
1

SQLskills Immersion Event
IEPTO2: Performance Tuning and Optimization

Module 7: Putting New Features
into Practice

Erin Stellato
Erin@SQLskills.com

2
© SQLskills, All rights reserved.

https://www.SQLskills.com

How do you improve performance?

 Code changes
 Tune/optimize queries
 Optimize transactions
 Reduce compiles/recompiles
 Return only the data that users

need (like, really need)
 Minimize the use of functions,

cursors, and row-based
operations

 Change isolation level
 Improve cache plan use

 Schema changes
 Normalize or de-normalize
 Define PKs, FKs, and constraints
 Data types

 Index
 Update statistics (?!)
 Add more tempdb files
 Remove/archive historical data
 Partition
 Separate reporting from OLTP
 Upgrade

 Bug or feature

 More/new hardware
 CPU*/memory/storage

 Use new features…

2

3
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Columnstore
 In-Memory OLTP
 Cardinality Estimator
 Query Store plan forcing / automatic plan correction
 Upgrade Testing

4
© SQLskills, All rights reserved.

https://www.SQLskills.com

Columnstore

 Introduced in SQL Server 2012 Enterprise Edition
 Limited initially, enhancements added with each subsequent release

 Primarily designed for data warehouses
 Storing and querying large amounts of fact data
 Support for operational analytics added in SQL Server 2016

 Data is stored in a compressed, column format, rather than traditional
row-based storage
 Uses the X-Velocity In-Memory Compression Engine, which is also used in

PowerPivot and Analysis Services (Tabular Mode)

 Supported with Availability Groups
 Available in Standard Edition starting in SQL Server 2016 SP1

 Columnstore Object Pool size capped at 32GB

3

5
© SQLskills, All rights reserved.

https://www.SQLskills.com

Nonclustered Columnstore Indexes

 Nonclustered Columnstore Index (NCCI)
 Updateable as of SQL Server 2016
 Comprised of a sub-set of columns from the table
 Provides real-time operational analytics for OLTP workloads

 Remove time delays from ETL operations
 Eliminates the need for a separate data warehouse and complexity of ETL
 Eliminates multiple rowstore nonclustered indexes to support analytical queries

 Supports offloading analytics to readable secondary replicas with Availability
Groups

 Note: maintaining a NCCI is more expensive than a B-tree index
 There is no in-place update for NCCI, it is a delete and then an insert

6
© SQLskills, All rights reserved.

https://www.SQLskills.com

Clustered Columnstore Indexes

 Clustered Columnstore Index (CCI)
 Comprised of all columns in the table
 Can be implemented on-disk or in-memory
 Benefits analytical queries executed against a DW database (e.g. fact tables)

 Tables ideally partitioned with at least one million rows/partition
 Data loading typically by ETL and bulk operations

 Can also provide benefit for analytical queries for tables with heavy inserts,
where there are few updates and deletes (DW or OLTP)

 Use with IOT data for compression (ratios as high as 25x compared to
rowstore)

4

7
© SQLskills, All rights reserved.

https://www.SQLskills.com

Batch Mode

 Maximum performance gains are realized when operators can use
batch mode for columnstore indexes

 Support for batch mode has been expanded to more operators with
each release

 Initially, batch mode execution was only seen with multi-threaded
(parallel) queries
 Batch mode execution for serial queries added in SQL Server 2016

(compatibility mode 130)

8
© SQLskills, All rights reserved.

https://www.SQLskills.com

Columnstore Enhancements by Version

2012 2014 2016 2017 2019
NCCI read-only,
secondary NCI
indexes can be
created

Updatable NCCI
(only one),
supports filter
definition

Create NCCI
online
Support non-
persisted
computed
columns (NCCI
only)

Updatable CCI,
no other indexes
allowed

Updateable CCI,
secondary NCI
indexes can be
created

Columnstore
index on an in-
memory table
(only one)

Tuple-mover
helped by a
background task

5

9
© SQLskills, All rights reserved.

https://www.SQLskills.com

Determining Which Strategy is Best

 Clustered Columnstore
 INSERT mostly workload
 Star schema/traditional DW
 Light OLTP < 10%

UPDATE/DELETE with mostly
analytic queries

 Nonclustered Columnstore
 Normal OLTP workload
 Heavy UPDATE/DELETE
 Normalized table schema

10
© SQLskills, All rights reserved.

https://www.SQLskills.com

Questions to Ask

 How large is my table/data?
 Do my queries mostly perform analytics that scan large ranges of

values?
 Does my workload perform lots of updates and deletes?
 Do I have fact and dimension tables for a data warehouse?
 Do I need to perform analytics on a transactional workload?
 What version of SQL Server am I running on?

These will determine whether Columnstore is the right solution

6

11
© SQLskills, All rights reserved.

https://www.SQLskills.com

What You’re Looking For…

 How large is my table/data?
 Compression may provide significant space and I/O savings

 Do my queries mostly perform analytics that scan large ranges of
values?
 Columnstore works best for large range scans and not point queries

 Does my workload perform lots of updates and deletes?
 Columnstore works best on stable/static data, typically < 10% DELETE/UPDATE

 Do I have fact and dimension tables for a data warehouse?
 Schema design and loading strategy determine effectiveness

 Do I need to perform analytics on a transactional workload?
 Updatable NCCIs with filter criteria on “warm” data

Demo

Performance changes with columnstore

7

13
© SQLskills, All rights reserved.

https://www.SQLskills.com

Data types not supported

 ntext, text, and image
 nvarchar(max), varchar(max), and varbinary(max)

 Supported in SQL Server 2017 CCI

 rowversion (and timestamp)
 sql_variant
 CLR types (hierarchyid and spatial types)
 xml
 uniqueidentifier

 Supported in SQL Server 2014 and higher

14
© SQLskills, All rights reserved.

https://www.SQLskills.com

Index Limitations

 Maximum of 1024 columns
 NCCI and CCI cannot have constraints (unique, PK, FK)

 With NCCI, base table/CI can have constraints
 With CCI, NCI can have constraints

 Cannot be created on a view or indexed view
 Cannot include a sparse column
 Must drop and recreate a columnstore index to change its definition

(only supports ALTER INDEX for REBUILD)
 Cannot be created by using the INCLUDE keyword

8

15
© SQLskills, All rights reserved.

https://www.SQLskills.com

Features Not Supported

 Computed columns
 Non-persisted computed column supported in SQL Server 2017 CCI

 Page and row compression, and vardecimal storage format
 Columnstore data is already compressed
 COLUMNSTORE_ARCHIVE (added in SQL Server 2016)

 Replication
 FILESTREAM

16
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Columnstore
 In-Memory OLTP
 Cardinality Estimator
 Query Store plan forcing / automatic plan correction
 Upgrade Testing

9

17
© SQLskills, All rights reserved.

https://www.SQLskills.com

In-Memory OLTP (1)

 Introduced in SQL Server 2014 Enterprise Edition
 Additional capabilities added with subsequent releases
 Also available in SQL Server 2016 SP1 Standard Edition with a limit of 32GB

of In-Memory objects per database
 https://msdn.microsoft.com/library/cc645993.aspx
 Note: if you also use columnstore, the max is 32GB for disk-based. If you use

memory-optimized columnstore, it counts against the 32GB in-memory limit.

 With the reduced cost of memory and CPU, I/O often remains a
limiting factor in fast performance

 Typical bottlenecks with traditional, disk-based structures can exist
around locking, latching, spinlocks, and writing to the transaction log
which manifest as concurrency and latency issues

18
© SQLskills, All rights reserved.

https://www.SQLskills.com

In-Memory OLTP (2)

 In addition to accessing disk-based structures, there can be a large
number of computer instructions to execute a transaction which
affect overall duration
 Increasing the number of CPUs doesn’t linearly scale to address this

 Natively compiled procedures reduce the number of computer
instructions

 Microsoft proposed the original concept for an engine to support in-
memory workloads in 2008 (codename Hekaton); planning and
design started in 2010

10

19
© SQLskills, All rights reserved.

https://www.SQLskills.com

In-Memory OLTP (3)

 An original goal was to execute OLTP transactions in microseconds
(less than 1 millisecond)

 In-Memory OLTP provides optimistic concurrency and removes
locking and latching, in addition to having data reside in memory
 Data structures provide efficient data access
 With no locking or latching, solution can scale linearly
 Log records only written on transaction commit, or at a set time if using

delayed durability (SQL Server 2014 and higher)

 Per Microsoft, customers can get up to 30x performance improvement
 YMMV…it depends on workload and access patterns; up to 10x

improvement more realistic

20
© SQLskills, All rights reserved.

https://www.SQLskills.com

In-Memory Objects

 Memory-optimized tables
 Memory-optimized table types
 Memory-optimized indexes
 Memory-optimized filegroup
 Natively compiled T-SQL modules
 Memory-optimized tempdb metadata (SQL Server 2019)

11

21
© SQLskills, All rights reserved.

https://www.SQLskills.com

Tables

 Memory-optimized tables store user data
 Tables are durable by default

 Data will persist across a restart

 Can be configured as delayed-durable or non-durable
 Use non-durable for transient data that can be re-populated if needed

 Not all data types supported

Memory

Disk

Durable

Memory

Disk

Non-durable

Some
data

Delayed
Durable

Some
data

22
© SQLskills, All rights reserved.

https://www.SQLskills.com

Table Types

 Memory-optimized table types
 Use for temp tables, TVPs, and table variables to hold transient data
 Only stored in memory using same structure as tables, nothing in tempdb
 Must have one index

12

23
© SQLskills, All rights reserved.

https://www.SQLskills.com

Table Types Example

CREATE @OrderInfo TABLE (
[RowNum] INT IDENTITY (1,1),
[OrderID] INT,
[CustomerID] INT,
[CustomerPONum] NVARCHAR(40)
);

CREATE TYPE dbo.OrderInfo
AS TABLE (

[RowNum] INT IDENTITY (1,1) NOT NULL,
[OrderID] INT PRIMARY KEY NONCLUSTERED,
[CustomerID] INT,
[CustomerPONum] NVARCHAR(40)
)

WITH
(MEMORY_OPTIMIZED = ON);

DECLARE @OrderInfo dbo.OrderInfo;

“Traditional” method –
create a table variable
(still backed by tempdb)

New option –
create a table
type first, as
an in-memory
structure, then
reference it in
code

24
© SQLskills, All rights reserved.

https://www.SQLskills.com

Indexes (1)

 Every memory-optimized table must have at least one memory-
optimized index
 Maximum of eight (8) indexes through in SQL 2014 and SQL 2016
 No limit in SQL 2017+ and Azure SQL Database

 Nonclustered vs. Hash
 Nonclustered ideal for range scans, inequalities, and when sort order is

needed
 Hash is optimal for equality predicates on all key columns
 Hash requires estimating the number of distinct values for the index key

 Columnstore
 Includes all columns (clustered)

13

25
© SQLskills, All rights reserved.

https://www.SQLskills.com

Indexes (2)

 Nonclustered and hash indexes are not represented on disk; index
changes are not written to the log

 These indexes are rehydrated (data streamed from disk to memory)
when:
 A database is restored
 The instance restarts or the server reboots
 Change a database from READ_WRITE to READ_ONLY (or vice versa)
 Change the READ_COMMITTED_SNAPSHOT setting
 A database is taken OFFLINE, then brought ONLINE

 With an AG failover, as REDO occurs at the secondary, in-memory
objects are updated, providing an advantage in the event of a failover

 Do not fragment like disk-based indexes
 Columnstore in-memory indexes are persisted

26
© SQLskills, All rights reserved.

https://www.SQLskills.com

The Filegroup

 In order to use In-Memory OLTP, you must create a separate filegroup
 Defined as MEMORY_OPTIMIZED_DATA
 Only one filegroup of this type allowed
 You create one or more containers for the filegroup
 Recommended to have enough space to support 4x the size of each

memory-optimized table that is durable

 The filegroup contains checkpoint files (data and delta) to track
changes to durable objects
 Used to recreate durable (and delayed-durable) tables and indexes after a

restart

 Make sure Instant File Initialization is enabled

14

27
© SQLskills, All rights reserved.

https://www.SQLskills.com

Natively compiled T-SQL modules

 Natively compiled T-SQL modules (stored procedures, triggers, scalar
UDFs)
 Optimized and compiled into machine language
 Removes compilation time and CPU
 Parameter sniffing is not used, compiled using UNKNOWN values

 Can use OPTIMIZE FOR to try and force a specific plan
 Interpreted SPs do use parameter sniffing

 Statistics automatically updated in SQL Server 2016 with compatibility mode
130

 Updates to statistics do not initiate re-compilation

28
© SQLskills, All rights reserved.

https://www.SQLskills.com

Memory-Optimized tempdb Metadata

 System tables for tempdb can be memory-optimized
 These tables track the temporary tables that are created in tempdb
 For high-volume systems, contention on these tables (metadata) can occur

 Even with temp table caching (introduced in SQL 2005)

 Enabling this option removes contention on these system tables to improve
scalability

 Requires an instance restart
 Implement if you see PAGELATCH contention on system objects such

as sysobjvalues and sysseobjvalues
 This will not address contention for PFS and SGAM pages

 Limitations:
 Columnstore indexes cannot be created on temporary tables when memory-

optimized tempdb metadata is enabled

15

29
© SQLskills, All rights reserved.

https://www.SQLskills.com

In-Memory OLTP Solutions (1)

 In-Memory OLTP is not a solution for all performance problems
 It can address problems related to query execution and data access

 It will not benefit code related to client connectivity or transaction logging
 Exception: if implemented as non-durable

 Ideal workload pattern addressed is a large volume of small
transactions

 Typical uses:
 Increase transaction throughput
 Increase the rate of data ingestion
 Decrease latency because application/business is time-sensitive
 Transient data

30
© SQLskills, All rights reserved.

https://www.SQLskills.com

In-Memory OLTP Solutions (2)

 Where it works really well:
 Inserts/updates/deletes
 Data that is heavily read (high concurrency) that is read-only or modified

infrequently via SPs
 Replacing #temp tables, table variables, TVPs
 Staging data during ETL processes
 Initial data load (then move data to disk-based, columnstore)
 Session state database (e.g. for ASP.NET)
 Caching

16

31
© SQLskills, All rights reserved.

https://www.SQLskills.com

In-Memory OLTP Solutions (3)

 Where it doesn’t work well:
 Resource limitations

 Not enough memory to support In-Memory tables
 Slow I/O for the transaction log

 Queries that return a lot of data or perform aggregations
 Query plans with large range scans/table scans
 Query plans with parallelism

 Note: if ETL writes are parallel with disk-based tables, they won’t be with in-
memory (http://www.nikoport.com/2018/01/20/parallelism-in-hekaton-in-
memory-oltp/)

 If your original latency is due to factors outside SQL Server, In-Memory
OLTP may not provide any benefit (e.g., “chatty” application)
 Understand source of the existing problem before you go down this path

Demo

Testing performance changes with In-Memory OLTP

17

33
© SQLskills, All rights reserved.

https://www.SQLskills.com

Requirements

 Separate filegroup in the database
 Cannot be removed (must drop the database to “remove” it)
 Cannot create database snapshot for databases with this filegroup

 Enough memory to hold the In-Memory tables and indexes
 Table will be the approximate size of the disk-based table, indexes are

typically smaller

 Additional memory to support the workload, including row-versioning
 Disk space to support the size of durable memory-optimized objects

 https://blogs.msdn.microsoft.com/sql_server_team/choosing-the-right-
server-memory-for-restore-and-recovery-of-memory-optimized-databases/

 Note: Natively compiled T-SQL modules are optional, but highly
recommended to maximize performance gains

34
© SQLskills, All rights reserved.

https://www.SQLskills.com

Limitations for Tables

 Not all features are supported, for example:
 Compression
 Partitioning
 Replication*
 Linked Servers
 DDL triggers
 Most cross-database transactions

 Not all data types supported (e.g., datetimeoffset, geography, xml)
 Computed columns are supported in SQL Server 2017

 IDENTITY must seed at 1 and increment by 1, cannot reseed
 TRUNCATE TABLE is not supported
 Migrating an existing table to in-memory is not an online process

(ALTER TABLE not supported for this operation)
 DBCC CHECKDB cannot validate in-memory tables

18

35
© SQLskills, All rights reserved.

https://www.SQLskills.com

Items of Note for Natively-compiled SPs

 Can only access memory optimized tables and table types
 No parallel processing
 Compiled using UNKNOWN values (can use OPTIMIZE FOR hint)
 Query plans use nested loop joins

 Only stream aggregation is available for aggregates

 Execution statistics not collected by default due to perf impact
 Must enable via sys.sp_xtp_control_query_exec_stats or

sys.sp_xtp_control_proc_exec_stats

36
© SQLskills, All rights reserved.

https://www.SQLskills.com

Limitations for Natively-compiled SPs

 Cannot create or access tables in tempdb
 Use memory-optimized tables or table types/table variables

 EXISTS cannot be used with IF and WHILE
 MERGE is not supported
 UPDATE statements that use the FROM clause are not supported
 DELETE…JOIN syntax not supported
 Cursors are not supported

 SELECT DISTINCT is supported in SQL Server 2017
 CASE expressions are supported in SQL Server 2017
 APPLY operator is supported in SQL Server 2017
 JSON functions supported in SQL Server 2017

19

37
© SQLskills, All rights reserved.

https://www.SQLskills.com

Steps to Determine if In-Memory OLTP is Viable

 Transaction Performance Analysis Report
 Analyzes existing workload to determine where In-Memory OLTP may help

improve performance
 Table and SP execution statistics are captured
 Identifies incompatibilities
 Check out Ned Otter’s post for an alternate method:

 http://nedotter.com/archive/2017/06/migrating-tables-to-in-memory-oltp/

 Memory Optimization Advisor
 Validates if table can be migrated to use In-Memory OLTP

 Will not make any modifications if there are limiting factors

 Can be used to migrate tables or generate script

 Native Compilation Advisor
 Validates if a stored procedure can be migrated
 Procedure code cannot be migrated via UI

38
© SQLskills, All rights reserved.

https://www.SQLskills.com

Measuring Performance Change

 You need a baseline
 Capture with Query Store, manually, or with a third-party tool

 What metrics do you care about?
 This is what you need to capture

 Nothing else can change
 Not data, not maintenance, not indexes, not one other thing

20

39
© SQLskills, All rights reserved.

https://www.SQLskills.com

Testing In-Memory OLTP

 It is recommended to perform testing in a non-production
environment

 Typical testing challenges exist
 How to generate a comparable workload and/or “busiest” scenario?
 Is it possible to test all related code?

 Isolate changes to one table, or a small set of related tables, for testing
 Implementation (and thus, roll-back) requires an outage; testing is

critical
 Basic steps:

 Capture performance metrics in production environment for an existing
disk-based table and/or related stored procedures

 Restore to a testing environment and create the appropriate In-Memory
objects (i.e., filegroup, table and indexes, stored procedure(s))

 Simulate production workload and capture the same performance metrics

40
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Columnstore
 In-Memory OLTP
 Cardinality Estimator
 Query Store plan forcing / automatic plan correction
 Upgrade Testing

21

41
© SQLskills, All rights reserved.

https://www.SQLskills.com

New Cardinality Estimator

 The Query Optimizer evaluates the cost of one or more plans when
deciding which plan to ultimately execute

 One factor used to determine cost is the number of estimated rows
that will need to be processed for each operator
 This is the cardinality estimate

 The cardinality estimator (CE) component was significantly changed
in SQL Server 2014
 First redesign since SQL Server 7.0

42
© SQLskills, All rights reserved.

https://www.SQLskills.com

Cardinality Estimate issues

 Major red flag to watch for, not just when upgrading to 2014+
 Skewed estimate vs. actual

 Magnification and distortion as we move through the plan tree
 Other symptoms:

 Query performs badly or doesn’t execute at all due to memory error
 Performance may be good sometimes and bad other times

22

43
© SQLskills, All rights reserved.

https://www.SQLskills.com

Cardinality Estimate First Steps

 Key areas to validate
 CE version
 Query
 Execution plan
 Statistics

 Areas to investigate further:
 Missing indexes / missing or stale statistics
 Table variables
 TVF

44
© SQLskills, All rights reserved.

https://www.SQLskills.com

Cardinality Estimator Version in SQL Server 2014

 The new CE will be used in SQL Server 2014 if the database has the
compatibility level set to 120

 If database compatibility level is less than 120, the new CE can be used
on a per-query basis by using the QUERYTRACEON and trace flag 2312
 QUERYTRACEON requires sysadmin permissions
 Can be used with Plan Guides
 Takes precedence over server and session trace flags

 For databases using compatibility level 120, use QUERYTRACEON and
trace flag 9481 to revert to the legacy cardinality estimator

 Databases that are upgraded to, attached to, or restored to a SQL
Server 2014 retain their compatibility level and therefore will use the
legacy CE by default

23

45
© SQLskills, All rights reserved.

https://www.SQLskills.com

Cardinality Estimator Version in SQL Server 2016+

 CE version is determined by the LEGACY_CARDINALITY_ESTIMATION
database scoped setting*
 Database compatibility level is relevant for new CE

 If LEGACY_CARDINALITY_ESTIMATION = ON, then the old CE is used,
regardless of database compatibility level
 Equivalent to using trace flag 9481

 If LEGACY_CARDINALITY_ESTIMATION = OFF, then CE version is
determined by database compatibility level

 Trace flags 9481 and 2312 can still be used to change CE for individual
queries (with QUERYTRACEON hint)

 CE version for tempdb is relevant if you use temporary tables

46
© SQLskills, All rights reserved.

https://www.SQLskills.com

Verifying Cardinality Estimator Version Used

 CardinalityEstimationModelVersion attribute lists what CE was used
 Found in the XML or in the Properties of the plan

 70 = Legacy
 120,130, 140, 150 = New

24

Demo

Testing CE changes with Query Store

48
© SQLskills, All rights reserved.

https://www.SQLskills.com

Upgrade Options

 Test before you upgrade to SQL Server 2014 or higher
 Identify problematic queries and address them prior to upgrading

 Upgrade to SQL Server 2014 or higher without testing
 Keep using the old CE

 Upgrade to SQL Server 2014 or higher without testing
 Use the new CE
 Prepare to fight fires in production

 Upgrading without testing creates a significant risk for your business
 The Importance of Database Compatibility Level in SQL Server

 https://www.sqlskills.com/blogs/glenn/database-compatibility-level-in-sql-
server/

 Avoiding SQL Server Upgrade Performance Issues
 https://www.sqlskills.com/blogs/glenn/avoid-sql-server-upgrade-

performance-issues/

25

49
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Columnstore
 In-Memory OLTP
 Cardinality Estimator
 Query Store plan forcing / automatic plan correction
 Upgrade Testing

50
© SQLskills, All rights reserved.

https://www.SQLskills.com

How Do You Fix a Poorly-Performing Query?

Change code
and/or schema

Add
RECOMPILE

Manually get
the “best” plan

in cache

UPDATE
STATISTICS

Use a plan
guide

Force a plan in
Query Store

26

51
© SQLskills, All rights reserved.

https://www.SQLskills.com

Forcing Plans with Query Store

 Query Store allows you to easily find queries with multiple plans and
force one plan
 Can be done in the UI
 Can be done with T-SQL

 If a plan is no longer optimal, Query Store can continue to use it unless
you remove it

 Monitor failures with Extended Events
 query_store_plan_forcing_failed
 Can also check sys.query_store_plan

 Adding hints changes the query text which creates a new query (and
query_id) in Query Store

Demo

Forcing plans

27

53
© SQLskills, All rights reserved.

https://www.SQLskills.com

Points to Remember

 It may not always be obvious that a plan is forced – check the plan and
Query Store to see if it is

 Query performance can be different across environments for multiple
reasons – including forced plans!

 If object_id changes, a forced plan will no longer be tied to the object
 If an index name changes, a forced plan cannot be used
 Pay attention to forced plans when testing code and schema changes

54
© SQLskills, All rights reserved.

https://www.SQLskills.com

Automatic Plan Correction

 Available in SQL Server 2017+ EE and Azure SQL Databases
 Enabled per database
 Uses Query Store

 Tool to quickly mitigate query performance issues based on
regressions
 Based on CPU change

 Thresholds are not documented, as they may change

28

55
© SQLskills, All rights reserved.

https://www.SQLskills.com

Plan change,
compare

performance

Regression in
performance?

If regressed, force last
known good plan

Monitor to see if plan
is still good

If regression,
recompile, or failed
forcing plan will no

longer be forced

56
© SQLskills, All rights reserved.

https://www.SQLskills.com

Automatic Plan Correction

 Reasons a plan will be un-forced
 Regression
 Recompile due to statistics or schema change
 Failed forcing

 Can use the information captured to make corrections manually
 Stored in sys.dm_db_tuning_recommendations

 Does not persist, snapshot to a table or use XE if you want to retain information

 This DMV is not populated in Enterprise Edition

 Plan forcing is typically not a recommended long-term solution, best
practice is to address reported plan regressions through code/schema
changes

29

Demo

Automatic Plan Correction

58
© SQLskills, All rights reserved.

https://www.SQLskills.com

Can I Trust It?

 It is not perfect, but it has been developed with telemetry from Azure
SQL Database implementations

 Catches severe regressions
 Its ability to recovery from any “bad decision” is highly reliable as

there is continual validation of forced plans and automatic back-off
logic built-in

30

59
© SQLskills, All rights reserved.

https://www.SQLskills.com

Monitoring with Extended Events

 Create an Extended Events session that captures automatic tuning
events, writes to an event_file target, and starts when the instance
starts (always running)
 automatic_tuning_error
 automatic_tuning_plan_regression_detection_check_completed
 automatic_tuning_plan_regression_verification_check_completed
 automatic_tuning_recommendation_expired

60
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Columnstore
 In-Memory OLTP
 Cardinality Estimator
 Query Store plan forcing / automatic plan correction
 Upgrade Testing

31

61
© SQLskills, All rights reserved.

https://www.SQLskills.com

Distributed Replay Utility (DRU)

 Introduced in SQL Server 2012
 DRU is an upgrade tool

 Primary use is helping customers upgrade to the latest version of SQL Server

 Can also be used to examine the impact of hardware, software, and
application changes

 Provides the capability to capture a trace and then replay from
multiple clients (workstations)
 More scalable than Profiler replay as Profiler is limited to replay from a single

client

62
© SQLskills, All rights reserved.

https://www.SQLskills.com

DRU Topology

 Distributed Replay controller
 Only one controller is permitted
 Runs as a Windows service (SQL Server Distributed Replay Controller)
 Orchestrates actions of clients

 Distributed Replay clients
 One or more clients (up to 16) can be used, and together they simulate a

typical workload
 Each runs as a Windows service (SQL Server Distributed Replay Client)
 Use of more than one client requires Enterprise Edition

 Developer Edition only allows one client

 Distributed Replay administration tool
 DReplay.exe is used to talk to controller

32

63
© SQLskills, All rights reserved.

https://www.SQLskills.com

DRU Topology

 Target server
 Hosts a SQL Server instance against which trace data is replayed by clients
 Data about replay performance should be captured against this server

https://technet.microsoft.com/en-
us/library/ff878183(v=sql.130).aspx

64
© SQLskills, All rights reserved.

https://www.SQLskills.com

Order of Events for Replay

 Start a COPY_ONLY full backup
 Start replay trace to capture events

 This will continue to run after the backup completes; how long is
determined by the workload you’re trying to capture

 Stop trace and filter out events from prior to backup completion
 Aligning the backup and trace reduces the likelihood of problems related to

constraint violations

 Restore database to another instance (Test/QA/Dev)
 Provide db_owner to DR Client and Controller accounts

 Preprocess trace file(s) using DReplay
 Replay trace file(s) using one or more clients

 Capture performance data on the instance where the database is restored
(e.g. trace, PerfMon)

33

65
© SQLskills, All rights reserved.

https://www.SQLskills.com

DRU Configuration Files

 Controller File
 DReplayController

 Specify logging level

 Client Configuration File
 DReplayClient

 Specify controller, working and result directories, logging level

 Preprocess Configuration File
 DReplay.Exe.Preprocess

 Specify whether to include system session activity
 Specify whether to reduce idle time

 Replay Configuration File
 DReplay.Exe.Replay

66
© SQLskills, All rights reserved.

https://www.SQLskills.com

Replay Settings

 DRU provides the option of replaying the trace in two modes:
 Synchronization mode
 Stress mode

 In synchronization mode, the replay occurs in the order of the original
events, and is synchronized across all the clients

 Stress mode, which is the default, can be used to drive the workload,
and there is no synchronization across clients
 Can decrease “think time” and “connect time” options to dial back the

workload
 Default value for both ThinkTimeScale and ConnectTimeScale is 100, which is a

percentage

 Can also change whether connection pooling is used, and number of
threads per replay client (default is 255, max is 512)

34

67
© SQLskills, All rights reserved.

https://www.SQLskills.com

Data Collection During Replay

 Previously a manual effort
 Could use ReadTrace to compare captured trace files

 Database Experimentation Assistant released in Fall 2016
 Current release is version 2.6 (March 2020)
 Provides a UI to capture and replay a trace/XE

 Trace is replayed against original (or comparable) server and new server

 Also provides workload analysis reports
 Compares performance between the executions

 Source versions are SQL Server 2005 and higher
 Target versions are SQL Server 2012 and higher

68
© SQLskills, All rights reserved.

https://www.SQLskills.com

Query Tuning Assistant

 Available in 18.x version of SSMS
 Created to help with testing changes in compatibility level
 Uses Query Store to capture workload performance metrics and then

compares and analyzes the data
 Tests regressed queries with different hints, including

FORCE_LEGACY_CARDINALITY_ESTIMATION

 Requires db_owner permission

35

69
© SQLskills, All rights reserved.

https://www.SQLskills.com

Order of Events for QTA

 Restore a backup of the database
 Initiate QTA from the database menu

 Configure how long to collect data (minimum is 1 day) and Query Store
settings

 Start the workload and let run for the testing duration
 This captures a baseline

 When the collection time completes, upgrade the database
compatibility level

 Run the workload again
 You can monitor regressed queries during this time

 When the workload has finished, queries that regress are identified
and can then be selected for experimentation

 After experimentation, queries that can optimized are listed with the
option to implement a plan guide to stabilize performance

70
© SQLskills, All rights reserved.

https://www.SQLskills.com

New Features = Immediate Win?

 Columnstore
 In-Memory OLTP
 Cardinality Estimator
 Query Store plan forcing / automatic plan correction

36

71
© SQLskills, All rights reserved.

https://www.SQLskills.com

Key Takeaways

 New features can provide a method to improve and/or stability query
performance

 Columnstore and In-Memory OLTP can provide a performance boost
for the right workload, testing is essential

 The new Cardinality Estimator frequently improves query
performance, but regressions are definitely possible
 Testing prior to upgrading is critical

 Beyond capturing query performance data, Query Store can be used
to force plans (temporary solution) manually and automatically via
Automatic Plan Correction

72
© SQLskills, All rights reserved.

https://www.SQLskills.com

Additional Resources

 Pluralsight
 SQL Server: Automatic Tuning in SQL Server 2017 and Azure SQL Database

 https://bit.ly/2JUmONZ

 Blog posts
 http://www.nikoport.com/columnstore/
 https://www.sqlskills.com/blogs/jonathan/installing-and-configuring-sql-

server-2012-distributed-replay/
 https://www.sqlskills.com/blogs/jonathan/performing-a-distributed-replay-

with-multiple-clients-using-sql-server-2012-distributed-replay/

37

73
© SQLskills, All rights reserved.

https://www.SQLskills.com

Additional Resources

 Microsoft Docs
 https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-

oltp/migrating-to-in-memory-oltp
 https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-

oltp/estimate-memory-requirements-for-memory-optimized-tables

 Whitepapers
 SQL Server In-Memory OLTP and Columnstore Feature Comparison

 https://download.microsoft.com/download/D/0/0/D0075580-6D72-403D-8B4D-
C3BD88D58CE4/SQL_Server_2016_In_Memory_OLTP_and_Columnstore_Compa
rison_White_Paper.pdf

 SQL Server In-Memory OLTP Internals for SQL Server 2016
 https://docs.microsoft.com/en-us/sql/whitepapers/sql-server-in-memory-oltp-

internals-for-sql-server-2016

 In-Memory OLTP – Common Workload Patterns and Migration
Considerations (2014)
 https://msdn.microsoft.com/library/dn673538.aspx

74
© SQLskills, All rights reserved.

https://www.SQLskills.com

Review

 Columnstore
 In-Memory OLTP
 Cardinality Estimator
 Query Store plan forcing / automatic plan correction
 Distributed Replay

38

Questions?

