SQLskills Immersion Event
IEPTO1: Performance Tuning and Optimization

Module 7: Index Fragmentation
Paul S. Randal

Paul@SQLskills.com

Lskills

immerse yourself in sql server

SQ

Overview

Data access methods

What is index fragmentation?

How does index fragmentation happen?
Detecting index fragmentation
Avoiding index fragmentation
Removing index fragmentation

Beware of people stating that fragmentation is not a problem any

longer, or not a problem with SSDs
Not true!

© SQLskills, All rights reserved.
https://www.SQLskills.com

Index Structure

R A
I) T Non-leaf levels
A A A (Index pages)
Y \ Y \ Y \
L Tl Tl el el L Leaf level

(Data or index pages)

© SQLskills, All rights reserved.
https://www.SQLskills.com

Single-record Seek

Per-level binary search cost -
see https://sqlskills.com/p/068

Matching record
Q °
Sgokmsmkel!nlsqlé © SQLskills, All rights reserved.

https://www.SQLskills.com

https://sqlskills.com/p/068

Binary Search

21 records

v «— 5 records

© SQLskills, All rights reserved.
https://www.SQLskills.com

Fanout

800-byte key 6 tree levels 80-byte key
Fanout =10 Fanout = 100
1
10
100 S tree levels
1,000 1
10,000 100
100,000 10,000

1 million leaf pages

© SQLskills, All rights reserved.
https://www.SQLskills.com

Multi-record Seek/Scan

Matching records (in blue)

9 S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Allocation Order Scan

Matching records (in blue)

9 S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Side Note: Merry-Go-Round Scans

DATA
> Scan 1
__________________ > Scan 2
T T " Scan 5
Scan 1 Scan 2 Scan 3 starts

9 S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Readahead

Pages at this level contain pointers
to the leaf level pages - in logical
order. This can be used to drive
readahead of the leaf level pages.

Matching records (in blue)

© SQLskills, All rights reserved.
https://www.SQLskills.com

Readahead

= Why use readahead?
o Keep the CPUs busy, maximize throughput, avoid I/0 waits
o More efficient to issue 1 x 8-page read than 8 x 1-page reads
» Feedback mechanism to avoid going too far ahead of scan point
o Maximum 1,000 pages ahead
* Driven from parent level during scans
o Parent level pages contain logically-ordered links to the leaf level
= Uses variable read sizes, up to 4MB read in 2016+
o Larger reads only possible with contiguous pages
o Better contiguity = bigger reads = better performance
= Possible to disable using trace flag 652

* Problem: fragmentation causes lower-performing scans

© SQLskills, All rights reserved.
https://www.SQLskills.com

Overview

= Whatis index fragmentation?

© SQLskills, All rights reserved.
https://www.SQLskills.com

Fragmentation in Action

Index leaf level of newly built index

v

Long arrow is the allocation order
Short arrows are following the logical order

g S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Fragmentation in Action

And now with fragmentation! / / \

/) \H

Long arrow is the allocation order
Short arrows are following the logical order

g S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Logical Fragmentation Defined

* (Sometimes called “external” fragmentation)
= Occurs when the next logical page is not the next physical page
"= Prevents optimal readahead
o Reduces seek/scan performance
= Does not affect pages that are already in cache
o Smaller indexes cause less of a performance hit (e.g. 1-5000 pages or less)

= Reported as avg_fragmentation_in_percent for indexes in the
sys.dm_db_index_physical_stats DMV

* This is what most people consider ‘fragmentation’
“Index fragmentation affects scan performance”
o There is *so much more* to it than that!

© SQLskills, All rights reserved.
https://www.SQLskills.com

Extent Fragmentation Defined

* Old concept, no longer reported for indexes
= Occurs when the extents in an index are not contiguous

Index A | IndexB | IndexA | IndexB | IndexA | Index A
1 2 3 4 5 %)

= Also affects readahead performance but not as much

o When writing the DMV for 2005, we decided to remove it to avoid confusion
from too many measures of ‘fragmentation’

= Reported as avg_fragmentation_in_percentin the
sys.dm_db_index_physical_stats DMV for heaps ONLY

= (2000: extent fragmentation algorithm in DBCC SHOWCONTIG is
documented as not working for multiple files)

9, S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Low Page Density in Action

Page header Page header

3,000-byte record

5,000-byterecord

3,000-byterecord

~3,000 bytes wasted!

~2,000 bytes wasted!

© SQLskills, All rights reserved.
https://www.SQLskills.com

Page Density Defined

» (Sometimes called “physical” or “internal” fragmentation)
» Page fullness is below the optimal level so lots of wasted space

= Effectis:
o Increased disk space (more pages required to hold same number of rows)

o Increased I/Os to read the same amount of data, leading to I/0O subsystem
pressure and overall performance degradation

o Greater memory usage if most of the index is memory resident, leading to
increased I/Os from *other* workloads, and so on...

o More pages in the index unnecessarily can mean the Query Optimizer
doesn't pick that index, leading to inefficient query plans

= This means ‘fragmentation’ can affect your performance even if you
don’t do index scans

= Hardware does not fix this
= Reported as avg_page_space_used_in_percentin the DMV

© SQLskills, All rights reserved.
https://www.SQLskills.com

Increased Buffer Pool Usage

Percentage of Empty Space in Data File Pages in Buffer Pool

100.0%

90.0%

80.0%

70.0%

60.0%

50.0%

40.0%

30.0%

20.0%

10.0%

0.0% -

Percentage of Buffer Pool Memory used for Storing Data File Pages
that is Storing Empty Space (900 Servers Worldwide)
* ¢ o o \
® o RSN
@ > — \
+ r—* I'
: \
g ¥ ’ - o * 0 k& I
L 4 @ * P\ 73 @
o ¢ > & v
h” : y ‘. e & ¢ NE
¢ & ®
¢ :
""W cten, BT, 00 4,08
Ve x\ S S
W‘? X‘}:x%l P AR
. ® é

; g PSR . “ \’ A ’ ’00 £ ’

1 10 100
Buffer Pool Memory Containing Data File Pages (GB)
Logarithmic scale (min 1, max 300)

Source: my blog at https://sqlskills.com/p/069

© SQLskills, All rights reserved.

O
SQLskills
o

https://www.SQLskills.com

https://sqlskills.com/p/069

Overview

* How does index fragmentation happen?

© SQLskills, All rights reserved.
https://www.SQLskills.com

What Causes Fragmentation?

= Schemas/workloads that cause page splits on full pages

o GUID as high-order key (or any other random key)
o Can even affect nonclustered indexes

o Updates to variable-length columns
o Badly configured fill factor (more in a few slides)
» Clustered index s likely the only one you can make the key not cause
fragmentation by picking an ascending order key (e.g. bigint identity)
» Wide schemas that only fit a few records per page
o E.g.afixed-size 5000 byte row = 3000 bytes lost per page!

= Real-world example:

o Social networking site that has a homepage comments table with the
member ID as the high-order key

o Patient check-in company using GUID as clustering key

9, S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Real-World Examples

= MySpace

Paul Jonathan Erin Tim

Kimberly @

= Patient check-in company using GUID as clustering key

9 S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Can DML Cause Fragmentation?

* Yes, data modifications can lead to fragmentation
= INSERT

o YES - if key value is not ever increasing/decreasing (e.g. GUID)
o NO - if key is ever increasing/decreasing (e.g. INT IDENTITY)

= UPDATE

o YES - if updates make variable-length columns wider on full pages

o NO - if columns are fixed width or columns have ‘place holder’ values (i.e.
DEFAULT values) to minimize row expansion on update

= DELETE

o YES - if deletes are singleton deletes (Swiss-cheese problem — page density
issues)

o NO - if deletes are range deletes for archival purposes

© SQLskills, All rights reserved.
https://www.SQLskills.com

What is a Page Split?

* This is the primary cause of fragmentation, and is itself a performance
problem when it occurs

* Occurs when arecord must be inserted onto (or expanded on) a
specific page in the index and there is not enough space

o Could be caused by a new record or an updated record that is now longer
than it was before

o Could also be caused by enabling snapshot isolation, which makes updated
records 14-bytes longer

o Also from enabling readable availability group secondaries in SQL Server 2012+
= The page has to ‘split’ to make room

o Split point is usually as close to 50/50 as possible, but may be skewed if
Storage Engine can determine an obvious split point

© SQLskills, All rights reserved.
https://www.SQLskills.com

Page Split Mechanism

= Forevery page split:

O A new page is allocated to the index

O All records after the split point are moved to the new page

O New page is linked into the leaf level

O A new record must be inserted into index level above the leaf

O Could also cause a page split, cascading upwards to the root page
All steps are fully logged and performed by a system transaction

O Very expensive, and hardware does not fix this!

O Detailed study of log records generated shown in demo towards end of
Module 4 of the Pluralsight course SQL Server: Logging, Recovery, and the
Transaction Log

After page split is committed, insert/update can take place

Page split is never rolled back

© SQLskills, All rights reserved.
https://www.SQLskills.com

Page Split Transaction

= BEGIN TRAN (either you do this or Engine does it for you)
o Running Access Methods code to do the INSERT or UPDATE
o Oh - split needed!
o BEGIN TRAN (this is a ‘system transaction’)
o True nested transaction, subordinate to the outer transaction
o Do the split
o COMMIT TRAN (once committed, this will never be rolled back)
o Do the INSERT or UPDATE
= COMMIT TRAN

» Butif you did a ROLLBACK TRAN, the split remains

QLS I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Page Split Mechanism

» Lskill

sg S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Page Split Mechanism

» Lskill

sg S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Page Split Mechanism

» Lskill

sg S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Page Split Mechanism

» Lskill

sg S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Page Split Mechanism

» Lskill

sg S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Increased logging during page splits

Page Split Madness....

= The Storage Engine isn’t always smart about splits...

* Imagine a page with 200 x 40-byte records and someone inserts a key
that has to go there, in an 8,000 byte record

= You'd think it would recognize that and do a skewed split, but no...
= Splitinto 2 pages with 100 records in each

= And then 1 of these into 2 pages with 50 records in each

= And then 1 of these into 2 pages with 25 records in each

* And then 1 of these into 2 pages with 12 and 13 records in each

* And then 1 of these into 2 pages with 6 records in each

* And then 1 of these into 2 pages with 3 records in each

* And then 1 of these into 2 pages with 1 and 2 records in each

* And then do the insert!

o k. ll

SQLS I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Overview

» Detecting index fragmentation

© SQLskills, All rights reserved.
https://www.SQLskills.com

Tracking Page Splits

= There are ‘good’ and ‘nasty’ page splits...

o ‘Good’ splitis when a page is allocated as part of an append-only insert
pattern

o 'Nasty’ splitis when a real page split occurs
* Unfortunately, all documented methods of tracking page splits prior
to SQL Server 2012 do not allow differentiation between ‘good’ and
‘nasty’ page splits
o Perfmon counter
o sys.dm_db_index_operational_stats
o Extended event (possibly with post-processing)
= Either use log/log backup scanning or 2012+ Extended Events
o Both methods track the LOP_DELETE_SPLIT log record
o See my blog post at https://sqlskills.com/p/070

© SQLskills, All rights reserved.
https://www.SQLskills.com

https://sqlskills.com/p/070

Symptoms of Fragmentation

* Poor/degrading query performance over time
o Longer run-times

o More disk activity
o SET STATISTICS IO ON
o More frequent checkpoints occuring
o Increased logging (from page split activity)

o Depending on the average record length and the split point, a page split could
log up to 50 times more than a regular insert!

o Increased buffer pool usage
= Worsening results from the sys.dm_db_index_physical_stats DMV

o Keys to success are knowing which indexes to look at and how to interpret
the results

© SQLskills, All rights reserved.
https://www.SQLskills.com

sys.dm_db_index_physical_stats

* Replacement for DBCC SHOWCONTIG since SQL Server 2005

o select * from sys.dm_db_index_physical_stats (dbid, objectid, indexid,
partitionid, samplemode)
* No need to insert/exec to analyze/process DBCC SHOWCONTIG results
o DMVs are programmatically “composable”
o However, this is a DMF, not a true DMV so must do work for results

= Ability to control how much data is read using sample mode (LIMITED,
SAMPLED, DETAILED)
o LIMITED (default) does not read the leaf level so is fastest mode

o This is good enough for most people

o SAMPLED reads 1% of the leaf-level pages if the index/partition has more
than 10000 pages

o DETAILED reads everything and is the slowest mode

9, S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

How the LIMITED Scanning Mode Works

Pages at this level contain pointers to
the leaf level pages - in logical order.
This information can be used to derive
the logical fragmentation.

/

© SQLskills, All rights reserved.
https://www.SQLskills.com

Interpreting the DMV Output

= What you need to look at:
o Logical fragmentation
o avg_fragmentation_in_percent (should be low)

o Page density

o avg_page_space_used_in_percent
o Should be high for data warehouse
o Should have some free space for OLTP

o Number of pages in the index
= Other counters exist (e.g. fragments, avg. fragment size) but these

were only invented to be more accessible to users - somewhat
unsuccessfully

© SQLskills, All rights reserved.
https://www.SQLskills.com

Detecting fragmentation using sys.dm_db_index_physical_stats

Overview

*= Avoiding index fragmentation

© SQLskills, All rights reserved.
https://www.SQLskills.com

How to Avoid Fragmentation?

= Avoid ‘random’ index keys
o Almost impossible to do for nonclustered indexes

o For clustered indexes, be careful about moving to (BIG)INT IDENTITY as small
row size combined with many concurrent inserters could lead to an ‘insert
hotspot’ performance issue

* Implement index fill factors and periodically remove fragmentation
o Coming up next...

= There is nothing you can do in hardware that means you can ignore
index fragmentation

o Don't fall for the advice that SSDs mean you can ignore it
o SSDs don't stop page splits, extra logging, wasted space, plan changes

© SQLskills, All rights reserved.
https://www.SQLskills.com

Contiguity When (Re)Building

» Consider using -E startup parameter for very large indexes that
support very large scans
o http://support.microsoft.com/kb/329526
o During index build/rebuild (and all other operations):

o SQL Server 2008+: 64 extents allocated before round-robin (4MB)
o l.e. 64 single-extent allocations, not one 64-extent allocation

o Combine with large RAID stripe size

" For best contiguity and readahead 1/0 size, use MAXDOP = 1 when
building or rebuilding indexes

o Otherwise multiple (re)build threads building the leaf level, leading to extent
interleaving (essentially extent fragmentation), and reduced readahead

* Note: this is not relevant for OLTP systems

© SQLskills, All rights reserved.
https://www.SQLskills.com

http://support.microsoft.com/kb/329526

Rebuild Contiguity with DOP > 1

= Let's say DOP =4 for the index rebuild

Fill Factors

= Setting a fill factor makes the Storage Engine leave space on each leaf-
level page to allow inserts/expansions to not cause page splits

= Specified at index creation or rebuild time
o NOT maintained during regular DML
» Use during index create/rebuild/reorganize
» Can specify with sp_configure for entire instance
o Not recommended - specify it per index
= Use PAD_INDEX to use fill factor for upper levels of the index
o Rarely used
* 0=100 = default value with special meaning of ‘leave no space’
o Excellent for data warehouse, but not ideal for OLTP
= For OLTP, which value to use?

© SQLskills, All rights reserved.
https://www.SQLskills.com

Picking a Fill Factor to Use

» Balancing act between how often page splits occur and how often you
can rebuild/defrag the index

= What is going to cause page splits in your schema?

o UPDATEs to variable-width data types?

o Random INSERTSs?

o The more volatile = lower FILLFACTOR

* How often can you rebuild/defrag?

o The more frequent = higher FILLFACTOR

» Pick avalue, try it, monitor fragmentation, tweak it
o Use DMVs to see how fast the fragmentation increases

o The faster fragmentation occurs = lower FILLFACTOR or decreased time
between rebuilds/defrag

o 70% or 80% are common first guesses

© SQLskills, All rights reserved.
https://www.SQLskills.com

Setting a Fill Factor

= Can be set when creating or rebuilding an index
o Stores the fill factor in the index metadata
= Canalso be set using Object Explorer in SSMS
= Cannot be set directly with ALTER INDEX ... REORGANIZE
= REBUILD and REORGANIZE use the metadata-stored fill factor, if there
is one, otherwise they will use the instance-wide fill factor
o Unless a fill factor is specified on the REBUILD

o le. REBUILD-specified fill factor overrides metadata-stored fill factor, which
overrides instance-wide fill factor

9, S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Additional: Are Your Indexes Being Used?

* There are lots of bad practices around index strategy, including
creating extra indexes

o E.g.an index for each column in the table

= Extra, unused indexes waste resources as they must be maintained by
DML operations

» Use the sys.dm_db_index_usage_stats DMV to tell if an index is being
used at all during the business cycle

o Beware of indexes not being used but enforcing unique constraints

o Beware thatin 2012 and 2014 the stats are reset for indexes rebuilt online
o Fixed in SQL Server 2016+, and latest builds of 2012 and 2014

© SQLskills, All rights reserved.
https://www.SQLskills.com

Overview

* Removingindex fragmentation

© SQLskills, All rights reserved.
https://www.SQLskills.com

How to Remove Fragmentation?

2 realistic choices

o Rebuild the index: ALTER INDEX ... REBUILD
o Create a brand new index structure

o Reorganize the index: ALTER INDEX ... REORGANIZE
o Shuffle the existing pages allocated to the index

Also CREATE INDEX ... WITH (DROP_EXISTING = ON)

o Commonly used to move or (re)partition an index

Can also choose not to remove fragmentation

o If the index isnt used for scans, and page density isn’t an issue, why spend
the resources?

Don’t just rebuild all indexes every day
Synchronous mirroring or AGs may force REORGANIZE to be used

© SQLskills, All rights reserved.
https://www.SQLskills.com

Staggered Index Maintenance

» Splitting maintenance of a large index up over several days using
ALTER INDEX ... REORGANIZE

1TB clustered index

And so on... and then start again...

SQLskill
goimmmseyom!nsq| se§ © SQLskills, All rights reserved.
o

https://www.SQLskills.com

ALTER INDEX ... REBUILD

= Pros
o Can use multiple CPUs, and control MAXDOP (lower DOP = better contiguity)
o Rebuilds index statistics (with equivalent of full scan, or sampled if partitioned index)
o Can rebuild a single partition (online from 2014) or all partitions (online from 2005)

Can be performed online

o 2012+:Indexes with non-legacy LOB columns (plus clustered index on table with non-
legacy LOB/FILESTREAM column)

o 2017+: ability to pause and resume an online-index rebuild, resume starts from last position

O

o Can be minimally-logged (but log backup will be the same size)

o SORT_IN_TEMPDB reduces logging + perf boost in 2014+ (https://sqlskills.com/p/071)
o Not available with resumable online index rebuild

= Cons
o Atomic operation — potentially long rollback on interrupt, all or nothing semantics
o Must create new index before dropping old one, up to 125% extra space required
o When offline — SCH-M table lock for nonclustered or clustered index rebuild

o When online - blocking potential, but can be resolved in SQL 2014 onward
o Resumable online rebuild of clustered with LOB columns = SCH-M table lock for duration!

© SQLskills, All rights reserved.
https://www.SQLskills.com

https://sqlskills.com/p/071

ALTER INDEX ... REORGANIZE

= Replaced DBCC INDEXDEFRAG in SQL Server 2005 onward

= Pros
o ALWAYS online - only requires table IX lock
o Interruptible with no loss of work - stops instantly
o Has progress reporting in sys.dm_exec_requests / percent_complete
o Compacts LOB storage (on by default, see https://sqlskills.com/p/072 for bug fixes)
o Usually faster for a lightly fragmented index

o Can reorganize one or all partitions

o Does not require any extra disk space

o InSQL Server 2016+, works on columnstore indexes too (i.e. online columnstore ops)
= Cons

o Usually slower for a heavily fragmented index

o Always fully-logged, single CPU only, does not update statistics

o Does not do as good a job as removing fragmentation

o Does not increase free space on pages!! (so may be better with a rebuild)

o Possible problem with cached query plans if # of pages drastically changes

© SQLskills, All rights reserved.
https://www.SQLskills.com

https://sqlskills.com/p/072

CREATE INDEX ... WITH (DROP_EXISTING=ON)

= Don't use this if you just want to rebuild the index with no changes

= Pros
o Same as ALTERINDEX ... REBUILD
o Can move the index to a new location
o Can rebuild the index with a new partitioning scheme
o Can change the index schema (keys, sort order, etc)
o Can do all of this online (with same limitations as regular index rebuild)

= Cons
o Same as ALTERINDEX ... REBUILD
o Need to know the index schema

© SQLskills, All rights reserved.
https://www.SQLskills.com

Comparison Points: REBUILD vs. REORGANIZE

= Spacerequired
o This may force you to do REORGANIZE

* Log generated
o This may force you to do ‘staggered index maintenance’ using REORGANIZE

» Algorithm speed on amount of fragmentation
= Lots of pages above fill factor? Possibly REBUILD

* Locks required (i.e. online or not)
o This may force you to do REORGANIZE

* Interruptible or not
= Progress reporting or not

9, S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

When To Rebuild vs. Reorganize

= Much debate on this, basically it depends!

* | had to come up with numbers for Books Online so | chose:
o < 5-10% do nothing
o 5-10% <> 30% defrag/reorganize
o 30%-+ rebuild
o And don’t do anything if the index has < 1-5000 pages

* Your mileage may (and will) vary

9' S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Removing fragmentation and index rebuild options

Paul’s Method...

= Create a table with one row per index you want to work on
o | call it the ‘driver table’

= Call the DMV for the indexes listed in the driver table

» Use per-index fragmentation thresholds to determine whether to
rebuild, reorganize, or do nothing

* Log what you decide to do for future reference

» Optional: keep a counter of how many times in succession an index is
rebuilt and programmatically reduce fill factor

* Much easier: use code someone’s already written...
o http://ola.hallengren.com - the gold standard

© SQLskills, All rights reserved.
https://www.SQLskills.com

http://ola.hallengren.com/

Inside Online Index Operations

Short-term S lock Short-term Sch-M lock

dl€

A 4
A

v

Time

[
»

Long-term IS lock
Begin rebuild End rebuild

Create new index Drop old index

New

Dual update path

Versioned

A=

Original

© SQLskills, All rights reserved.
https://www.SQLskills.com

Inside REORGANIZE: Phase One

» Uses a ‘sliding window’ compaction algorithm
= Deletes ghosted rows

m ﬂ
* This algorithm only compacts if enough space over 8-pages to remove
one page

o Earlier algorithm from DBCC INDEXDEFRAG in SQL Server 2000 ran into
pathological cases with some applications

© SQLskills, All rights reserved.
https://www.SQLskills.com

Inside REORGANIZE: Phase Two

VW JK AB DE

WZ KL BC EF

1 2 3 4
Physical page ID

g S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Inside REORGANIZE: Phase Two

YW JK AB DE

W4 KL BC EF

1 2 3 4 2104
Physical page ID

g S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Inside REORGANIZE: Phase Two

JK AB DE VW
KL BC EF W4

1 2 3 4 2104
Physical page ID

g S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Inside REORGANIZE: Phase Two

AB JK DE VW
BC KL EF W4
1 2 3 4 2104
Physical page ID

g S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Inside REORGANIZE: Phase Two

AB JK DE VW
BC KL EF W4
1 2 3 4 2104
Physical page ID

g S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Inside REORGANIZE: Phase Two

AB DE JK VW
BC EF KL W4
1 2 3 4 2104
Physical page ID

O
SgLskills
o

© SQLskills, All rights reserved.
https://www.SQLskills.com

Inside REORGANIZE: Phase Two

AB DE JK YW
BC EF KL wZ
1 2 3 4 2104
Physical page ID

g S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Inside REORGANIZE: Phase Two

AB DE JK YW
BC EF KL wZ
1 2 3 4
Physical page ID

g S I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

Key Takeaways

= Asyou can see, fragmentation is very expensive when it happens
* Many people say not to bother about fragmentation

o They're WRONG!

o Lots of wasted storage space and extra |/Os

o Lots of wasted buffer pool memory

o Lots of extra log to back up, ship, mirror, scan...

o Performance hit of the page splits happening
= Still a problem even when using SSDs

o SSDs don't stop fragmentation from happening

= Set appropriate fill factors for indexes that get heavily fragmented
o Start with FILLFACTOR = 70 and tweak as needed

= Consider changing index keys (carefully)

© SQLskills, All rights reserved.
https://www.SQLskills.com

Resources

= My blog category on index fragmentation
o https://sqlskills.com/p/076
* Pluralsight course
o https://sqlskills.com/p/074
" Free index maintenance (and more!) tool
o http://ola.hallengren.com/
= WP: Microsoft SQL Server 2000 Index Defragmentation Best Practices
o https://sqlskills.com/p/073
o Based on SQL Server 2000, so discusses DBREINDEX vs. INDEXDEFRAG
= WP: Online Indexing Operations in SQL Server 2005
o https://sqlskills.com/p/075

QLS I S © SQLskills, All rights reserved.
o immerse yourself in sql server
o

https://www.SQLskills.com

https://sqlskills.com/p/076
https://sqlskills.com/p/074
http://ola.hallengren.com/
https://sqlskills.com/p/073
https://sqlskills.com/p/075

Review

Data access methods

What is index fragmentation?

How does index fragmentation happen?
Detecting index fragmentation
Avoiding index fragmentation
Removing index fragmentation

© SQLskills, All rights reserved.
https://www.SQLskills.com

Questions!

O
SQLSKIlS
o

