
1

SQLskills Immersion Event
IEPTO2: Performance Tuning and Optimization

Module 3: Wait Statistics
Paul S. Randal

Paul@SQLskills.com

2
© SQLskills, All rights reserved.

https://www.SQLskills.com

Server Architecture

Deadlock

Monitor
Hosting

API
Resource

Monitor

Lazy

Writer

D
B

C
C

SQLOS

Scheduler

Monitor

Storage Engine

Protocols

Memory

Manager

Buffer

Pool
I/O

Query Processor
Parser and Algebrizer

Query Optimizer

Plan Cache

Query Execution

Access Methods

Pages/Records/Heaps/Indexes/LOB/Bulk Load/Versioning/Allocation/Sort

Transaction Services

Transactions/Files/FGs/DBs/Logging/Recovery/Backup/Restore/DBM/AGs

M
e

t
a

d
a

t
a

S
Q

LO
S

 A
P

I

SQLOS API

Lock

Manager

Thread

Scheduling

2

3
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 How thread scheduling works in SQL Server
 Fundamentals of waits, latches, and spinlocks
 Investigating waits, latches, and spinlocks using DMVs
 Common scenarios, including:

 Data and log file I/O
 Latch contention in tempdb and user tables
 Parallelism
 Quantum exhaustion

4
© SQLskills, All rights reserved.

https://www.SQLskills.com

Don’t Assume Symptom = Root Cause

 Performance troubleshooting is not an exact science
 The same symptoms can result from many root causes

 For example, how many different things could cause I/O latencies?
 Overloaded/incorrectly-configured I/O subsystem
 Synchronous I/O-subsystem mirroring
 Buffer pool memory pressure

 From plan cache bloat
 From external Windows pressure
 From an ad hoc query
 From an inefficient query plan

 Network latency
 And more…

3

5
© SQLskills, All rights reserved.

https://www.SQLskills.com

Interpreting the Data

 Don’t do ‘knee-jerk’ performance troubleshooting
 Work through the data to see what may be the root cause
 You’ll end up spending less time overall

 Proficiency in using wait statistics data comes from:
 Retrieving the data correctly
 Understanding what common wait types mean
 Recognizing patterns
 Avoiding inappropriate Internet advice
 Practice!

 Even better is to have a series of snapshots of wait statistics over time
 Allows identification of changes and the time of the change
 Allows trending
 E.g., Michael Swart’s GitHub to trend/chart at https://sqlskills.com/p/122

 Remember: not as valuable when SQL Server is running well

6
© SQLskills, All rights reserved.

https://www.SQLskills.com

What are Waits?

 The term ‘wait’ means that a thread running on a processor cannot
proceed because a resource it requires is unavailable
 It has to wait until the resource is available

 The resource being waited for is tracked by SQL Server
 Each resource maps to a wait type

 Example resources that may be unavailable:
 A lock (LCK_M_XX wait type)
 A data file page in the buffer pool (PAGEIOLATCH_XX wait type)
 Results from part of a parallel query (CXPACKET wait type)
 A latch (LATCH_XX wait type)

4

7
© SQLskills, All rights reserved.

https://www.SQLskills.com

Page Read Example

 Hash list of BUF structures per database, ordered by page ID, for quick
access and determining if a particular page is in memory or not

 If requested page not in memory, thread starts asynchronous physical
read and has to wait for it to complete (PAGEIOLATCH_SH or _EX)

1

2

3

8
© SQLskills, All rights reserved.

https://www.SQLskills.com

Locking Example

 If the lock isn’t available, the thread enters itself on the lock’s pending
queue and has to wait (LCK_M_IX)

Page

IX lock requested by SPID 62

Lock resource
Granted

List

Pending

Queue

61 : S 62 : IX

58 : IS

127 : IS

54 : IS

5

9
© SQLskills, All rights reserved.

https://www.SQLskills.com

Why are Resources Unavailable?

 Some other thread is holding the resource, or the ‘resource’ needs
some process to occur (e.g. page read from disk)

 Examples:
 For a LCK_M_XX wait, another thread holding an incompatible lock
 For a PAGEIOLATCH_XX wait, the I/O subsystem needs to complete the I/O
 For a CXPACKET wait, another thread needs to complete its portion of work
 For a LATCH_XX wait, another thread holding an incompatible latch

 Resource waits are investigated using DMVs, performance counters,
and other tools

10
© SQLskills, All rights reserved.

https://www.SQLskills.com

Wait Statistics Analysis

 Very powerful method to get initial direction on a problem
 Avoid flailing and investigating the wrong problem
 Can also show problems that are not obvious

 Whitepaper
 SQL Server Performance Tuning Using Wait Statistics: A Beginners Guide
 (Resource links at end of deck)

 Comprehensive waits and latches library
 https://www.SQLskills.com/help/waits

 Most commercial performance monitoring tools capture and show
wait statistics
 Many free tools also do this, such as sp_whoisactive

 Various releases of SQL Server have provided wait statistics views

6

11
© SQLskills, All rights reserved.

https://www.SQLskills.com

Thread Scheduling

 SQL Server performs its own thread scheduling
 Called non-preemptive scheduling
 More efficient for SQL Server than relying on Windows scheduling
 Performed by the SQLOS layer of the Storage Engine

 Each processor core (whether logical or physical) has a scheduler
 A scheduler is responsible for managing the execution of work by threads
 Schedulers exist for user threads and for internal operations
 Use the sys.dm_os_schedulers DMV to view schedulers

 When SQL Server has to call out to the OS, it must switch the calling
thread to preemptive mode so the OS can interrupt it if necessary

12
© SQLskills, All rights reserved.

https://www.SQLskills.com

How Many Threads?

 Startup calculation to determine the maximum number of threads for
the thread pool, although a much smaller number created initially

 E.g. my laptop with 8 cores has a maximum of 576 threads
 Can be changed using ‘max worker threads’ sp_configure option
 The thread pool will dynamically grow and shrink as needed

logical cores # threads

1 (or <2GB mem) 256 (only on 2017+)

<= 4 512

> 4 and <= 64 512 + ((cores – 4) * 16)

> 64 512 + ((cores – 4) * 32)

7

13
© SQLskills, All rights reserved.

https://www.SQLskills.com

Components of a Scheduler

 All schedulers are composed of three ‘parts’

 Threads transition around these parts until their work is complete

Processor

Waiter

List

Runnable

Queue

14
© SQLskills, All rights reserved.

https://www.SQLskills.com

Schedulers in SQL Server

 One scheduler per logical or physical processor core
 Plus some extra ones for internal tasks and the Dedicated Admin Connection

 For example, for a server with four physical processor cores, with
hyper-threading enabled, there will be eight user schedulers

Processor

Waiter

List

Runnable

Queue

Processor

Waiter

List

Runnable

Queue

Processor

Waiter

List

Runnable

Queue

Processor

Waiter

List

Runnable

Queue

Processor

Waiter

List

Runnable

Queue

Processor

Waiter

List

Runnable

Queue

Processor

Waiter

List

Runnable

Queue

Processor

Waiter

List

Runnable

Queue

8

15
© SQLskills, All rights reserved.

https://www.SQLskills.com

Thread States

 A thread can be in one of three states when being actively used as
part of processing a query

 RUNNING
 The thread is currently executing on the processor

 SUSPENDED
 The thread is currently on a Waiter List waiting for a resource/operation

 RUNNABLE
 The thread is currently on the Runnable Queue waiting to execute on the

processor

 Threads transition between these states until their work is complete

16
© SQLskills, All rights reserved.

https://www.SQLskills.com

Transition: RUNNING to SUSPENDED

 A thread continues executing on the processor until it must wait for a
resource to become available
 The thread’s state changes from RUNNING to SUSPENDED
 The thread moves to a Waiter List (on the scheduler or for a resource)
 This process is called being ‘suspended’

SPID 60: PAGEIOLATCH_SHProcessor

Waiter

List

Runnable

Queue

SPID 60: RUNNING

9

17
© SQLskills, All rights reserved.

https://www.SQLskills.com

The Waiter List

 The “Waiter List” is set of threads that are suspended on that
scheduler
 I/O and timer-task waiter lists for the scheduler
 Pending queues for other resources (e.g. locks, latches)

 Any thread can be notified at any time that the resource it is waiting
for is now available

 No limit to how long a thread remains on a waiter list
 Although execution timeouts or lock timeouts may take effect

 No limit to how many of a scheduler’s threads may be waiting
 The sys.dm_os_waiting_tasks DMV shows which threads are currently

waiting and what they are waiting for

18
© SQLskills, All rights reserved.

https://www.SQLskills.com

Special Case: Quantum Exhaustion

 If a thread does not need to wait for a resource, it will continue
executing until its quantum is exhausted
 Thread quantum is fixed at 4 milliseconds and cannot be changed

 If this occurs, thread moves to bottom of the Runnable Queue
 The thread’s state changes from RUNNING to RUNNABLE

Processor

Waiter

List

Runnable

Queue

SPID 60: RUNNABLESPID 60: RUNNING

SOS_SCHEDULER_YIELD

10

19
© SQLskills, All rights reserved.

https://www.SQLskills.com

Transition: SUSPENDED to RUNNABLE

 A thread continues to wait until it is told that the resource is available
 The thread’s state changes from SUSPENDED to RUNNABLE
 The thread moves to the Runnable Queue
 This process is called being ‘signaled’

Processor

Waiter

List

Runnable

Queue

SPID 60: RUNNABLESPID 60: PAGEIOLATCH_SH

20
© SQLskills, All rights reserved.

https://www.SQLskills.com

Page Read Example

 Thread is suspended waiting for the asynchronous physical read to
complete, but how does it know when that is?
 It can’t run any code to check!

 When it issued the I/O, it essentially added itself to the scheduler’s list
of threads waiting for I/Os to complete

 Another thread on the scheduler checks the list and signals any
threads whose I/Os have completed

11

21
© SQLskills, All rights reserved.

https://www.SQLskills.com

62 : IX

Locking Example

 Thread dropping a lock checks whether any other locks can be
granted, does that, and signals the waiting thread

Page

Lock resource
Granted

List

Pending

Queue

61 : S 62 : IX

58 : IS

127 : IS

54 : IS

22
© SQLskills, All rights reserved.

https://www.SQLskills.com

The Runnable Queue

 Scheduling code chooses which thread to execute next
 When the currently executing thread is suspended or exhausts its quantum

 The Runnable Queue is mostly a First-In-First-Out (FIFO) queue
 Threads enter queue at bottom and progress to top
 Special case to avoid unfair scheduling in 2016+

 E.g. two threads where T1 can use entire 4ms, but T2 only 0.5ms
 Pre-2016, T1 will get 8x the CPU time of T2
 2016+: T1 and T2 will get roughly equal CPU time
 See blog post at https://sqlskills.com/p/077
 This helps with things like the log writer background threads

 Special case with Resource Governor High/Medium/Low priority workload
groups, but rarely used

 The size of the Runnable Queue can be seen from the
runnable_tasks_count column in sys.dm_os_schedulers

12

23
© SQLskills, All rights reserved.

https://www.SQLskills.com

Transition: RUNNABLE to RUNNING

 The thread waits on the Runnable Queue until it is chosen as the next
thread when the processor becomes available
 The thread’s state changes from RUNNABLE to RUNNING
 2019+: it might move to a different scheduler in the same NUMA node

Processor

Waiter

List

Runnable

Queue

SPID 60: RUNNINGSPID 60: RUNNABLE

24
© SQLskills, All rights reserved.

https://www.SQLskills.com

Pulling It All Together

Processor

Waiter

List

Runnable

Queue

SPID 60: PAGEIOLATCH_SHSPID 60: RUNNING

SPID 71: RUNNABLESPID 71: IO_COMPLETIONSPID 56: RUNNINGSPID 56: RUNNABLE

SPID 94: RUNNABLE SPID 58: CXPACKET

13

25
© SQLskills, All rights reserved.

https://www.SQLskills.com

Wait Times Definition (1)

 Total time spent waiting:
 Known as ‘wait time’
 Time spent transitioning from RUNNING, through SUSPENDED, to

RUNNABLE, and back to RUNNING

 Time spent waiting for the resource to be available:
 Known as ‘resource wait time’
 Time spent on a Waiter List with state SUSPENDED

 Time spent waiting to get the processor after resource is available:
 Known as ‘signal wait time’
 Time spent on the Runnable Queue with state RUNNABLE

 Wait time = resource wait time + signal wait time

26
© SQLskills, All rights reserved.

https://www.SQLskills.com

Wait Times Definition (2)

Processor

Waiter

List

Runnable

Queue

SPID 60: SUSPENDEDSPID 60: RUNNING

SPID 60: RUNNABLESPID 60: RUNNINGSPID 60: RUNNABLE

Resource Wait TimeSignal Wait Time

Wait Time = Resource Wait Time + Signal Wait Time

SPID 60: SUSPENDED

14

27
© SQLskills, All rights reserved.

https://www.SQLskills.com

sys.dm_os_waiting_tasks DMV

 This DMV shows all threads that are currently suspended
 Think of it as the ‘what is happening right now?’ view of a server
 Most useful information this DMV provides:

 Session ID and execution context ID of each thread
 Wait type for each suspended thread
 Description of the resource for some wait types

 E.g. for locking wait types, the lock level and resource is described

 Wait time for each suspended thread
 If the thread is blocked by another thread, the ID of the blocking thread

 Useful to find what’s at the head of a blocking chain
 Can show non-intuitive patterns

 Usually very first thing to run when approaching a ‘slow’ server
 The data is more useful when joined with other DMV results

28
© SQLskills, All rights reserved.

https://www.SQLskills.com

sys.dm_os_wait_stats DMV

 This DMV shows aggregated wait statistics for all wait types
 Aggregated since the server started or the wait statistics were cleared

 Think of this as the ‘what has happened in the past?’ view of a server
 This DMV provides:

 The name of each wait type
 The number of times a wait has been for this wait type
 The aggregate overall wait time for all waits for this wait type
 The maximum wait time of any wait for this wait type
 The aggregate signal wait time for all waits for this wait type

 Some math is required to make the results useful
 Calculating the resource wait time and averages

15

29
© SQLskills, All rights reserved.

https://www.SQLskills.com

Additional Sources of Wait Info

 sys.dm_exec_session_wait_stats added in 2016
 Gives all waits for the entire session, not per batch, so be careful
 When connection pooling, clears wait info when connection reset

 Actual query execution plan contains wait info in 2016 SP1+
 All waits encountered by the execution
 Look in Properties of left-most operator

 Must be using 2016 SP1 or higher SSMS

 Look in plan XML for the <waitstats> node
 Not accurate with parallel plan

 Query store captures wait statistics
 Aggregated into groups, not individual wait types
 See sys.dm_db_query_store_wait_stats

30
© SQLskills, All rights reserved.

https://www.SQLskills.com

Collecting Waits on Azure SQL Database

 sys.dm_os_wait_stats gives stats for the container the Azure SQL
Database is in, so do not use it

 Use sys.dm_db_wait_stats for waits for just the database

 Tim Radney explains how to get it working here:
 https://sqlskills.com/p/078

16

31
© SQLskills, All rights reserved.

https://www.SQLskills.com

Filtering Benign Waits

 An extremely important point to bear in mind is that waits ALWAYS
occur inside SQL Server
 I.e. just because waits exist does not mean there is a perf problem

 Rather than looking at all waits, most useful is to focus on highly
prevalent wait types
 More processing of the sys.dm_os_wait_stats results is required
 Common method is to show the top 95% of all waits by wait time

 Some wait types are almost always benign and can be safely ignored
 Some have pathological, very rare cases where they can be problematic

 For example, the WAITFOR wait type
 Only occurs when a WAITFOR DELAY statement is executed
 When filtering the top 95% of waits by total wait time, not filtering out this

wait can badly skew the results

32
© SQLskills, All rights reserved.

https://www.SQLskills.com

What’s Relevant?

 Just because there are waits, does not mean they are the problem
 Look for actionable items and filter out things like background tasks
 Look at the demo code to see what I mean

 Need to identify the top, relevant waits and then drill in
 Example:

 100,000 waits for LCK_M_S over 8 hours
 Is it a potential problem?
 No, if over 8 hours total wait time for the LCK_M_S locks was only 50s

altogether, each wait is only 0.5ms
 Yes, if *each* LCK_M_S wait was for 50s

17

Demo

Simple example: waits DMVs and filtering

34
© SQLskills, All rights reserved.

https://www.SQLskills.com

Storing Wait Statistics

 Capturing wait statistics information over time allows:
 Trending
 Point-in-time analysis to see when a problem started to occur

 Simple method:
 Use sys.dm_os_wait_stats demo script and add a GETDATE () call
 Store the results in a table
 Create SQL Agent job to capture the wait statistics every hour or so
 Create another SQL Agent job to purge wait statistics older than a month

18

35
© SQLskills, All rights reserved.

https://www.SQLskills.com

Methodology (1)

 Gather information about exactly when the performance problem
arose and the user-visible characteristics of the problem

 Gather information about what changed before the problem arose
 Is the problem still happening?
 Examine any historical data sets from before the change and correlate

through the time the problem arose
 Look to see how the pattern of waits changes over time

 Examine the output from sys.dm_os_waiting_tasks/dm_os_wait_stats
 What is happening on the server right now?
 What has happened in the past?

36
© SQLskills, All rights reserved.

https://www.SQLskills.com

Methodology (2)

 Look at the top 3-4 relevant waits
 If LATCH_XX is present, examine the output from sys.dm_os_latch_stats

 Avoid the temptation to knee-jerk and equate symptoms with the
root-cause

 Gather further info from relevant sources to pin-point problem
 DMVs, query plans, performance counters, code analysis
 Try one solution to see if that solves the problem

 Repeat analysis, etc.

19

37
© SQLskills, All rights reserved.

https://www.SQLskills.com

Using Extended Events

 When a wait starts and ends, the sqlos.wait_info event fires
 Captures similar information to sys.dm_os_wait_stats
 Also the sqlos.wait_completed event added in SQL Server 2014

 Note: has same resource description as DMV from SQL Server 2016 – very useful!

 For preemptive waits, the sqlos.wait_info_external event fires
 Used when a thread is waiting for a call out to the OS and has to switch from

non-preemptive to preemptive scheduling

 Using the Extended Events system allows:
 Capturing of all wait types for a single operation
 Monitoring for specific wait types occurring
 Advanced analysis of SQL Server internals

38
© SQLskills, All rights reserved.

https://www.SQLskills.com

What are Latches?

 A latch is a synchronization mechanism between threads
 Many people equate latches with locks, but they are quite different

 A latch protects access to an in-memory data structure
 Whereas a lock protects transactional consistency

 Latches are lightweight and are held only for a short time
 Whereas a lock may be held until the end of a transaction

 Latches cannot be controlled by SQL Server users
 Whereas locks can be controlled with hints and configuration options

 Latches have a variety of modes, equating to the level of access to the
in-memory data structure that is required
 E.g. an EX latch is required to change a data structure, and a SH latch is

required to read most data structures
 This is similar to the modes that a lock can have

 SQL Server tracks latch wait times just like other waits

20

39
© SQLskills, All rights reserved.

https://www.SQLskills.com

Types of Latches

 There are three types of latches:
 Latches waiting for data file pages to be read from disk into memory

 Manifest as PAGEIOLATCH_XX waits

 Latches for access to in-memory data file pages
 Manifest as PAGELATCH_XX waits

 Latches for access to all other data structures
 Manifest as LATCH_XX waits

 Examples of non-page latches:
 FGCB_ADD_REMOVE
 ACCESS_METHODS_HOBT_VIRTUAL_ROOT

40
© SQLskills, All rights reserved.

https://www.SQLskills.com

B-tree Page Split Example

NextPrev

Virtual

Root

LATCH

(ACCESS_METHODS_

HOBT_VIRTUAL_ROOT)

LOCK

PAGELATCH

PAGELATCH

PAGELATCHFrom slide deck by

Thomas Kejser

(with permission)

21

41
© SQLskills, All rights reserved.

https://www.SQLskills.com

Latch Contention

 Just like with locks, latches can be a source of contention
 This means that what appears to be traditional blocking involving locks may

actually be blocking involving latches

 If one thread has a latch held exclusively then other threads must wait
until that thread releases the exclusive latch

 This does not become a performance problem until there are many
concurrent threads competing for access to the same latch
 As latches are only held for a short duration, a single thread waiting a very

short time for another thread does not cause a problem
 However, if hundreds of threads are waiting for a single thread, then that

aggregates into a noticeable performance problem
 Whitepaper on investigating latch contention: https://sqlskills.com/p/079

42
© SQLskills, All rights reserved.

https://www.SQLskills.com

Superlatches

 When the Engine detects lots of SH latch requests on a buffer in the
buffer pool, it can promote the latch to a super latch

 The latch is partitioned so there is one sub-latch per scheduler, rather
than one latch overall
 Reduces contention, as even SH latch access requires coordination

 The superlatch will be demoted again if a series of EX latch requests
are detected, once the page is dropped from the buffer pool
 As an EX request for a superlatch requires EX latching each superlatch

 See Latches perfmon counters for total, promotions, demotions
 May see this error:

 Message Warning: Failure to calculate super-latch promotion threshold.
 Benign message as thresholds are recalculated every 60s by the lazy writer
 If seeing it lots, check OS power plan is set to High Performance

22

43
© SQLskills, All rights reserved.

https://www.SQLskills.com

Superlatches

 Source: Latches whitepaper at https://sqlskills.com/p/079

44
© SQLskills, All rights reserved.

https://www.SQLskills.com

sys.dm_os_latch_stats DMV

 This DMV shows aggregated wait statistics for all non-page latch
classes
 Aggregated since the server started or the latch statistics were cleared

 This DMV provides:
 The name of each latch class
 The number of times a wait has been for this latch class
 The aggregate overall wait time for all waits for this latch class
 The maximum wait time of any wait for this latch class
 It does NOT list the latch modes being acquired

 Some math is required to make the results useful
 Calculating the average times rather than the total times

23

45
© SQLskills, All rights reserved.

https://www.SQLskills.com

Clearing Wait and Latch Statistics

 Clearing the aggregated wait statistics can be done at any time using
the code below:
 DBCC SQLPERF ('sys.dm_os_wait_stats', CLEAR);

 And for latch statistics:
 DBCC SQLPERF ('sys.dm_os_latch_stats', CLEAR);

 Clearing the wait statistics allows the effect of a workload change to
be measured against previous wait statistics

 Be careful if you are taking periodic snapshots of wait statistics as this
will invalidate your series of snapshots

 When were they last cleared? https://sqlskills.com/p/080

46
© SQLskills, All rights reserved.

https://www.SQLskills.com

Using Extended Events

 For very advanced troubleshooting there are events that allow
tracking of latches
 sqlserver.latch_suspend_begin
 sqlserver.latch_suspend_end
 Similar to the sqlos.wait_info and sqlos.wait_info_external events but have a

lot more information about the latch itself

 Demo of this later in the module

24

47
© SQLskills, All rights reserved.

https://www.SQLskills.com

What are Spinlocks?

 A spinlock is an even lighter-weight thread synchronization
mechanism than a latch
 Used like a latch for data structure access control

 Spinlocks are used when the data structure access will be for an
extremely short time so the overhead of acquiring a latch is too much

 Examples of spinlocks:
 FGCB_PRP_FILL
 BUF_FREE_LIST

 Troubleshooting spinlocks usually requires very deep knowledge of
SQL Server internals
 However, it is interesting and useful to know what spinlocks are

 Great spinlocks post from Chris Adkin at https://sqlskills.com/p/082

48
© SQLskills, All rights reserved.

https://www.SQLskills.com

Spinlock Mechanism

 Source: Spinlocks whitepaper at https://sqlskills.com/p/081

25

49
© SQLskills, All rights reserved.

https://www.SQLskills.com

Spinlock Mechanism

 There is no waiting mechanism for spinlocks like there is for latches
 Once a thread starts acquiring a spinlock, it will remain on the processor

until it has acquired and then dropped the spinlock

 A thread tests the spinlock to see if it can be acquired
 If not, the thread sits in a loop checking whether it has the spinlock

 When the thread cannot acquire the spinlock, this is called a ‘collision’
 The thread then loops and tries again, this is called a ‘spin’
 Spins required after a collision do not count as more collisions
 The number of collisions and the number of spins are tracked

 After a certain number of spins, the thread stops trying for a bit
 This is called a ‘backoff’
 Simply calls the Windows sleep() function and stays on the processor
 Can cause other threads to have high signal wait times

 SQL Server tracks all of this

50
© SQLskills, All rights reserved.

https://www.SQLskills.com

Spinlock Contention

 When a large number of threads are contending for access to a single
spinlock, this can lead to performance problems

 All these symptoms must be present for high CPU usage to potentially
be from spinlock contention:
 High and increasing spins and backoffs for a spinlock (billions or more)
 High CPU usage with many connections to the server, OLTP workload
 CPU usage, spins, and backoffs increasing much faster than the workload is

increasing (possibly an exponential divergence)

 However, it is likely to NOT be spinlock contention so investigate
other waits and latches first
 Common for some spinlocks to have very high spins with an OLTP workload

 Troubleshooting spinlock contention is very advanced
 Whitepaper on investigating spinlock contention https://sqlskills.com/p/081

26

51
© SQLskills, All rights reserved.

https://www.SQLskills.com

Some Common Spinlocks (1)

 OPT_IDX_STATS
 Updating counters for sys.dm_db_index_usage_stats / missing_index_stats
 This could be from many concurrent updates to table with lots of indexes

 LOCK_HASH
 Lock Manager looking in the list of hash buckets for lock hash collisions
 Consider smaller transactions, using NOLOCK, turning off page locks

 LOGFLUSH_ACCESS and LOGFLUSHQ
 Involved with writing log buffers to disk – see WRITELOG wait
 Contention could be from very heavy load of very small transactions

 XVB_LIST
 Involved with versioning system
 Contention investigation blog post at https://sqlskills.com/p/124
 SQL2019 bug fixed in CU9 – see https://sqlskills.com/p/123

52
© SQLskills, All rights reserved.

https://www.SQLskills.com

Some Common Spinlocks (2)

 DP_LIST
 Used to control access to the dirty page list for indirect checkpoints

 Allows much faster checkpoint mechanism

 Indirect checkpoint in very busy tempdb – see https://sqlskills.com/p/041
 Fixed in latest builds of 2016 and 2017

 SOS_CACHESTORE
 Bug: when plan cache reaches maximum size – https://sqlskills.com/p/109

 Enable trace flag 174 to increase cache size

 Also can be a problem with excessive use of temp tables
 Contention for adding/removing from the temp table cache
 Alleviated in SQL Server 2019

27

53
© SQLskills, All rights reserved.

https://www.SQLskills.com

Transaction Log Example

 Taking the transaction log and the logging system as an example,
there are waits, latches, and spinlocks associated with it

 Waits:
 WRITELOG, LOGBUFFER, LOGGENERATION, LOGMGR, LOGMGR_FLUSH,

LOGMGR_QUEUE, LOGMGR_RESERVE_APPEND

 Latches:
 LOG_MANAGER, LOGBLOCK_GENERATIONS

 Spinlocks:
 BUF_WRITE_LOG, LOGCACHE_ACCESS, LOGFLUSHQ, LOGLC, LOGLFM

 From waits to latches to spinlocks, understanding the uses and
troubleshooting becomes progressively harder and less likely to be
required
 This is common across the SQL Server Engine

54
© SQLskills, All rights reserved.

https://www.SQLskills.com

Top Wait Types

 Survey results from 1700+ SQL Server instances across Internet

 Source: my blog at https://sqlskills.com/p/083

28

55
© SQLskills, All rights reserved.

https://www.SQLskills.com

PAGEIOLATCH_XX Wait

 What does it mean:
 Waiting for a data file page to be read from disk into memory
 Common modes to see are SH and EX

 SH mode means the page will be read
 EX mode means the page will be changed

 Avoid knee-jerk response:
 Do not assume the I/O subsystem is the problem

 Further analysis:
 Determine which tables/indexes are being read

 Take the page ID and follow steps in this post: https://sqlskills.com/p/084

 Analyze I/O subsystem latencies with sys.dm_io_virtual_file_stats and Avg
Disk secs/Read performance counters

 Correlate with CXPACKET waits, suggesting parallel scans
 Examine query plans for parallel scans and implicit conversions
 Investigate buffer pool memory pressure and Page Life Expectancy

56
© SQLskills, All rights reserved.

https://www.SQLskills.com

PAGEIOLATCH_XX Wait Solutions

 Create appropriate nonclustered indexes to reduce scans
 Update statistics to allow efficient query plans
 Move the affected data files to faster I/O subsystem
 If data volume has simply increased, consider increasing memory
 Possibly In-Memory OLTP in SQL Server 2014+

 A quick band-aid could be to add more memory regardless to increase
the buffer pool size

 Cheap to do, provides temporary relief, maybe less risky than immediate code
change

29

57
© SQLskills, All rights reserved.

https://www.SQLskills.com

Data Reading

 Reads can be:
 Single/multiple pages from a data file
 Single/multiple extents from a data file
 Variable size chunks of FILESTREAM files
 Usually random, except for large scans and backups

 Misconception that SQL Server always reads extents
 But it will do sometimes to ‘ramp up’ the buffer pool

 Read performance can be dramatically affected by:
 Number of files and file placement
 I/O subsystem configuration
 Buffer pool memory and memory pressure
 Query plan choice
 Ability to perform efficient read-ahead on indexes

58
© SQLskills, All rights reserved.

https://www.SQLskills.com

Buffer Pool Usage

 Unfortunately the query optimizer knows nothing about the contents
of the buffer pool otherwise it might choose a less optimal index
that’s already in memory (to save physical reads)

 sys.dm_os_buffer_descriptors
 Lists all pages currently in memory
 Allows aggregating by database, table
 Allows view of aggregate empty space in pages in memory
 Can look at how memory pressure affects need to perform physical vs.

logical I/Os

30

Demo

Buffer pool usage

60
© SQLskills, All rights reserved.

https://www.SQLskills.com

Data Writing

 Data file writes can be:
 Single/multiple pages
 Single/multiple extents (for bulk operations)
 Up to 32 contiguous pages before 2016, up to 128 in 2016+

 Data file pages are written when:
 A checkpoint occurs (for whatever reason)
 The lazy writer forces a dirty page from the buffer pool
 A bulk operation flush occurs (a.k.a. ‘eager writes’)
 A database mirror is processing log records

 Dirty pages are continuously flushed out, leading to heavy I/O load
 Use trace flag 3499 on the mirror to disable this

 Does not happen for Availability Groups

 Write performance can be dramatically affected by:
 Number of files and file placement
 I/O sub-system configuration

31

61
© SQLskills, All rights reserved.

https://www.SQLskills.com

Read/Write Latency

 Many systems these days are I/O bound, but is the problem the I/O
subsystem or your queries?

 If you’ve optimized your queries and performance is still slow, look
into the I/O subsystem

 sys.dm_io_virtual_file_stats
 Gives total stall time (aggregated latencies) for reads and writes along with

read/write counts
 Explanation: https://sqlskills.com/p/085
 Snapshot over time: https://sqlskills.com/p/086
 Better than Physical Disk performance counters as these DMVs are per

database file and give SQL Server’s view of the I/O subsystem

 sys.dm_io_pending_io_requests
 Lists all pending I/Os, and usually joined with sys.dm_io_virtual_file_stats

 To use on Azure SQL Database, see https://sqlskills.com/p/078

Demo

I/O latencies

32

63
© SQLskills, All rights reserved.

https://www.SQLskills.com

PAGELATCH_XX Wait

 What does it mean:
 Waiting for access to an in-memory data file page
 Common modes to see are SH and EX

 SH mode means the page will be read
 EX mode means the page will be changed

 Avoid knee-jerk response:
 Do not confuse these with PAGEIOLATCH_XX waits
 Does not mean add more memory or I/O capacity

 Further analysis:
 Determine the page(s) that the thread is waiting for access to
 Analyze the queries encountering this wait
 Analyze the table and index structures involved

64
© SQLskills, All rights reserved.

https://www.SQLskills.com

PAGELATCH_UP Wait Explanation

 Some query workloads cause multiple concurrent threads to
repeatedly create/drop small temp tables and/or worktables
 Can also be from repeated population/truncation of temp tables

 Easy to cause PAGELATCH_UP contention on allocation bitmaps prior
to SQL Server 2019, especially PFS
 Use sys.dm_os_waiting_tasks to see waits on PAGELATCH_UP
 SGAM page to manipulate mixed extents (resource 2:1:3)
 PFS page to allocate/deallocate pages (resource 2:1:1 and then any page ID

that’s a multiple of 8088)

 Contention can occur in all versions, but much reduced in 2019+
 This can sometimes (rarely) happen in user databases with VERY high-

end allocation workloads

33

65
© SQLskills, All rights reserved.

https://www.SQLskills.com

PAGELATCH_UP Wait Solutions

 TF 1118 (KB 328551) removes mixed extents (SGAM contention)
 All instances across the world should have this enabled before 2016
 Behavior on by default in SQL Server 2016+

 Use multiple data files to reduce contention (KB 2154845)
 <= 8 cores: #files = #cores; > 8 cores, #files=8, then increase by 4 at a time
 2016+ install automatically configures multiple tempdb data files
 Adding just one file may not work (see https://sqlskills.com/p/029)
 Investigation article on Simple Talk: https://sqlskills.com/p/030

 Alleviated a bit in latest 2016/2017 builds by spreading allocations
over multiple PFS intervals (see https://sqlskills.com/p/106 and 108)

 2019 enhancements
 No latch for PFS updates, using special CPU instructions
 Temp table cache optimizations to reduce spinlock contention when

adding/removing entries

Demo

tempdb allocation bitmap contention

34

67
© SQLskills, All rights reserved.

https://www.SQLskills.com

Temp Table Misuse

 Very common for us to see temp table problems
 Lack of filtering when populating a temp table

 Bad: pulling columns into a temp table that are not used
 Large waste of space and CPU
 Minimize the column list in a temp table

 Incorrect temp table indexing
 Bad: creating indexes before populating the table
 Bad: creating indexes that are not used

 Temp table when none is required
 Forcing an intermediate result set into a temp table could disrupt the efficient data

pipeline through a query
 Query may run much faster without a temp table

 Great post on temp table usage: https://sqlskills.com/p/089

68
© SQLskills, All rights reserved.

https://www.SQLskills.com

Tempdb Space Tracking

 On several client systems I have an automated tempdb space tracking
system (that I’ll show you)

 sys.dm_db_file_space_usage
 How is space usage broken out per use (internal/user/version store)

 Tempdb only before SQL Server 2012

 Internal is allocations done automatically by SQL Server
 Work tables for cursor or spool operations and temporary large object (LOB)

storage, work files for operations such as a hash join, sort runs

 sys.dm_db_task_space_usage
 Tracks cumulative page allocation and deallocation counts for each thread
 Can see parallelism happening

35

69
© SQLskills, All rights reserved.

https://www.SQLskills.com

Tempdb Log Space Investigation

 Tempdb log grows out of control – what’s going on?
 Use my script based on sys.dm_tran_database_transactions
 Easy to get confused:

 Lots of tempdb log growth, but…
 …only active transaction(s) have small amounts of space usage

 Where did the space usage come from?
 Lots of already-committed smaller transactions
 One long-running transaction that doesn’t do much still makes the log grow

by preventing log clearing/truncation

 Solution
 Don’t allow long-running tempdb transactions

Demo

Tempdb space tracking

36

71
© SQLskills, All rights reserved.

https://www.SQLskills.com

PAGELATCH_EX Wait Explanations and Solutions

 Tempdb system table contention – see next slide
 Excessive page splits occurring in indexes

 Change to a non-random index key
 Avoid updating index records to be longer
 Provision an index FILLFACTOR to alleviate page splits

 Insertion point hotspot in an index with ever-increasing key and row
size such that multiple rows fit on a page
 Spread the insertion points in the index using a random or composite key,

plus provision a FILLFACTOR to prevent page splits
 Shard into multiple partitions/tables/databases/servers
 Increase row size so only one row fits per page
 Evaluate in-memory tables as a staging area
 Try OPTIMIZE_FOR_SEQUENTIAL_KEY in 2019+, but might make it worse!

 Limits number of threads, try when # connections > # schedulers
 Will cause BTREE_INSERT_FLOW_CONTROL waits to appear

72
© SQLskills, All rights reserved.

https://www.SQLskills.com

tempdb System Table Contention

 Some query workloads cause multiple concurrent threads to
repeatedly create/drop small temp tables and/or worktables
 Can cause PAGELATCH_SH/EX contention on sysobjvalues and

sysseobjvalues tables (‘insert hotspot’)
 Use sys.dm_os_waiting_tasks to see waits on PAGELATCH_SH/EX in tempdb
 Check whether the page is in a system table using DBCC PAGE

 Fixed somewhat in SQL Server 2016 builds
 See https://sqlskills.com/p/107 and /108

 Can remove completely in 2019+ by setting system tables in-memory
 ALTER SERVER CONFIGURATION SET MEMORY_OPTIMIZED

TEMPDB_METADATA = ON;
 Restart instance

 Also a new trace flag 3427 in latest 2016 builds that speeds up small
transactions using tempdb (see https://sqlskills.com/p/108)
 Removes overhead from Common Criteria Compliance auditing

37

73
© SQLskills, All rights reserved.

https://www.SQLskills.com

LCK_M_XX Wait

 What does it mean:
 A thread is waiting for a lock that cannot be granted because another thread

is holding an incompatible lock

 Avoid knee-jerk response:
 Do not assume that locking is the root cause

 Further analysis:
 Follow the blocking chain using sys.dm_os_waiting_tasks to see what the

lead blocking thread is waiting for
 Use the blocked process report to capture information on queries waiting

too long for locks
 See Michael Swart’s blog post for details about the various methods and further

links (https://sqlskills.com/p/090)

 Are there any LCK_M_RS_XX locks? If so serializable isolation level was used

74
© SQLskills, All rights reserved.

https://www.SQLskills.com

LCK_M_XX Wait Solutions

 Lock escalation from a large update or table scan
 Possibly configure partition-level lock escalation, if applicable
 Consider a different indexing strategy to use nonclustered index seeks
 Consider breaking large updates into smaller transactions
 Consider using snapshot isolation, a different isolation level, or locking hints
 All the general strategies for alleviating blocking problems

 Unnecessary locks for the data being accessed
 Consider using snapshot isolation, a different isolation level, or locking hints

 Something preventing a transaction from releasing its locks quickly
 Determine what the bottleneck is and solve it appropriately

 Serializable isolation level being used erroneously
 Distributed transactions, .Net TransactionScope default

38

Demo

Insert hotspots

76
© SQLskills, All rights reserved.

https://www.SQLskills.com

WRITELOG Wait

 What does it mean:
 Waiting for a transaction log block buffer to flush to disk

 Avoid knee-jerk response:
 Do not assume that the transaction log file I/O system is overloaded

(although this is often the case)
 Do not create additional transaction log files

 Further analysis:
 Correlate WRITELOG wait time with I/O subsystem latency using

sys.dm_io_virtual_file_stats
 Look for LOGBUFFER waits, showing internal contention for log buffers

 Look at average disk write queue length for log drive
 If constantly 111/112 (31/32 prior to 2012) then the internal limit has been

reached for outstanding transaction log writes for a single database

 Look at average size and volume of transactions
 Are all the log files for all databases on the same volume?

39

77
© SQLskills, All rights reserved.

https://www.SQLskills.com

Transaction Log Writes

 Writes are always sequential
 No performance gain from having multiple log files (except for

NVDIMM case)
 SQL Server ALWAYS perform sequential writes of log records

 There are specific limits on transaction log writes
 Limit on number of in-flight log writes

 2012+: 112 outstanding writes
 Older versions: 32 outstanding writes

 Limit on total size of log writes of 3,840KB at any given time
 32 in-flight writes of up to 60KB each plus 32 log blocks waiting to be written

78
© SQLskills, All rights reserved.

https://www.SQLskills.com

Transaction Log Flushes

Active

virtual log file

Inactive/unused

virtual log file

Inactive/unused

virtual log file

Inactive/unused

virtual log file

Inactive/unused

virtual log file

Virtual log file 1 Virtual log file 2 Virtual log file 3 Virtual log file 4 Virtual log file 5

Log blocks

… 128 x 60KB buffers …

Log cache, per database

(plus log pool in 2012+)

Log blocks

Copy (could lead to

LOGBUFFER wait)

Committing thread waits for

WRITELOG (except for sync

AGs: HADR_SYNC_COMMIT)

I/O completion

Asynchronous write to disk

by LOGWRITER thread(s)

(1 thread before 2016,

up to 4 threads in 2016/7,

up to 8 threads in 2019+)

40

79
© SQLskills, All rights reserved.

https://www.SQLskills.com

WRITELOG Wait Solutions

 Move the log to a faster I/O subsystem
 E.g., NVDIMM for log tail in 2016+ - https://sqlskills.com/p/038

 Spread log files from multiple databases over multiple volumes
 Increase size of transactions to reduce small log block flushes to disk
 Implement delayed durability in SQL Server 2014+
 Check for incorrect CACHE size on SEQUENCE objects
 Remove unused nonclustered indexes

 Reduce logging overhead from maintaining them during DML operations

 Change index keys or introduce fillfactors to reduce page splits
 Are synchronous database mirroring/AGs causing delays?
 Potentially split the workload over multiple databases or servers
 Potentially isolate log writer threads – see https://sqlskills.com/p/091

 Remove their CPUs from the CPU affinity mask so no user threads there

Demo

Slow transaction log

41

81
© SQLskills, All rights reserved.

https://www.SQLskills.com

Parallel Threads Example

 As part of a query plan, you may see the operator, for example
 This is a Repartition Streams operation
 Producer threads fill packets of rows, fed into the exchange
 Consumer threads read rows from the exchange output
 No link/tie/mapping between producer and consumer threads

 For a degree-of-parallelism = 4 operation, the threads would look like:

Thread 2

Thread 1

Thread 6

Thread 5

Thread 7

Thread 8 Thread 4

Thread 3

Exchange

Operator

Consumers Producers

82
© SQLskills, All rights reserved.

https://www.SQLskills.com

Threads in a Parallel Query

 Always a single thread, thread ID 0, the parent, exists at the start of the query
 Creates all other threads, based on DOP the query is able to run at, and runs query

 A parallel query can have branches/zones that may execute at same time

 Each zone can use up to degree-of-parallelism threads, reserved at start
 MAXDOP limits the number of threads per parallel zone
 Each thread on a different scheduler, so MAXDOP also limits number of schedulers

 Total possible threads:
 Per query: (DOP x concurrent zones) + parent (which may be on different scheduler)
 Per operator: DOP x 2

 More details: https://sqlskills.com/p/092 /093 /118 /119 /125

42

83
© SQLskills, All rights reserved.

https://www.SQLskills.com

CXPACKET Wait Explanation

 What does it mean:
 Parallel operations are taking place
 Accumulating very fast implies skewed work distribution amongst threads or

one of the workers is being blocked by something

 Avoid knee-jerk response:
 Do not set server-wide MAXDOP to 1, disabling parallelism

 Further analysis:
 Correlation with PAGEIOLATCH_SH waits? Implies large scans
 Examine query plans of requests that are accruing CXPACKET waits to see if

the query plans make sense for the query being performed
 Are there non-zero ID threads showing CXPACKET wait?
 If seeing many CXCONSUMER waits in sys.dm_os_waiting_tasks:

 Long CXCONSUMER waits may indicate skewed parallelism
 Many short CXCONSUMER waits may indicate a problem on the producer side like

a poor join condition making producer threads not push rows through

84
© SQLskills, All rights reserved.

https://www.SQLskills.com

CXPACKET Wait Example (1)

Thread 0

Thread 2

Thread 1

Thread 4

Thread 3

Table Being Scanned

CXPACKET

43

85
© SQLskills, All rights reserved.

https://www.SQLskills.com

CXPACKET Wait Example (2)

Thread 0

Thread 2

Thread 1

Thread 4

Thread 3

Table Being Scanned

CXPACKET

CXPACKET

CXPACKET

CXPACKET

86
© SQLskills, All rights reserved.

https://www.SQLskills.com

CXPACKET Wait Solutions

 Possible root-causes:
 Just parallelism occurring
 Table scans because of missing nonclustered indexes or incorrect query plan
 Out-of-date statistics or cardinality issue causing skewed work distribution

 If there is actually a problem:
 Make sure statistics are up-to-date and appropriate indexes exist
 MAXDOP for a query? Or just a database (in 2016+)? Or Resource Governor?
 MAXDOP for the instance? Test to figure out best value for *you*:

 No NUMA then = # cores, up to max of 8
 NUMA = # logical cores per NUMA node, up to 16 (2016+) or 8 (< 2016)
 General guidance, soft-NUMA complicates this

 Set ‘cost threshold for parallelism’ higher to avoid some parallel plans
 Jon’s blog post at https://sqlskills.com/p/094 provides a guestimate
 Always set and test, don’t just set to some blogger’s value and walk away

44

87
© SQLskills, All rights reserved.

https://www.SQLskills.com

NUMA

 Example with four NUMA nodes with four physical cores in each
 Buffer pool is split into four partitions, one per NUMA node using the

node-local memory
 Foreign memory accesses are very expensive

Foreign

memory

access

Demo

Parallelism

45

89
© SQLskills, All rights reserved.

https://www.SQLskills.com

SOS_SCHEDULER_YIELD Wait

 What does it mean:
 A thread exhausted its 4 millisecond quantum and voluntarily yielded

 Avoid knee-jerk response:
 Do not assume that CPU pressure is the problem

 High signal wait times show CPU pressure

 Do not assume that spinlock contention is the problem

 Further analysis:
 Examine query plans to see whether scans are occurring

 Check if there is a very small or non-existent number of PAGEIOLATCH_XX waits
occurring, which indicates that the workload is memory-resident

 Look for long Runnable Queues

 Capture SQL Server code call stacks to see where the waits are occurring

 Note: these waits have zero resource wait time so regular methods of
aggregating and prioritizing waits will miss them
 They do not appear in sys.dm_os_waiting_tasks

90
© SQLskills, All rights reserved.

https://www.SQLskills.com

SOS_SCHEDULER_YIELD Solutions

 Possible root-causes:
 SQL Server is executing code that can use a lot of CPU without having to

wait for a resource (e.g. a large scan with few PAGEIOLATCH_SH waits)
 Look also for long Runnable Queues, indicating CPU pressure
 Virtual machine delays causing spurious SOS_SCHEDULER_YIELDs

 Solutions:
 On slower processors, potentially enable hyper-threading to give more

schedulers and more potential for concurrent work, especially for OLTP
workloads

 Make sure query plans are correct for query being executed
 Fix any VM issues

46

91
© SQLskills, All rights reserved.

https://www.SQLskills.com

Using Extended Events to Examine Call Stacks

 The only way to see exactly why SOS_SCHEDULER_YIELD waits are
occurring is to examine SQL Server code call stacks

 Download the correct symbols
 See my blog post at https://sqlskills.com/p/095
 Or use the Callstack Resolver tool https://sqlskills.com/p/120

 Enable trace flag 3656 to allow symbol resolution (and 2592 on 2019)
 Also disable error log printing about dbghelp.dll version

 Create an Extended Event session that:
 Captures sqlos.wait_info events for wait_type = 120 (or 124 for 2012+)
 Captures the package0.callstack action
 Uses the package0.histogram target

 Run the workload and examine the captured call stacks
 Very advanced!

 See my blog post for a walk-through example (https://sqlskills.com/p/096)

Demo

SOS_SCHEDULER_YIELD waits

47

93
© SQLskills, All rights reserved.

https://www.SQLskills.com

LATCH_XX Wait

 A non-page latch is the point of contention
 Further analysis:

 Use sys.dm_os_latch_stats to investigate which latch(s) are experiencing
high wait times

 Correlate with other prevalent wait statistics
 For example, CXPACKET waits with LATCH_EX waits where the prevalent

latch class is ACCESS_METHODS_SCAN_RANGE_GENERATOR

 Possible root-causes and solutions:
 Depend on the latch class

 These are not documented so look in my waits/latches library
 https://www.sqlskills.com/help/latches/

94
© SQLskills, All rights reserved.

https://www.SQLskills.com

Top Latch Classes

 Survey results from 581 SQL Server instances across Internet

 Source: my blog at https://sqlskills.com/p/097

48

95
© SQLskills, All rights reserved.

https://www.SQLskills.com

FGCB_ADD_REMOVE Latch

 Access to the File Group Control Block (FGCB) when adding, removing,
shrinking, or growing files in the filegroup

 Further analysis:
 Analyze the auto-growth settings of the file in all filegroups
 Extended Events must be used to determine which database is involved

 Use the latch_suspend_begin and latch_suspend_end events with latch
class 48, and correlate to the database_data_file_size_change event
using causality tracking

 Possible root-causes:
 Auto-growth settings for a file are very low, requiring frequent growth,

coupled with heavy, concurrent use of the filegroup

Demo

Using Extended Events to show effect of poor auto-growth settings

49

97
© SQLskills, All rights reserved.

https://www.SQLskills.com

DBCC_XX Latches

 Examples:
 DBCC_MULTIOBJECTSCANNER (the most common to see)
 DBCC_CHECK_AGGREGATE
 DBCC_OBJECT_METADATA

 Do not stop running consistency checks
 Further analysis: none necessary as these are all DBCC CHECKDB
 Possible root-causes:

 DBCC_MULTIOBJECTSCANNER latch was identified as a contention point
and fixed in 2012 and under a trace flag in SQL Server 2008 R2
 See Bob Ward’s post (https://sqlskills.com/p/098) and KB article 2634571

 DBCC_OBJECT_METADATA is a bottleneck with computed column indexes
 See my post at https://sqlskills.com/p/0099

98
© SQLskills, All rights reserved.

https://www.SQLskills.com

PREEMPTIVE_XX_YY Waits

 What does it mean:
 Usually a thread has called out to the OS

 Sometimes a thread staying in SQL Server but doesn’t want to give up CPU

 Threads must switch to preemptive mode when doing so
 Note that the thread status will be RUNNING instead of SUSPENDED

 Further analysis:
 ~200 PREEMPTIVE waits
 These waits are very minimally and poorly documented
 To determine what the thread is doing, look in my waits library

 https://www.sqlskills.com/help/waits/#p

 Possible root-causes and solutions:
 Depends on the wait type
 For instance, increasing PREEMPTIVE_OS_CREATEFILE waits occur when

using FILESTREAM on an incorrectly prepared NTFS volume

50

99
© SQLskills, All rights reserved.

https://www.SQLskills.com

PREEMPTIVE_OS_WRITEFILEGATHER Wait

 What does it mean:
 A thread is calling out to Windows to write to a file

 Avoid knee-jerk response that I/O subsystem has a problem
 Further analysis:

 What database operations are under way? E.g. restore or file growth

 Possible root-causes and solutions:
 Zeroing a large transaction log file during a restore or log file growth
 Zeroing a large data file during restore or data file growth

 Enable instant file initialization and set manage growth appropriately
 Do not delete existing database files before performing a restore

 Described in KB article 2091024 (https://sqlskills.com/p/100)

100
© SQLskills, All rights reserved.

https://www.SQLskills.com

PREEMPTIVE_OS_WAITFORSINGLEOBJECT Wait

 What does it mean:
 Thread calling Windows to wait on state change of synchronization object
 Commonly seen with ASYNC_NETWORK_IO wait

 Further analysis:
 Follow instructions/solutions as for ASYNC_NETWORK_IO
 Check whether transactional replication is running

 Possible root-causes and solutions:
 As for ASYNC_NETWORK_IO (see next slide)
 Could also be transactional replication Agent jobs (such as the Log Reader

and Distribution Agent jobs)
 See Joe Sack’s blog post for more details (https://sqlskills.com/p/101)

51

101
© SQLskills, All rights reserved.

https://www.SQLskills.com

ASYNC_NETWORK_IO Wait

 What does it mean:
 SQL Server is waiting for a client to acknowledge receipt of sent data

 Avoid knee-jerk response:
 Do not assume that the problem is network latency

 Further analysis:
 Analyze client application code and client app server
 Analyze network latencies

 Possible root-causes and solutions:
 Nearly always a poorly-coded application that is processing results one

record at a time (RBAR = Row-By-Agonizing-Row)
 Very easy to demonstrate using a large query and SQL Server Management

Studio running on the same machine as SQL Server

 Could be from using MARS with large result sets or BCP inbound
 Otherwise look for network hardware issues, incorrect duplex settings, or

TCP chimney offload problems (see https://sqlskills.com/p/102)

102
© SQLskills, All rights reserved.

https://www.SQLskills.com

OLEDB Wait

 What does it mean:
 The OLE DB mechanism is being used

 Avoid knee-jerk response:
 Do not assume that linked servers are being used

 Further analysis:
 What are the queries doing that are waiting for OLEDB?
 If linked servers are being used, what is causing the delay on the linked

server?

 Possible root-causes:
 DBCC CHECKDB and related commands use OLE DB internally
 Many DMVs use OLE DB internally so it could be a third-party monitoring

tool that is repeatedly calling DMVs (especially if they’re very short waits)
 Poor performance of a linked server

52

103
© SQLskills, All rights reserved.

https://www.SQLskills.com

Miscellaneous Other Common Wait Types

 THREADPOOL
 Waiting for a worker thread to become available, for example on a heavily-

loaded system with a lot of parallel queries running

 RESOURCE_SEMAPHORE
 Waiting for a query execution memory grant, for example for a sort
 Usually indicates concurrent, memory-hungry queries

 MSQL_XP
 Waiting for an extended stored procedure call to complete

Demo

Other wait types

53

105
© SQLskills, All rights reserved.

https://www.SQLskills.com

Real-World Example: Symptoms

 Auto dealership hosting service
 Lots of auto dealers from across the US hosted on one site
 Each auto dealer uploads inventory each day
 One large Listing table storing all inventory for all dealers
 One large Visitor table tracking clicks on web pages
 No DBA

 System had performance problem:
 User queries on inventory and prices regularly timed out
 Inventory updates regularly timed out
 Climbing CPU usage
 Response time getting longer and longer
 Car dealers pressuring hosting service for fixes

 First step: analyze wait statistics…

106
© SQLskills, All rights reserved.

https://www.SQLskills.com

Real-World Example: Analysis

 No historical data so gathered wait statistics data using the queries
 Both DMVs showed the same three wait types:

 CXPACKET wait = parallelism
 PAGEIOLATCH_SH wait = reading data file pages from disk
 WRITELOG wait = waiting for log writes, with average wait more than 20ms

 Possible issues from just wait statistics
 Many queries doing parallel table scans of data that is not memory resident
 I/O subsystem for the log file over-loaded and/or high number of log flushes

 Investigated further using DMVs to analyze:
 Query plans
 Index and table structures, index usage, fragmentation, and statistics
 I/O subsystem latencies

 Next step: determine root-causes…

54

107
© SQLskills, All rights reserved.

https://www.SQLskills.com

Real-World Example: Root-Causes

 Both large tables had random GUID cluster keys
 High fragmentation in the clustered indexes leading to poor readahead
 Lots of page-split transaction log activity during web page click tracking

 Both large tables had more than 50 single-column nonclustered
indexes
 Indexes not being used for seeks, resulting in table scans
 Large amounts of nonclustered index maintenance from inserts, updates,

deletes contributing to transaction log activity

 Insufficient buffer pool memory for application workload data
 Poorly laid out I/O subsystem contributing to high latencies
 Poorly written code from using an ORM system
 Final step: propose and implement solution

108
© SQLskills, All rights reserved.

https://www.SQLskills.com

Real-World Example: Solution

 Solution included:
 Increasing server memory and provisioning more appropriate I/O subsystem
 Changing main tables to have bigint IDENTITY cluster keys
 Removing useless nonclustered indexes
 Analyzing ORM-generated code and query plans to determine appropriate

nonclustered indexes
 ORM system could not be removed for political reasons

 Implementing index maintenance and periodic health checks

 End result: no performance problems and a happy client, with
minimal investigation time

55

109
© SQLskills, All rights reserved.

https://www.SQLskills.com

Key Takeaways

 Wait statistics are a key part of performance problem diagnosis
 Don’t knee-jerk, follow the easy methodology
 Practice gathering and analyzing wait statistics using the DMVs
 Remember that waits always happen
 Don’t get into latches and spinlocks unless absolutely necessary

 Too many potential red herrings

 Know what the common waits mean and don’t mean

110
© SQLskills, All rights reserved.

https://www.SQLskills.com

Resources

 Waits/latches repository
 https://www.SQLskills.com/helps/waits

 Whitepapers:
 SQL Server Performance Tuning Using Wait Statistics: A Beginners Guide

 https://sqlskills.com/p/103

 Diagnosing and Resolving Latch Contention on SQL Server
 https://sqlskills.com/p/079

 Diagnosing and Resolving Spinlock Contention on SQL Server
 https://sqlskills.com/p/081

 Blog post categories
 https://www.sqlskills.com/blogs/paul/category/wait-stats/ and /latches/ and

/spinlocks/

 Pluralsight: SQL Server: Performance Tuning Using Wait Statistics

56

111
© SQLskills, All rights reserved.

https://www.SQLskills.com

Review

 How thread scheduling works in SQL Server
 Fundamentals of waits, latches, and spinlocks
 Investigating waits, latches, and spinlocks using DMVs
 Common scenarios, including:

 Data and log file I/O
 Latch contention in tempdb and user tables
 Parallelism
 Quantum exhaustion

Questions?

