in 2016+
 Larger reads only possible with contiguous pages
 Better contiguity = bigger reads = better performance

 Possible to disable using trace flag 652
 Problem: fragmentation causes lower-performing scans

12
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Data access methods
 What is index fragmentation?
 How does index fragmentation happen?
 Detecting index fragmentation
 Avoiding index fragmentation
 Removing index fragmentation

7

13
© SQLskills, All rights reserved.

https://www.SQLskills.com

Fragmentation in Action

Index leaf level of newly built index

Long arrow is the allocation order

Short arrows are following the logical order

14
© SQLskills, All rights reserved.

https://www.SQLskills.com

Fragmentation in Action

And now with fragmentation!

Long arrow is the allocation order

Short arrows are following the logical order

8

15
© SQLskills, All rights reserved.

https://www.SQLskills.com

Logical Fragmentation Defined

 (Sometimes called “external” fragmentation)
 Occurs when the next logical page is not the next physical page
 Prevents optimal readahead

 Reduces seek/scan performance

 Does not affect pages that are already in cache
 Smaller indexes cause less of a performance hit (e.g. 1-5000 pages or less)

 Reported as avg_fragmentation_in_percent for indexes in the
sys.dm_db_index_physical_stats DMV

 This is what most people consider ‘fragmentation’
 “Index fragmentation affects scan performance”
 There is *so much more* to it than that!

16
© SQLskills, All rights reserved.

https://www.SQLskills.com

Extent Fragmentation Defined

 Old concept, no longer reported for indexes
 Occurs when the extents in an index are not contiguous

 Also affects readahead performance but not as much
 When writing the DMV for 2005, we decided to remove it to avoid confusion

from too many measures of ‘fragmentation’

 Reported as avg_fragmentation_in_percent in the
sys.dm_db_index_physical_stats DMV for heaps ONLY

 (2000: extent fragmentation algorithm in DBCC SHOWCONTIG is
documented as not working for multiple files)

Index A Index B Index A Index B Index A Index A

1 2 3 4 5 6

9

17
© SQLskills, All rights reserved.

https://www.SQLskills.com

Low Page Density in Action

Page header

3,000-byte record

3,000-byte record

~2,000 bytes wasted!

Page header

5,000-byte record

~3,000 bytes wasted!

18
© SQLskills, All rights reserved.

https://www.SQLskills.com

Page Density Defined

 (Sometimes called “physical” or “internal” fragmentation)
 Page fullness is below the optimal level so lots of wasted space
 Effect is:

 Increased disk space (more pages required to hold same number of rows)
 Increased I/Os to read the same amount of data, leading to I/O subsystem

pressure and overall performance degradation
 Greater memory usage if most of the index is memory resident, leading to

increased I/Os from *other* workloads, and so on…
 More pages in the index unnecessarily can mean the Query Optimizer

doesn’t pick that index, leading to inefficient query plans

 This means ‘fragmentation’ can affect your performance even if you
don’t do index scans

 Hardware does not fix this
 Reported as avg_page_space_used_in_percent in the DMV

10

19
© SQLskills, All rights reserved.

https://www.SQLskills.com

Increased Buffer Pool Usage

Source: my blog at https://sqlskills.com/p/069

20
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Data access methods
 What is index fragmentation?
 How does index fragmentation happen?
 Detecting index fragmentation
 Avoiding index fragmentation
 Removing index fragmentation

11

21
© SQLskills, All rights reserved.

https://www.SQLskills.com

What Causes Fragmentation?

 Schemas/workloads that cause page splits on full pages
 GUID as high-order key (or any other random key)

 Can even affect nonclustered indexes

 Updates to variable-length columns
 Badly configured fill factor (more in a few slides)

 Clustered index is likely the only one you can make the key not cause
fragmentation by picking an ascending order key (e.g. bigint identity)

 Wide schemas that only fit a few records per page
 E.g. a fixed-size 5000 byte row = 3000 bytes lost per page!

 Real-world example:
 Social networking site that has a homepage comments table with the

member ID as the high-order key
 Patient check-in company using GUID as clustering key

22
© SQLskills, All rights reserved.

https://www.SQLskills.com

Real-World Examples

 MySpace

 Patient check-in company using GUID as clustering key

Paul Jonathan Erin Tim

Kimberly

12

23
© SQLskills, All rights reserved.

https://www.SQLskills.com

Can DML Cause Fragmentation?

 Yes, data modifications can lead to fragmentation
 INSERT

 YES – if key value is not ever increasing/decreasing (e.g. GUID)
 NO – if key is ever increasing/decreasing (e.g. INT IDENTITY)

 UPDATE
 YES – if updates make variable-length columns wider on full pages
 NO – if columns are fixed width or columns have ‘place holder’ values (i.e.

DEFAULT values) to minimize row expansion on update

 DELETE
 YES – if deletes are singleton deletes (Swiss-cheese problem – page density

issues)
 NO – if deletes are range deletes for archival purposes

24
© SQLskills, All rights reserved.

https://www.SQLskills.com

What is a Page Split?

 This is the primary cause of fragmentation, and is itself a performance
problem when it occurs

 Occurs when a record must be inserted onto (or expanded on) a
specific page in the index and there is not enough space
 Could be caused by a new record or an updated record that is now longer

than it was before
 Could also be caused by enabling snapshot isolation, which makes updated

records 14-bytes longer
 Also from enabling readable availability group secondaries in SQL Server 2012+

 The page has to ‘split’ to make room
 Split point is usually as close to 50/50 as possible, but may be skewed if

Storage Engine can determine an obvious split point

13

25
© SQLskills, All rights reserved.

https://www.SQLskills.com

Page Split Mechanism

 For every page split:
 A new page is allocated to the index
 All records after the split point are moved to the new page
 New page is linked into the leaf level
 A new record must be inserted into index level above the leaf

 Could also cause a page split, cascading upwards to the root page

 All steps are fully logged and performed by a system transaction
 Very expensive, and hardware does not fix this!
 Detailed study of log records generated shown in demo towards end of

Module 4 of the Pluralsight course SQL Server: Logging, Recovery, and the
Transaction Log

 After page split is committed, insert/update can take place
 Page split is never rolled back

26
© SQLskills, All rights reserved.

https://www.SQLskills.com

Page Split Transaction

 BEGIN TRAN (either you do this or Engine does it for you)
 Running Access Methods code to do the INSERT or UPDATE
 Oh – split needed!

 BEGIN TRAN (this is a ‘system transaction’)
 True nested transaction, subordinate to the outer transaction
 Do the split

 COMMIT TRAN (once committed, this will never be rolled back)
 Do the INSERT or UPDATE

 COMMIT TRAN

 But if you did a ROLLBACK TRAN, the split remains

14

27
© SQLskills, All rights reserved.

https://www.SQLskills.com

Page Split Mechanism

P

A B C

28
© SQLskills, All rights reserved.

https://www.SQLskills.com

Page Split Mechanism

P

A B C B’

15

29
© SQLskills, All rights reserved.

https://www.SQLskills.com

Page Split Mechanism

P

A CB B’

30
© SQLskills, All rights reserved.

https://www.SQLskills.com

Page Split Mechanism

P

A CB B’

16

31
© SQLskills, All rights reserved.

https://www.SQLskills.com

Page Split Mechanism

P

A CB B’

Demo

Increased logging during page splits

17

33
© SQLskills, All rights reserved.

https://www.SQLskills.com

Page Split Madness….

 The Storage Engine isn’t always smart about splits...
 Imagine a page with 200 x 40-byte records and someone inserts a key

that has to go there, in an 8,000 byte record
 You’d think it would recognize that and do a skewed split, but no…
 Split into 2 pages with 100 records in each
 And then 1 of these into 2 pages with 50 records in each
 And then 1 of these into 2 pages with 25 records in each
 And then 1 of these into 2 pages with 12 and 13 records in each
 And then 1 of these into 2 pages with 6 records in each
 And then 1 of these into 2 pages with 3 records in each
 And then 1 of these into 2 pages with 1 and 2 records in each
 And then do the insert!

34
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Data access methods
 What is index fragmentation?
 How does index fragmentation happen?
 Detecting index fragmentation
 Avoiding index fragmentation
 Removing index fragmentation

18

35
© SQLskills, All rights reserved.

https://www.SQLskills.com

Tracking Page Splits

 There are ‘good’ and ‘nasty’ page splits…
 ‘Good’ split is when a page is allocated as part of an append-only insert

pattern
 ‘Nasty’ split is when a real page split occurs

 Unfortunately, all documented methods of tracking page splits prior
to SQL Server 2012 do not allow differentiation between ‘good’ and
‘nasty’ page splits
 Perfmon counter
 sys.dm_db_index_operational_stats
 Extended event (possibly with post-processing)

 Either use log/log backup scanning or 2012+ Extended Events
 Both methods track the LOP_DELETE_SPLIT log record
 See my blog post at https://sqlskills.com/p/070

36
© SQLskills, All rights reserved.

https://www.SQLskills.com

Symptoms of Fragmentation

 Poor/degrading query performance over time
 Longer run-times
 More disk activity

 SET STATISTICS IO ON
 More frequent checkpoints occuring

 Increased logging (from page split activity)
 Depending on the average record length and the split point, a page split could

log up to 50 times more than a regular insert!

 Increased buffer pool usage

 Worsening results from the sys.dm_db_index_physical_stats DMV
 Keys to success are knowing which indexes to look at and how to interpret

the results

19

37
© SQLskills, All rights reserved.

https://www.SQLskills.com

sys.dm_db_index_physical_stats

 Replacement for DBCC SHOWCONTIG since SQL Server 2005
 select * from sys.dm_db_index_physical_stats (dbid, objectid, indexid,

partitionid, samplemode)

 No need to insert/exec to analyze/process DBCC SHOWCONTIG results
 DMVs are programmatically “composable”
 However, this is a DMF, not a true DMV so must do work for results

 Ability to control how much data is read using sample mode (LIMITED,
SAMPLED, DETAILED)
 LIMITED (default) does not read the leaf level so is fastest mode

 This is good enough for most people

 SAMPLED reads 1% of the leaf-level pages if the index/partition has more
than 10000 pages

 DETAILED reads everything and is the slowest mode

38
© SQLskills, All rights reserved.

https://www.SQLskills.com

How the LIMITED Scanning Mode Works

Pages at this level contain pointers to

the leaf level pages – in logical order.

This information can be used to derive

the logical fragmentation.

20

39
© SQLskills, All rights reserved.

https://www.SQLskills.com

Interpreting the DMV Output

 What you need to look at:
 Logical fragmentation

 avg_fragmentation_in_percent (should be low)

 Page density
 avg_page_space_used_in_percent

 Should be high for data warehouse
 Should have some free space for OLTP

 Number of pages in the index

 Other counters exist (e.g. fragments, avg. fragment size) but these
were only invented to be more accessible to users – somewhat
unsuccessfully

Demo

Detecting fragmentation using sys.dm_db_index_physical_stats

21

41
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Data access methods
 What is index fragmentation?
 How does index fragmentation happen?
 Detecting index fragmentation
 Avoiding index fragmentation
 Removing index fragmentation

42
© SQLskills, All rights reserved.

https://www.SQLskills.com

How to Avoid Fragmentation?

 Avoid ‘random’ index keys
 Almost impossible to do for nonclustered indexes
 For clustered indexes, be careful about moving to (BIG)INT IDENTITY as small

row size combined with many concurrent inserters could lead to an ‘insert
hotspot’ performance issue

 Implement index fill factors and periodically remove fragmentation
 Coming up next…

 There is nothing you can do in hardware that means you can ignore
index fragmentation
 Don’t fall for the advice that SSDs mean you can ignore it
 SSDs don’t stop page splits, extra logging, wasted space, plan changes

22

43
© SQLskills, All rights reserved.

https://www.SQLskills.com

Contiguity When (Re)Building

 Consider using –E startup parameter for very large indexes that
support very large scans
 http://support.microsoft.com/kb/329526
 During index build/rebuild (and all other operations):

 SQL Server 2008+: 64 extents allocated before round-robin (4MB)
 I.e. 64 single-extent allocations, not one 64-extent allocation

 Combine with large RAID stripe size

 For best contiguity and readahead I/O size, use MAXDOP = 1 when
building or rebuilding indexes
 Otherwise multiple (re)build threads building the leaf level, leading to extent

interleaving (essentially extent fragmentation), and reduced readahead

 Note: this is not relevant for OLTP systems

44
© SQLskills, All rights reserved.

https://www.SQLskills.com

Rebuild Contiguity with DOP > 1

 Let’s say DOP = 4 for the index rebuild

1 2 3 4

1

23

45
© SQLskills, All rights reserved.

https://www.SQLskills.com

Fill Factors

 Setting a fill factor makes the Storage Engine leave space on each leaf-
level page to allow inserts/expansions to not cause page splits

 Specified at index creation or rebuild time
 NOT maintained during regular DML

 Use during index create/rebuild/reorganize
 Can specify with sp_configure for entire instance

 Not recommended – specify it per index

 Use PAD_INDEX to use fill factor for upper levels of the index
 Rarely used

 0 = 100 = default value with special meaning of ‘leave no space’
 Excellent for data warehouse, but not ideal for OLTP

 For OLTP, which value to use?

46
© SQLskills, All rights reserved.

https://www.SQLskills.com

Picking a Fill Factor to Use

 Balancing act between how often page splits occur and how often you
can rebuild/defrag the index

 What is going to cause page splits in your schema?
 UPDATEs to variable-width data types?
 Random INSERTs?

 The more volatile lower FILLFACTOR

 How often can you rebuild/defrag?
 The more frequent higher FILLFACTOR

 Pick a value, try it, monitor fragmentation, tweak it
 Use DMVs to see how fast the fragmentation increases
 The faster fragmentation occurs lower FILLFACTOR or decreased time

between rebuilds/defrag
 70% or 80% are common first guesses

24

47
© SQLskills, All rights reserved.

https://www.SQLskills.com

Setting a Fill Factor

 Can be set when creating or rebuilding an index
 Stores the fill factor in the index metadata

 Can also be set using Object Explorer in SSMS
 Cannot be set directly with ALTER INDEX … REORGANIZE
 REBUILD and REORGANIZE use the metadata-stored fill factor, if there

is one, otherwise they will use the instance-wide fill factor
 Unless a fill factor is specified on the REBUILD
 I.e. REBUILD-specified fill factor overrides metadata-stored fill factor, which

overrides instance-wide fill factor

48
© SQLskills, All rights reserved.

https://www.SQLskills.com

Additional: Are Your Indexes Being Used?

 There are lots of bad practices around index strategy, including
creating extra indexes
 E.g. an index for each column in the table

 Extra, unused indexes waste resources as they must be maintained by
DML operations

 Use the sys.dm_db_index_usage_stats DMV to tell if an index is being
used at all during the business cycle
 Beware of indexes not being used but enforcing unique constraints
 Beware that in 2012 and 2014 the stats are reset for indexes rebuilt online

 Fixed in SQL Server 2016+, and latest builds of 2012 and 2014

25

49
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Data access methods
 What is index fragmentation?
 How does index fragmentation happen?
 Detecting index fragmentation
 Avoiding index fragmentation
 Removing index fragmentation

50
© SQLskills, All rights reserved.

https://www.SQLskills.com

How to Remove Fragmentation?

 2 realistic choices
 Rebuild the index: ALTER INDEX … REBUILD

 Create a brand new index structure

 Reorganize the index: ALTER INDEX … REORGANIZE
 Shuffle the existing pages allocated to the index

 Also CREATE INDEX … WITH (DROP_EXISTING = ON)
 Commonly used to move or (re)partition an index

 Can also choose not to remove fragmentation
 If the index isn’t used for scans, and page density isn’t an issue, why spend

the resources?

 Don’t just rebuild all indexes every day
 Synchronous mirroring or AGs may force REORGANIZE to be used

26

51
© SQLskills, All rights reserved.

https://www.SQLskills.com

Staggered Index Maintenance

 Splitting maintenance of a large index up over several days using
ALTER INDEX … REORGANIZE

1TB clustered index

Day 1

Day 2

Day 3

And so on… and then start again…

52
© SQLskills, All rights reserved.

https://www.SQLskills.com

ALTER INDEX … REBUILD

 Pros
 Can use multiple CPUs, and control MAXDOP (lower DOP = better contiguity)
 Rebuilds index statistics (with equivalent of full scan, or sampled if partitioned index)
 Can rebuild a single partition (online from 2014) or all partitions (online from 2005)
 Can be performed online

 2012+: Indexes with non-legacy LOB columns (plus clustered index on table with non-
legacy LOB/FILESTREAM column)

 2017+: ability to pause and resume an online-index rebuild, resume starts from last position

 Can be minimally-logged (but log backup will be the same size)
 SORT_IN_TEMPDB reduces logging + perf boost in 2014+ (https://sqlskills.com/p/071)

 Not available with resumable online index rebuild

 Cons
 Atomic operation – potentially long rollback on interrupt, all or nothing semantics
 Must create new index before dropping old one, up to 125% extra space required
 When offline – SCH-M table lock for nonclustered or clustered index rebuild
 When online – blocking potential, but can be resolved in SQL 2014 onward

 Resumable online rebuild of clustered with LOB columns = SCH-M table lock for duration!

27

53
© SQLskills, All rights reserved.

https://www.SQLskills.com

ALTER INDEX … REORGANIZE

 Replaced DBCC INDEXDEFRAG in SQL Server 2005 onward
 Pros

 ALWAYS online – only requires table IX lock
 Interruptible with no loss of work – stops instantly
 Has progress reporting in sys.dm_exec_requests / percent_complete
 Compacts LOB storage (on by default, see https://sqlskills.com/p/072 for bug fixes)
 Usually faster for a lightly fragmented index
 Can reorganize one or all partitions
 Does not require any extra disk space
 In SQL Server 2016+, works on columnstore indexes too (i.e. online columnstore ops)

 Cons
 Usually slower for a heavily fragmented index
 Always fully-logged, single CPU only, does not update statistics
 Does not do as good a job as removing fragmentation
 Does not increase free space on pages!! (so may be better with a rebuild)
 Possible problem with cached query plans if # of pages drastically changes

54
© SQLskills, All rights reserved.

https://www.SQLskills.com

CREATE INDEX … WITH (DROP_EXISTING=ON)

 Don’t use this if you just want to rebuild the index with no changes
 Pros

 Same as ALTER INDEX … REBUILD
 Can move the index to a new location
 Can rebuild the index with a new partitioning scheme
 Can change the index schema (keys, sort order, etc)
 Can do all of this online (with same limitations as regular index rebuild)

 Cons
 Same as ALTER INDEX … REBUILD
 Need to know the index schema

28

55
© SQLskills, All rights reserved.

https://www.SQLskills.com

Comparison Points: REBUILD vs. REORGANIZE

 Space required
 This may force you to do REORGANIZE

 Log generated
 This may force you to do ‘staggered index maintenance’ using REORGANIZE

 Algorithm speed on amount of fragmentation
 Lots of pages above fill factor? Possibly REBUILD
 Locks required (i.e. online or not)

 This may force you to do REORGANIZE

 Interruptible or not
 Progress reporting or not

56
© SQLskills, All rights reserved.

https://www.SQLskills.com

When To Rebuild vs. Reorganize

 Much debate on this, basically it depends!

 I had to come up with numbers for Books Online so I chose:
 < 5-10% do nothing
 5-10% <> 30% defrag/reorganize
 30%+ rebuild
 And don’t do anything if the index has < 1-5000 pages

 Your mileage may (and will) vary

29

Demo

Removing fragmentation and index rebuild options

58
© SQLskills, All rights reserved.

https://www.SQLskills.com

Paul’s Method…

 Create a table with one row per index you want to work on
 I call it the ‘driver table’

 Call the DMV for the indexes listed in the driver table
 Use per-index fragmentation thresholds to determine whether to

rebuild, reorganize, or do nothing
 Log what you decide to do for future reference
 Optional: keep a counter of how many times in succession an index is

rebuilt and programmatically reduce fill factor

 Much easier: use code someone’s already written…
 http://ola.hallengren.com – the gold standard

30

59
© SQLskills, All rights reserved.

https://www.SQLskills.com

Inside Online Index Operations

Time

Begin rebuild

Create new index

Short-term S lock

End rebuild

Drop old index

Short-term Sch-M lock

NewOriginal

Versioned

scan

Dual update path

Long-term IS lock

60
© SQLskills, All rights reserved.

https://www.SQLskills.com

Inside REORGANIZE: Phase One

 Uses a ‘sliding window’ compaction algorithm
 Deletes ghosted rows

 This algorithm only compacts if enough space over 8-pages to remove
one page
 Earlier algorithm from DBCC INDEXDEFRAG in SQL Server 2000 ran into

pathological cases with some applications

31

61
© SQLskills, All rights reserved.

https://www.SQLskills.com

Inside REORGANIZE: Phase Two

1 2 3 4

Physical page ID

AB

BC

DE

EF

JK

KL

VW

WZ

62
© SQLskills, All rights reserved.

https://www.SQLskills.com

Inside REORGANIZE: Phase Two

1 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

1 2 3 4

AB

BC

DE

EF

JK

KL

VW

WZ

2104

Physical page ID

32

63
© SQLskills, All rights reserved.

https://www.SQLskills.com

Inside REORGANIZE: Phase Two

1 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

1 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4

AB

BC

DE

EF

JK

KL

VW

WZ

2104

Physical page ID

64
© SQLskills, All rights reserved.

https://www.SQLskills.com

Inside REORGANIZE: Phase Two

1 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

1 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4

AB

BC

DE

EF

JK

KL

VW

WZ

2104

Physical page ID

33

65
© SQLskills, All rights reserved.

https://www.SQLskills.com

Inside REORGANIZE: Phase Two

1 2 3 4

Physical Page ID

AB

BC

DE

EF

JK

KL

VW

WZ

1 2 3 4

Physical Page ID

AB

BC

DE

EF

JK

KL

VW

WZ

21041 2 3 4

Physical Page ID

AB

BC

DE

EF

JK

KL

VW

WZ

21041 2 3 4

Physical Page ID

AB

BC

DE

EF

JK

KL

VW

WZ

21041 2 3 4

AB

BC

DE

EF

JK

KL

VW

WZ

2104

Physical page ID

66
© SQLskills, All rights reserved.

https://www.SQLskills.com

Inside REORGANIZE: Phase Two

1 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

1 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4

AB

BC

DE

EF

JK

KL

VW

WZ

2104

Physical page ID

34

67
© SQLskills, All rights reserved.

https://www.SQLskills.com

Inside REORGANIZE: Phase Two

1 2 3 4

Physical Page ID

AB

BC

DE

EF

JK

KL

VW

WZ

1 2 3 4

Physical Page ID

AB

BC

DE

EF

JK

KL

VW

WZ

21041 2 3 4

Physical Page ID

AB

BC

DE

EF

JK

KL

VW

WZ

21041 2 3 4

Physical Page ID

AB

BC

DE

EF

JK

KL

VW

WZ

21041 2 3 4

Physical Page ID

AB

BC

DE

EF

JK

KL

VW

WZ

21041 2 3 4

Physical Page ID

AB

BC

DE

EF

JK

KL

VW

WZ

21041 2 3 4

AB

BC

DE

EF

JK

KL

VW

WZ

2104

Physical page ID

68
© SQLskills, All rights reserved.

https://www.SQLskills.com

Inside REORGANIZE: Phase Two

1 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

1 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4
Physical Page ID

AB
BC

DE
EF

JK
KL

VW
WZ

21041 2 3 4

AB

BC

DE

EF

JK

KL

VW

WZ

Physical page ID

35

69
© SQLskills, All rights reserved.

https://www.SQLskills.com

Key Takeaways

 As you can see, fragmentation is very expensive when it happens
 Many people say not to bother about fragmentation

 They’re WRONG!
 Lots of wasted storage space and extra I/Os
 Lots of wasted buffer pool memory
 Lots of extra log to back up, ship, mirror, scan…
 Performance hit of the page splits happening

 Still a problem even when using SSDs
 SSDs don’t stop fragmentation from happening

 Set appropriate fill factors for indexes that get heavily fragmented
 Start with FILLFACTOR = 70 and tweak as needed

 Consider changing index keys (carefully)

70
© SQLskills, All rights reserved.

https://www.SQLskills.com

Resources

 My blog category on index fragmentation
 https://sqlskills.com/p/076

 Pluralsight course
 https://sqlskills.com/p/074

 Free index maintenance (and more!) tool
 http://ola.hallengren.com/

 WP: Microsoft SQL Server 2000 Index Defragmentation Best Practices
 https://sqlskills.com/p/073
 Based on SQL Server 2000, so discusses DBREINDEX vs. INDEXDEFRAG

 WP: Online Indexing Operations in SQL Server 2005
 https://sqlskills.com/p/075

36

71
© SQLskills, All rights reserved.

https://www.SQLskills.com

Review

 Data access methods
 What is index fragmentation?
 How does index fragmentation happen?
 Detecting index fragmentation
 Avoiding index fragmentation
 Removing index fragmentation

Questions!

