
1

SQLskills Immersion Event
IEPTO2: Performance Tuning and Optimization

Module 7: Putting New Features
into Practice

Erin Stellato
Erin@SQLskills.com

2
© SQLskills, All rights reserved.

https://www.SQLskills.com

How do you improve performance?

 Code changes
 Tune/optimize queries
 Optimize transactions
 Reduce compiles/recompiles
 Return only the data that users

need (like, really need)
 Minimize the use of functions,

cursors, and row-based
operations

 Change isolation level
 Improve cache plan use

 Schema changes
 Normalize or de-normalize
 Define PKs, FKs, and constraints
 Data types

 Index
 Update statistics (?!)
 Add more tempdb files
 Remove/archive historical data
 Partition
 Separate reporting from OLTP
 Upgrade

 Bug or feature

 More/new hardware
 CPU*/memory/storage

 Use new features…

2

3
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Columnstore
 In-Memory OLTP
 Cardinality Estimator
 Query Store plan forcing / automatic plan correction
 Upgrade Testing

4
© SQLskills, All rights reserved.

https://www.SQLskills.com

Columnstore

 Introduced in SQL Server 2012 Enterprise Edition
 Limited initially, enhancements added with each subsequent release

 Primarily designed for data warehouses
 Storing and querying large amounts of fact data
 Support for operational analytics added in SQL Server 2016

 Data is stored in a compressed, column format, rather than traditional
row-based storage
 Uses the X-Velocity In-Memory Compression Engine, which is also used in

PowerPivot and Analysis Services (Tabular Mode)

 Supported with Availability Groups
 Available in Standard Edition starting in SQL Server 2016 SP1

 Columnstore Object Pool size capped at 32GB

3

5
© SQLskills, All rights reserved.

https://www.SQLskills.com

Nonclustered Columnstore Indexes

 Nonclustered Columnstore Index (NCCI)
 Updateable as of SQL Server 2016
 Comprised of a sub-set of columns from the table
 Provides real-time operational analytics for OLTP workloads

 Remove time delays from ETL operations
 Eliminates the need for a separate data warehouse and complexity of ETL
 Eliminates multiple rowstore nonclustered indexes to support analytical queries

 Supports offloading analytics to readable secondary replicas with Availability
Groups

 Note: maintaining a NCCI is more expensive than a B-tree index
 There is no in-place update for NCCI, it is a delete and then an insert

6
© SQLskills, All rights reserved.

https://www.SQLskills.com

Clustered Columnstore Indexes

 Clustered Columnstore Index (CCI)
 Comprised of all columns in the table
 Can be implemented on-disk or in-memory
 Benefits analytical queries executed against a DW database (e.g. fact tables)

 Tables ideally partitioned with at least one million rows/partition
 Data loading typically by ETL and bulk operations

 Can also provide benefit for analytical queries for tables with heavy inserts,
where there are few updates and deletes (DW or OLTP)

 Use with IOT data for compression (ratios as high as 25x compared to
rowstore)

4

7
© SQLskills, All rights reserved.

https://www.SQLskills.com

Batch Mode

 Maximum performance gains are realized when operators can use
batch mode for columnstore indexes

 Support for batch mode has been expanded to more operators with
each release

 Initially, batch mode execution was only seen with multi-threaded
(parallel) queries
 Batch mode execution for serial queries added in SQL Server 2016

(compatibility mode 130)

8
© SQLskills, All rights reserved.

https://www.SQLskills.com

Columnstore Enhancements by Version

2012 2014 2016 2017 2019
NCCI read-only,
secondary NCI
indexes can be
created

Updatable NCCI
(only one),
supports filter
definition

Create NCCI
online
Support non-
persisted
computed
columns (NCCI
only)

Updatable CCI,
no other indexes
allowed

Updateable CCI,
secondary NCI
indexes can be
created

Columnstore
index on an in-
memory table
(only one)

Tuple-mover
helped by a
background task

5

9
© SQLskills, All rights reserved.

https://www.SQLskills.com

Determining Which Strategy is Best

 Clustered Columnstore
 INSERT mostly workload
 Star schema/traditional DW
 Light OLTP < 10%

UPDATE/DELETE with mostly
analytic queries

 Nonclustered Columnstore
 Normal OLTP workload
 Heavy UPDATE/DELETE
 Normalized table schema

10
© SQLskills, All rights reserved.

https://www.SQLskills.com

Questions to Ask

 How large is my table/data?
 Do my queries mostly perform analytics that scan large ranges of

values?
 Does my workload perform lots of updates and deletes?
 Do I have fact and dimension tables for a data warehouse?
 Do I need to perform analytics on a transactional workload?
 What version of SQL Server am I running on?

These will determine whether Columnstore is the right solution

6

11
© SQLskills, All rights reserved.

https://www.SQLskills.com

What You’re Looking For…

 How large is my table/data?
 Compression may provide significant space and I/O savings

 Do my queries mostly perform analytics that scan large ranges of
values?
 Columnstore works best for large range scans and not point queries

 Does my workload perform lots of updates and deletes?
 Columnstore works best on stable/static data, typically < 10% DELETE/UPDATE

 Do I have fact and dimension tables for a data warehouse?
 Schema design and loading strategy determine effectiveness

 Do I need to perform analytics on a transactional workload?
 Updatable NCCIs with filter criteria on “warm” data

Demo

Performance changes with columnstore

7

13
© SQLskills, All rights reserved.

https://www.SQLskills.com

Data types not supported

 ntext, text, and image
 nvarchar(max), varchar(max), and varbinary(max)

 Supported in SQL Server 2017 CCI

 rowversion (and timestamp)
 sql_variant
 CLR types (hierarchyid and spatial types)
 xml
 uniqueidentifier

 Supported in SQL Server 2014 and higher

14
© SQLskills, All rights reserved.

https://www.SQLskills.com

Index Limitations

 Maximum of 1024 columns
 NCCI and CCI cannot have constraints (unique, PK, FK)

 With NCCI, base table/CI can have constraints
 With CCI, NCI can have constraints

 Cannot be created on a view or indexed view
 Cannot include a sparse column
 Must drop and recreate a columnstore index to change its definition

(only supports ALTER INDEX for REBUILD)
 Cannot be created by using the INCLUDE keyword

8

15
© SQLskills, All rights reserved.

https://www.SQLskills.com

Features Not Supported

 Computed columns
 Non-persisted computed column supported in SQL Server 2017 CCI

 Page and row compression, and vardecimal storage format
 Columnstore data is already compressed
 COLUMNSTORE_ARCHIVE (added in SQL Server 2016)

 Replication
 FILESTREAM

16
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Columnstore
 In-Memory OLTP
 Cardinality Estimator
 Query Store plan forcing / automatic plan correction
 Upgrade Testing

9

17
© SQLskills, All rights reserved.

https://www.SQLskills.com

In-Memory OLTP (1)

 Introduced in SQL Server 2014 Enterprise Edition
 Additional capabilities added with subsequent releases
 Also available in SQL Server 2016 SP1 Standard Edition with a limit of 32GB

of In-Memory objects per database
 https://msdn.microsoft.com/library/cc645993.aspx
 Note: if you also use columnstore, the max is 32GB for disk-based. If you use

memory-optimized columnstore, it counts against the 32GB in-memory limit.

 With the reduced cost of memory and CPU, I/O often remains a
limiting factor in fast performance

 Typical bottlenecks with traditional, disk-based structures can exist
around locking, latching, spinlocks, and writing to the transaction log
which manifest as concurrency and latency issues

18
© SQLskills, All rights reserved.

https://www.SQLskills.com

In-Memory OLTP (2)

 In addition to accessing disk-based structures, there can be a large
number of computer instructions to execute a transaction which
affect overall duration
 Increasing the number of CPUs doesn’t linearly scale to address this

 Natively compiled procedures reduce the number of computer
instructions

 Microsoft proposed the original concept for an engine to support in-
memory workloads in 2008 (codename Hekaton); planning and
design started in 2010

10

19
© SQLskills, All rights reserved.

https://www.SQLskills.com

In-Memory OLTP (3)

 An original goal was to execute OLTP transactions in microseconds
(less than 1 millisecond)

 In-Memory OLTP provides optimistic concurrency and removes
locking and latching, in addition to having data reside in memory
 Data structures provide efficient data access
 With no locking or latching, solution can scale linearly
 Log records only written on transaction commit, or at a set time if using

delayed durability (SQL Server 2014 and higher)

 Per Microsoft, customers can get up to 30x performance improvement
 YMMV…it depends on workload and access patterns; up to 10x

improvement more realistic

20
© SQLskills, All rights reserved.

https://www.SQLskills.com

In-Memory Objects

 Memory-optimized tables
 Memory-optimized table types
 Memory-optimized indexes
 Memory-optimized filegroup
 Natively compiled T-SQL modules
 Memory-optimized tempdb metadata (SQL Server 2019)

11

21
© SQLskills, All rights reserved.

https://www.SQLskills.com

Tables

 Memory-optimized tables store user data
 Tables are durable by default

 Data will persist across a restart

 Can be configured as delayed-durable or non-durable
 Use non-durable for transient data that can be re-populated if needed

 Not all data types supported

Memory

Disk

Durable

Memory

Disk

Non-durable

Some
data

Delayed
Durable

Some
data

22
© SQLskills, All rights reserved.

https://www.SQLskills.com

Table Types

 Memory-optimized table types
 Use for temp tables, TVPs, and table variables to hold transient data
 Only stored in memory using same structure as tables, nothing in tempdb
 Must have one index

12

23
© SQLskills, All rights reserved.

https://www.SQLskills.com

Table Types Example

CREATE @OrderInfo TABLE (
[RowNum] INT IDENTITY (1,1),
[OrderID] INT,
[CustomerID] INT,
[CustomerPONum] NVARCHAR(40)
);

CREATE TYPE dbo.OrderInfo
AS TABLE (

[RowNum] INT IDENTITY (1,1) NOT NULL,
[OrderID] INT PRIMARY KEY NONCLUSTERED,
[CustomerID] INT,
[CustomerPONum] NVARCHAR(40)
)

WITH
(MEMORY_OPTIMIZED = ON);

DECLARE @OrderInfo dbo.OrderInfo;

“Traditional” method –
create a table variable
(still backed by tempdb)

New option –
create a table
type first, as
an in-memory
structure, then
reference it in
code

24
© SQLskills, All rights reserved.

https://www.SQLskills.com

Indexes (1)

 Every memory-optimized table must have at least one memory-
optimized index
 Maximum of eight (8) indexes through in SQL 2014 and SQL 2016
 No limit in SQL 2017+ and Azure SQL Database

 Nonclustered vs. Hash
 Nonclustered ideal for range scans, inequalities, and when sort order is

needed
 Hash is optimal for equality predicates on all key columns
 Hash requires estimating the number of distinct values for the index key

 Columnstore
 Includes all columns (clustered)

13

25
© SQLskills, All rights reserved.

https://www.SQLskills.com

Indexes (2)

 Nonclustered and hash indexes are not represented on disk; index
changes are not written to the log

 These indexes are rehydrated (data streamed from disk to memory)
when:
 A database is restored
 The instance restarts or the server reboots
 Change a database from READ_WRITE to READ_ONLY (or vice versa)
 Change the READ_COMMITTED_SNAPSHOT setting
 A database is taken OFFLINE, then brought ONLINE

 With an AG failover, as REDO occurs at the secondary, in-memory
objects are updated, providing an advantage in the event of a failover

 Do not fragment like disk-based indexes
 Columnstore in-memory indexes are persisted

26
© SQLskills, All rights reserved.

https://www.SQLskills.com

The Filegroup

 In order to use In-Memory OLTP, you must create a separate filegroup
 Defined as MEMORY_OPTIMIZED_DATA
 Only one filegroup of this type allowed
 You create one or more containers for the filegroup
 Recommended to have enough space to support 4x the size of each

memory-optimized table that is durable

 The filegroup contains checkpoint files (data and delta) to track
changes to durable objects
 Used to recreate durable (and delayed-durable) tables and indexes after a

restart

 Make sure Instant File Initialization is enabled

14

27
© SQLskills, All rights reserved.

https://www.SQLskills.com

Natively compiled T-SQL modules

 Natively compiled T-SQL modules (stored procedures, triggers, scalar
UDFs)
 Optimized and compiled into machine language
 Removes compilation time and CPU
 Parameter sniffing is not used, compiled using UNKNOWN values

 Can use OPTIMIZE FOR to try and force a specific plan
 Interpreted SPs do use parameter sniffing

 Statistics automatically updated in SQL Server 2016 with compatibility mode
130

 Updates to statistics do not initiate re-compilation

28
© SQLskills, All rights reserved.

https://www.SQLskills.com

Memory-Optimized tempdb Metadata

 System tables for tempdb can be memory-optimized
 These tables track the temporary tables that are created in tempdb
 For high-volume systems, contention on these tables (metadata) can occur

 Even with temp table caching (introduced in SQL 2005)

 Enabling this option removes contention on these system tables to improve
scalability

 Requires an instance restart
 Implement if you see PAGELATCH contention on system objects such

as sysobjvalues and sysseobjvalues
 This will not address contention for PFS and SGAM pages

 Limitations:
 Columnstore indexes cannot be created on temporary tables when memory-

optimized tempdb metadata is enabled

15

29
© SQLskills, All rights reserved.

https://www.SQLskills.com

In-Memory OLTP Solutions (1)

 In-Memory OLTP is not a solution for all performance problems
 It can address problems related to query execution and data access

 It will not benefit code related to client connectivity or transaction logging
 Exception: if implemented as non-durable

 Ideal workload pattern addressed is a large volume of small
transactions

 Typical uses:
 Increase transaction throughput
 Increase the rate of data ingestion
 Decrease latency because application/business is time-sensitive
 Transient data

30
© SQLskills, All rights reserved.

https://www.SQLskills.com

In-Memory OLTP Solutions (2)

 Where it works really well:
 Inserts/updates/deletes
 Data that is heavily read (high concurrency) that is read-only or modified

infrequently via SPs
 Replacing #temp tables, table variables, TVPs
 Staging data during ETL processes
 Initial data load (then move data to disk-based, columnstore)
 Session state database (e.g. for ASP.NET)
 Caching

16

31
© SQLskills, All rights reserved.

https://www.SQLskills.com

In-Memory OLTP Solutions (3)

 Where it doesn’t work well:
 Resource limitations

 Not enough memory to support In-Memory tables
 Slow I/O for the transaction log

 Queries that return a lot of data or perform aggregations
 Query plans with large range scans/table scans
 Query plans with parallelism

 Note: if ETL writes are parallel with disk-based tables, they won’t be with in-
memory (http://www.nikoport.com/2018/01/20/parallelism-in-hekaton-in-
memory-oltp/)

 If your original latency is due to factors outside SQL Server, In-Memory
OLTP may not provide any benefit (e.g., “chatty” application)
 Understand source of the existing problem before you go down this path

Demo

Testing performance changes with In-Memory OLTP

17

33
© SQLskills, All rights reserved.

https://www.SQLskills.com

Requirements

 Separate filegroup in the database
 Cannot be removed (must drop the database to “remove” it)
 Cannot create database snapshot for databases with this filegroup

 Enough memory to hold the In-Memory tables and indexes
 Table will be the approximate size of the disk-based table, indexes are

typically smaller

 Additional memory to support the workload, including row-versioning
 Disk space to support the size of durable memory-optimized objects

 https://blogs.msdn.microsoft.com/sql_server_team/choosing-the-right-
server-memory-for-restore-and-recovery-of-memory-optimized-databases/

 Note: Natively compiled T-SQL modules are optional, but highly
recommended to maximize performance gains

34
© SQLskills, All rights reserved.

https://www.SQLskills.com

Limitations for Tables

 Not all features are supported, for example:
 Compression
 Partitioning
 Replication*
 Linked Servers
 DDL triggers
 Most cross-database transactions

 Not all data types supported (e.g., datetimeoffset, geography, xml)
 Computed columns are supported in SQL Server 2017

 IDENTITY must seed at 1 and increment by 1, cannot reseed
 TRUNCATE TABLE is not supported
 Migrating an existing table to in-memory is not an online process

(ALTER TABLE not supported for this operation)
 DBCC CHECKDB cannot validate in-memory tables

18

35
© SQLskills, All rights reserved.

https://www.SQLskills.com

Items of Note for Natively-compiled SPs

 Can only access memory optimized tables and table types
 No parallel processing
 Compiled using UNKNOWN values (can use OPTIMIZE FOR hint)
 Query plans use nested loop joins

 Only stream aggregation is available for aggregates

 Execution statistics not collected by default due to perf impact
 Must enable via sys.sp_xtp_control_query_exec_stats or

sys.sp_xtp_control_proc_exec_stats

36
© SQLskills, All rights reserved.

https://www.SQLskills.com

Limitations for Natively-compiled SPs

 Cannot create or access tables in tempdb
 Use memory-optimized tables or table types/table variables

 EXISTS cannot be used with IF and WHILE
 MERGE is not supported
 UPDATE statements that use the FROM clause are not supported
 DELETE…JOIN syntax not supported
 Cursors are not supported

 SELECT DISTINCT is supported in SQL Server 2017
 CASE expressions are supported in SQL Server 2017
 APPLY operator is supported in SQL Server 2017
 JSON functions supported in SQL Server 2017

19

37
© SQLskills, All rights reserved.

https://www.SQLskills.com

Steps to Determine if In-Memory OLTP is Viable

 Transaction Performance Analysis Report
 Analyzes existing workload to determine where In-Memory OLTP may help

improve performance
 Table and SP execution statistics are captured
 Identifies incompatibilities
 Check out Ned Otter’s post for an alternate method:

 http://nedotter.com/archive/2017/06/migrating-tables-to-in-memory-oltp/

 Memory Optimization Advisor
 Validates if table can be migrated to use In-Memory OLTP

 Will not make any modifications if there are limiting factors

 Can be used to migrate tables or generate script

 Native Compilation Advisor
 Validates if a stored procedure can be migrated
 Procedure code cannot be migrated via UI

38
© SQLskills, All rights reserved.

https://www.SQLskills.com

Measuring Performance Change

 You need a baseline
 Capture with Query Store, manually, or with a third-party tool

 What metrics do you care about?
 This is what you need to capture

 Nothing else can change
 Not data, not maintenance, not indexes, not one other thing

20

39
© SQLskills, All rights reserved.

https://www.SQLskills.com

Testing In-Memory OLTP

 It is recommended to perform testing in a non-production
environment

 Typical testing challenges exist
 How to generate a comparable workload and/or “busiest” scenario?
 Is it possible to test all related code?

 Isolate changes to one table, or a small set of related tables, for testing
 Implementation (and thus, roll-back) requires an outage; testing is

critical
 Basic steps:

 Capture performance metrics in production environment for an existing
disk-based table and/or related stored procedures

 Restore to a testing environment and create the appropriate In-Memory
objects (i.e., filegroup, table and indexes, stored procedure(s))

 Simulate production workload and capture the same performance metrics

40
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Columnstore
 In-Memory OLTP
 Cardinality Estimator
 Query Store plan forcing / automatic plan correction
 Upgrade Testing

21

41
© SQLskills, All rights reserved.

https://www.SQLskills.com

New Cardinality Estimator

 The Query Optimizer evaluates the cost of one or more plans when
deciding which plan to ultimately execute

 One factor used to determine cost is the number of estimated rows
that will need to be processed for each operator
 This is the cardinality estimate

 The cardinality estimator (CE) component was significantly changed
in SQL Server 2014
 First redesign since SQL Server 7.0

42
© SQLskills, All rights reserved.

https://www.SQLskills.com

Cardinality Estimate issues

 Major red flag to watch for, not just when upgrading to 2014+
 Skewed estimate vs. actual

 Magnification and distortion as we move through the plan tree
 Other symptoms:

 Query performs badly or doesn’t execute at all due to memory error
 Performance may be good sometimes and bad other times

22

43
© SQLskills, All rights reserved.

https://www.SQLskills.com

Cardinality Estimate First Steps

 Key areas to validate
 CE version
 Query
 Execution plan
 Statistics

 Areas to investigate further:
 Missing indexes / missing or stale statistics
 Table variables
 TVF

44
© SQLskills, All rights reserved.

https://www.SQLskills.com

Cardinality Estimator Version in SQL Server 2014

 The new CE will be used in SQL Server 2014 if the database has the
compatibility level set to 120

 If database compatibility level is less than 120, the new CE can be used
on a per-query basis by using the QUERYTRACEON and trace flag 2312
 QUERYTRACEON requires sysadmin permissions
 Can be used with Plan Guides
 Takes precedence over server and session trace flags

 For databases using compatibility level 120, use QUERYTRACEON and
trace flag 9481 to revert to the legacy cardinality estimator

 Databases that are upgraded to, attached to, or restored to a SQL
Server 2014 retain their compatibility level and therefore will use the
legacy CE by default

23

45
© SQLskills, All rights reserved.

https://www.SQLskills.com

Cardinality Estimator Version in SQL Server 2016+

 CE version is determined by the LEGACY_CARDINALITY_ESTIMATION
database scoped setting*
 Database compatibility level is relevant for new CE

 If LEGACY_CARDINALITY_ESTIMATION = ON, then the old CE is used,
regardless of database compatibility level
 Equivalent to using trace flag 9481

 If LEGACY_CARDINALITY_ESTIMATION = OFF, then CE version is
determined by database compatibility level

 Trace flags 9481 and 2312 can still be used to change CE for individual
queries (with QUERYTRACEON hint)

 CE version for tempdb is relevant if you use temporary tables

46
© SQLskills, All rights reserved.

https://www.SQLskills.com

Verifying Cardinality Estimator Version Used

 CardinalityEstimationModelVersion attribute lists what CE was used
 Found in the XML or in the Properties of the plan

 70 = Legacy
 120,130, 140, 150 = New

24

Demo

Testing CE changes with Query Store

48
© SQLskills, All rights reserved.

https://www.SQLskills.com

Upgrade Options

 Test before you upgrade to SQL Server 2014 or higher
 Identify problematic queries and address them prior to upgrading

 Upgrade to SQL Server 2014 or higher without testing
 Keep using the old CE

 Upgrade to SQL Server 2014 or higher without testing
 Use the new CE
 Prepare to fight fires in production

 Upgrading without testing creates a significant risk for your business
 The Importance of Database Compatibility Level in SQL Server

 https://www.sqlskills.com/blogs/glenn/database-compatibility-level-in-sql-
server/

 Avoiding SQL Server Upgrade Performance Issues
 https://www.sqlskills.com/blogs/glenn/avoid-sql-server-upgrade-

performance-issues/

25

49
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Columnstore
 In-Memory OLTP
 Cardinality Estimator
 Query Store plan forcing / automatic plan correction
 Upgrade Testing

50
© SQLskills, All rights reserved.

https://www.SQLskills.com

How Do You Fix a Poorly-Performing Query?

Change code
and/or schema

Add
RECOMPILE

Manually get
the “best” plan

in cache

UPDATE
STATISTICS

Use a plan
guide

Force a plan in
Query Store

26

51
© SQLskills, All rights reserved.

https://www.SQLskills.com

Forcing Plans with Query Store

 Query Store allows you to easily find queries with multiple plans and
force one plan
 Can be done in the UI
 Can be done with T-SQL

 If a plan is no longer optimal, Query Store can continue to use it unless
you remove it

 Monitor failures with Extended Events
 query_store_plan_forcing_failed
 Can also check sys.query_store_plan

 Adding hints changes the query text which creates a new query (and
query_id) in Query Store

Demo

Forcing plans

27

53
© SQLskills, All rights reserved.

https://www.SQLskills.com

Points to Remember

 It may not always be obvious that a plan is forced – check the plan and
Query Store to see if it is

 Query performance can be different across environments for multiple
reasons – including forced plans!

 If object_id changes, a forced plan will no longer be tied to the object
 If an index name changes, a forced plan cannot be used
 Pay attention to forced plans when testing code and schema changes

54
© SQLskills, All rights reserved.

https://www.SQLskills.com

Automatic Plan Correction

 Available in SQL Server 2017+ EE and Azure SQL Databases
 Enabled per database
 Uses Query Store

 Tool to quickly mitigate query performance issues based on
regressions
 Based on CPU change

 Thresholds are not documented, as they may change

28

55
© SQLskills, All rights reserved.

https://www.SQLskills.com

Plan change,
compare

performance

Regression in
performance?

If regressed, force last
known good plan

Monitor to see if plan
is still good

If regression,
recompile, or failed
forcing plan will no

longer be forced

56
© SQLskills, All rights reserved.

https://www.SQLskills.com

Automatic Plan Correction

 Reasons a plan will be un-forced
 Regression
 Recompile due to statistics or schema change
 Failed forcing

 Can use the information captured to make corrections manually
 Stored in sys.dm_db_tuning_recommendations

 Does not persist, snapshot to a table or use XE if you want to retain information

 This DMV is not populated in Enterprise Edition

 Plan forcing is typically not a recommended long-term solution, best
practice is to address reported plan regressions through code/schema
changes

29

Demo

Automatic Plan Correction

58
© SQLskills, All rights reserved.

https://www.SQLskills.com

Can I Trust It?

 It is not perfect, but it has been developed with telemetry from Azure
SQL Database implementations

 Catches severe regressions
 Its ability to recovery from any “bad decision” is highly reliable as

there is continual validation of forced plans and automatic back-off
logic built-in

30

59
© SQLskills, All rights reserved.

https://www.SQLskills.com

Monitoring with Extended Events

 Create an Extended Events session that captures automatic tuning
events, writes to an event_file target, and starts when the instance
starts (always running)
 automatic_tuning_error
 automatic_tuning_plan_regression_detection_check_completed
 automatic_tuning_plan_regression_verification_check_completed
 automatic_tuning_recommendation_expired

60
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Columnstore
 In-Memory OLTP
 Cardinality Estimator
 Query Store plan forcing / automatic plan correction
 Upgrade Testing

31

61
© SQLskills, All rights reserved.

https://www.SQLskills.com

Distributed Replay Utility (DRU)

 Introduced in SQL Server 2012
 DRU is an upgrade tool

 Primary use is helping customers upgrade to the latest version of SQL Server

 Can also be used to examine the impact of hardware, software, and
application changes

 Provides the capability to capture a trace and then replay from
multiple clients (workstations)
 More scalable than Profiler replay as Profiler is limited to replay from a single

client

62
© SQLskills, All rights reserved.

https://www.SQLskills.com

DRU Topology

 Distributed Replay controller
 Only one controller is permitted
 Runs as a Windows service (SQL Server Distributed Replay Controller)
 Orchestrates actions of clients

 Distributed Replay clients
 One or more clients (up to 16) can be used, and together they simulate a

typical workload
 Each runs as a Windows service (SQL Server Distributed Replay Client)
 Use of more than one client requires Enterprise Edition

 Developer Edition only allows one client

 Distributed Replay administration tool
 DReplay.exe is used to talk to controller

32

63
© SQLskills, All rights reserved.

https://www.SQLskills.com

DRU Topology

 Target server
 Hosts a SQL Server instance against which trace data is replayed by clients
 Data about replay performance should be captured against this server

https://technet.microsoft.com/en-
us/library/ff878183(v=sql.130).aspx

64
© SQLskills, All rights reserved.

https://www.SQLskills.com

Order of Events for Replay

 Start a COPY_ONLY full backup
 Start replay trace to capture events

 This will continue to run after the backup completes; how long is
determined by the workload you’re trying to capture

 Stop trace and filter out events from prior to backup completion
 Aligning the backup and trace reduces the likelihood of problems related to

constraint violations

 Restore database to another instance (Test/QA/Dev)
 Provide db_owner to DR Client and Controller accounts

 Preprocess trace file(s) using DReplay
 Replay trace file(s) using one or more clients

 Capture performance data on the instance where the database is restored
(e.g. trace, PerfMon)

33

65
© SQLskills, All rights reserved.

https://www.SQLskills.com

DRU Configuration Files

 Controller File
 DReplayController

 Specify logging level

 Client Configuration File
 DReplayClient

 Specify controller, working and result directories, logging level

 Preprocess Configuration File
 DReplay.Exe.Preprocess

 Specify whether to include system session activity
 Specify whether to reduce idle time

 Replay Configuration File
 DReplay.Exe.Replay

66
© SQLskills, All rights reserved.

https://www.SQLskills.com

Replay Settings

 DRU provides the option of replaying the trace in two modes:
 Synchronization mode
 Stress mode

 In synchronization mode, the replay occurs in the order of the original
events, and is synchronized across all the clients

 Stress mode, which is the default, can be used to drive the workload,
and there is no synchronization across clients
 Can decrease “think time” and “connect time” options to dial back the

workload
 Default value for both ThinkTimeScale and ConnectTimeScale is 100, which is a

percentage

 Can also change whether connection pooling is used, and number of
threads per replay client (default is 255, max is 512)

34

67
© SQLskills, All rights reserved.

https://www.SQLskills.com

Data Collection During Replay

 Previously a manual effort
 Could use ReadTrace to compare captured trace files

 Database Experimentation Assistant released in Fall 2016
 Current release is version 2.6 (March 2020)
 Provides a UI to capture and replay a trace/XE

 Trace is replayed against original (or comparable) server and new server

 Also provides workload analysis reports
 Compares performance between the executions

 Source versions are SQL Server 2005 and higher
 Target versions are SQL Server 2012 and higher

68
© SQLskills, All rights reserved.

https://www.SQLskills.com

Query Tuning Assistant

 Available in 18.x version of SSMS
 Created to help with testing changes in compatibility level
 Uses Query Store to capture workload performance metrics and then

compares and analyzes the data
 Tests regressed queries with different hints, including

FORCE_LEGACY_CARDINALITY_ESTIMATION

 Requires db_owner permission

35

69
© SQLskills, All rights reserved.

https://www.SQLskills.com

Order of Events for QTA

 Restore a backup of the database
 Initiate QTA from the database menu

 Configure how long to collect data (minimum is 1 day) and Query Store
settings

 Start the workload and let run for the testing duration
 This captures a baseline

 When the collection time completes, upgrade the database
compatibility level

 Run the workload again
 You can monitor regressed queries during this time

 When the workload has finished, queries that regress are identified
and can then be selected for experimentation

 After experimentation, queries that can optimized are listed with the
option to implement a plan guide to stabilize performance

70
© SQLskills, All rights reserved.

https://www.SQLskills.com

New Features = Immediate Win?

 Columnstore
 In-Memory OLTP
 Cardinality Estimator
 Query Store plan forcing / automatic plan correction

36

71
© SQLskills, All rights reserved.

https://www.SQLskills.com

Key Takeaways

 New features can provide a method to improve and/or stability query
performance

 Columnstore and In-Memory OLTP can provide a performance boost
for the right workload, testing is essential

 The new Cardinality Estimator frequently improves query
performance, but regressions are definitely possible
 Testing prior to upgrading is critical

 Beyond capturing query performance data, Query Store can be used
to force plans (temporary solution) manually and automatically via
Automatic Plan Correction

72
© SQLskills, All rights reserved.

https://www.SQLskills.com

Additional Resources

 Pluralsight
 SQL Server: Automatic Tuning in SQL Server 2017 and Azure SQL Database

 https://bit.ly/2JUmONZ

 Blog posts
 http://www.nikoport.com/columnstore/
 https://www.sqlskills.com/blogs/jonathan/installing-and-configuring-sql-

server-2012-distributed-replay/
 https://www.sqlskills.com/blogs/jonathan/performing-a-distributed-replay-

with-multiple-clients-using-sql-server-2012-distributed-replay/

37

73
© SQLskills, All rights reserved.

https://www.SQLskills.com

Additional Resources

 Microsoft Docs
 https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-

oltp/migrating-to-in-memory-oltp
 https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-

oltp/estimate-memory-requirements-for-memory-optimized-tables

 Whitepapers
 SQL Server In-Memory OLTP and Columnstore Feature Comparison

 https://download.microsoft.com/download/D/0/0/D0075580-6D72-403D-8B4D-
C3BD88D58CE4/SQL_Server_2016_In_Memory_OLTP_and_Columnstore_Compa
rison_White_Paper.pdf

 SQL Server In-Memory OLTP Internals for SQL Server 2016
 https://docs.microsoft.com/en-us/sql/whitepapers/sql-server-in-memory-oltp-

internals-for-sql-server-2016

 In-Memory OLTP – Common Workload Patterns and Migration
Considerations (2014)
 https://msdn.microsoft.com/library/dn673538.aspx

74
© SQLskills, All rights reserved.

https://www.SQLskills.com

Review

 Columnstore
 In-Memory OLTP
 Cardinality Estimator
 Query Store plan forcing / automatic plan correction
 Distributed Replay

38

Questions?

