
1

SQLskills Immersion Event
IEPTO2: Performance Tuning and Optimization

Module 9: Index Analysis
Kimberly L. Tripp

Kimberly@SQLskills.com

2
© SQLskills, All rights reserved.

https://www.sqlskills.com

Overview

 Nonclustered indexes: key to better performance
 Indexing for performance:

 During design
 During QA
 In production

 Key production strategy – an ordered approach:
1. Index cleanup
2. Index health
3. Missing indexes

2

3
© SQLskills, All rights reserved.

https://www.sqlskills.com

Nonclustered Indexes: Key to Better Performance

 In a row-based indexing strategy performance hinges on your choice
of nonclustered indexes:
 Indexing strategies are extremely challenging

 Users lie
 Workload specific

 Data modifications are impacted by indexes (indexes add overhead to
INSERTs/UPDATEs/DELETEs)

 The type and frequency of the queries needs to be considered
 This can change over time
 This can change over the course of the business cycle

 Need to have an understanding of how SQL Server works in order to create the
“RIGHT” indexes, you CANNOT just guess!

 To do a good job at tuning you must:
 Know your data
 Know your workload
 Know how SQL Server works!

4
© SQLskills, All rights reserved.

https://www.sqlskills.com

Indexing for Performance: At Design

 First and foremost: choose a GOOD clustering key
 Create your primary keys and unique keys
 Create your foreign keys

 Manually index your foreign keys with nonclustered indexes

 Create any nonclustered indexes needed to help with highly selective
queries (lookups are OK for highly selective queries)

 STOP: this is your “design” base
 Add indexes slowly and iteratively over time while learning and

understanding your workload as well as query priorities and always
re-evaluate if/when things change!

3

5
© SQLskills, All rights reserved.

https://www.sqlskills.com

Indexing for Performance: At QA

 While testing primary workload characteristics monitor query
performance:
 By duration and IO (at a minimum)
 Review the cumulative costs of frequently executed queries

 sys.dm_exec_query_stats (also review query_hash)
 sys.dm_exec_procedure_stats (this is cumulative)

 Identify key performance problems
 Consider wider indexes through testing / analysis

 Be sure to evaluate the impact to OLTP as wider indexes are added
 Be sure to evaluate the disk / memory costs for wider indexes

6
© SQLskills, All rights reserved.

https://www.sqlskills.com

Indexing for Performance: In Production

1. Make sure you don’t have any “dead weight”
 Remove duplicate indexes
 Consider the removal or consolidation of redundant indexes

2. Make sure you have a good maintenance strategy
 How are you analyzing for fragmentation?

 Use a limited scan (no need for “sampled” or “detailed”)

 Are you dealing with statistics appropriately?
 Rebuilding indexes updates the statistics of the rebuilt index with the equivalent of a

full scan but does not update other statistics
 Reorganzing indexes does NOT update statistics at all
 Do you have any other statistics (column-level statistics?)

3. Only after steps 1 and 2 are done can you add indexes slowly and
iteratively over time while learning and understanding your ACTUAL
workload as well as query priorities. And, always re-evaluate if / when
things change!

4

7
© SQLskills, All rights reserved.

https://www.sqlskills.com

(1) Remove Unused Indexes
DMVs Don’t Tell You Everything…

 Removing redundant/duplicate indexes: SQL Server allows you to
create as many useless indexes as you like…

 Duplicate indexes can still show as used
 MUST review your indexes manually

 Don’t forget INCLUDEd columns (in 2005) or filtered indexes (in 2008)
 sp_helpindex doesn’t show these columns
 Use my updated version of sp_helpindex (blog category: sp_helpindex

rewrites) to get better information and determine if one index really is
redundant/duplicate

 Kimberly’s blog post: Removing duplicate indexes (http://bit.ly/rusI9U)

 Don’t rely on sys.dm_db_index_usage_stats alone

8
© SQLskills, All rights reserved.

https://www.sqlskills.com

(1) Remove Unused Indexes
DMVs Don’t Tell You Everything…

 In addition to completely duplicate indexes, must prune out the
redundant indexes…

 Pruning existing indexes is not quite as simple as removing all left-
based subsets:
 It’s true that a query using an index on LastName alone COULD use an index

on LastName, Firstname OR an index on LastName, Firstname, MiddleInitial
but, always be careful of how much larger the indexes are and the type of
queries using them

 Should you drop indexes that are left-based subsets of others?
 Typically yes BUT, consider the width of the additional columns
 If the additional column(s) are relatively wide and only needed for a couple of

queries whereas the narrower version is used by a lot of queries, you might want
both!

5

9
© SQLskills, All rights reserved.

https://www.sqlskills.com

(1) Remove Unused Indexes
What Do the DMVs Tell You?

 Verify index usage with sys.dm_db_index_usage_stats
 Tracks the following and the date/time of their last occurrence:

 Seeks (a singleton lookup or range scan)
 Scans (something like a 'select *')
 Lookups (a bookmark lookup)
 Updates (an insert, update, or delete)

 The cache is flushed at shutdown as well as when
 Entries for all indexes in a database are removed when the database is

closed (via AUTOCLOSE (if enabled)), taken offline, or detached
 There’s no way to manually flush the cache (but offline/online works…)
 An object’s index usage stats are cleared when the object is rebuilt UNTIL:

 SQL Server 2012 SP3 + CU3 / SQL Server 2014 SP2 / SQL Server 2016

 Persist this data and analyze over business cycle

10
© SQLskills, All rights reserved.

https://www.sqlskills.com

(1) Dropping an Index
What Could Go Wrong?

 Queries that use index hints will ERROR if the index no longer exists
 This is the reason for why SQL Server allows duplicate indexes to be created

in general…

 Plans guide might no longer work
 They’re just invalidated, a new plan will be used

 Plans could change
 This could be good… or bad?!

6

11
© SQLskills, All rights reserved.

https://www.sqlskills.com

(2) Verify Health of Existing (and Useful) Indexes…

 Fragmentation can mean a lot of things (completely overloaded term) and
not an entirely simple thing to address…why?

 Yes, solid state can remove the excess cost of random I/O but
fragmentation isn’t JUST about I/O
 Table size and usage patterns

 The costs of splits on logging, cache, and performance!
 Impact to availability – can you use an online operation?

 ALTER INDEX…REBUILD…WITH (ONLINE = ON)
 Not if the index has a new LOB column in it (fixed in 2012)

 NOT if the table still has a LEGACY LOB type (text / ntext / image) online operations are not allowed

 Not if you try to rebuild only a single partition (fixed in 2014)
 ALTER INDEX…REORGANIZE (always online)

 Reorganizing always uses ‘full’ logging but the amount of log information
generated will depend on how much fragmentation exists

 There are trade-offs between rebuilding and reorganizing in terms of log space,
disk space, run-time, impact to tempdb and even benefit…

 Check out Paul’s Pluralsight course: SQL Server: Index Fragmentation Internals,
Analysis, and Solutions

12
© SQLskills, All rights reserved.

https://www.sqlskills.com

(2) Verify Health of Existing (and Useful) Indexes…

 Verify structural details (levels/fragments/density) from
sys.dm_db_index_physical_stats
 Can run in one of three modes:

 LIMITED (default): the logical (left to right) order of the pages (as defined by the index keys) is
not the same as the physical order in which the pages are allocated

 SAMPLED: run in detailed mode for tables < 10000 pages but for tables with >= 10000 pages,
“samples” every 100th page to get a picture of the index fragmentation (faster but less
accurate for some stats)

 DETAILED: slowest, but shows ALL structural and fragmentation details
 Tracks the following:

 avg_fragmentation_in_percent: overall health of the index…this number should be very low
and it should not change rapidly

 avg_page_space_used_in_percent: overall health of the pages…this should be relatively
high but might have some freespace (fillfactor) that’s specifically been added in an attempt
to reduce overall fragmentation

 Check out our blog post categories on Indexes:
Kimberly: https://www.sqlskills.com/blogs/Kimberly/category/Indexes.aspx
Paul: https://www.sqlskills.com/blogs/paul/category/Indexes-From-Every-
Angle.aspx

7

13
© SQLskills, All rights reserved.

https://www.sqlskills.com

(2) Verify Health of Existing (and Useful) Indexes…

 Verify operational details (stats / waits / overflow) from
sys.dm_db_index_operational_stats
 Tracks the following:

 Leaf_X_count (essentially rows inserted, deleted or updated – in the leaf level of the index)
 nonleaf_X_count (this indicates that pages were added/removed in the b-tree…this might

indicate heavy fragmentation but you MUST review the index physical stats to be sure)
 Significant overflow activity could indicate poor IO patterns
 row_lock_wait_in_ms and page_lock_wait_in_ms show the TOTAL amount of blocking on

these structures – this could indicate poor index choices and/or a need to change
reader/writer isolation options

 page_io_latch_wait_count and page_io_latch_wait_in_ms show the total physical I/Os that
were necessary to access the data

 The cache is flushed when the object falls out of metadata cache… this cannot
be predicted (per se) but “active” objects will be available in this DMV when
queried

 Consider using a custom data collection set in Data Collection to persist
snapshots of this (and possibly other) DMVs for better trend analysis

hidden slide
w/extra details

14
© SQLskills, All rights reserved.

https://www.sqlskills.com

(3) Are You Missing Any Indexes?

 Have you tried other options?
 Ask DTA what it thinks?
 Ask SQL Server what it thinks?

 SQL Server 2005
 DMVStats
 Performance Dashboard Reports (SP2)
 RML Utilities from PSS

 Both SQL Server 2005+
 DMV queries
 Other resources/blogs/sites…

 SQL Server 2008+
 [Performance] Data Collector

 THIRD-PARTY TOOLS!

8

15
© SQLskills, All rights reserved.

https://www.sqlskills.com

(3) Are You Missing Any Indexes?
Ask SQL Server What it Thinks…

 sys.dm_db_missing_index_group_stats (probably the most detailed):
 user_seeks, user_scans
 last_user_seek and last_user_scan are both datetime
 avg_total_user_cost: higher costs give relative numbers to determine which are more

“costly” to the system
 avg_user_impact: the improvement (in terms of percent that the user should see from

the index addition)

 sys.dm_db_missing_index_groups
 Many to many relationship table to tie together the index details and the usage stats

(index group stats is effectively the index usage stats for these needed indexes)

 sys.dm_db_missing_index_details
 Details the table, key columns and included columns that you should consider for

these indexes…

 NOTE: The important part isn’t the query, it’s what you do with the results
(evaluation, testing, consolidation)

16
© SQLskills, All rights reserved.

https://www.sqlskills.com

(3) Asking the Tools

 USE the tools!
 STATISTICS IO
 Showplan/missing index DMVs
 Database [Engine] Tuning Advisor

 BEWARE of the limitations of the tools!
 Missing index DMVs (and therefore showplan) only tune the plan that was

executed; they do not “hypothesize” about alternatives (like DTA does)
 All of the index recommendation from tools tend to go for “the best” choice

rather than good enough choices
 NONE of the tools do index consolidation…

 Resources:
 Search “Bart Duncan Missing”
 Glenn’s DMV toolkit
 A bit of searching as lots of good stuff out there

9

17
© SQLskills, All rights reserved.

https://www.sqlskills.com

Summary: Indexing for Performance

 Extremely challenging
 Users lie
 Workload specific

 Data modifications are impacted by indexes (indexes add overhead to
INSERTs/UPDATEs/DELETEs)

 The type and frequency of the queries needs to be considered
 This can change over time
 This can change over the course of the business cycle

 Need to have an understanding of how SQL Server works in order to create
the “RIGHT” indexes, you CANNOT just guess!

 To do a good job at tuning you must:
 Know your data
 Know your workload
 Know how SQL Server works!

18
© SQLskills, All rights reserved.

https://www.sqlskills.com

Key Takeaways

 Actually go back and DO this… so many people who have attended
IEPTO1 actually LOVE this module as a reminder to do all of the things
that they haven’t had time to do from IEPTO1

 At a minimum
 Check for duplicates – this is easy to do and will help you save time in data

modifications and maintenance, space in the database as well as in backups
 Have a good maintenance plan in place

 Big step 1
 Find your top 10 tables (in size) for your top 10 databases

 Consolidate indexes and reduce [disable, then later drop] some of “similar”
indexes

 Analyze query and procedure performance – find those that have the highest
cumulative cost (looking for query classes [query_hash] and procedure “total time
/ total CPU”)

 As time allows, repeat this for the next set of large tables and possibly even
smaller ones (just to clean things up)

10

19
© SQLskills, All rights reserved.

https://www.sqlskills.com

Review

 Nonclustered indexes: key to better performance
 Indexing for performance:

 During design
 During QA
 In production

 Key production strategy – an ordered approach:
1. Index cleanup
2. Index health
3. Missing indexes

