
1

SQLskills Immersion Event
IEPTO2: Performance Tuning and Optimization

If time permits –
Module 11: Deadlock Analysis

Jonathan Kehayias
Jonathan@SQLskills.com

2
© SQLskills, All rights reserved.

https://www.SQLskills.com

Overview

 Review of locking in SQL Server
 What is a deadlock (reminder)
 Collecting deadlock graphs
 Anatomy of a deadlock
 Reading deadlock graphs
 Resolving deadlocks

2



2

3
© SQLskills, All rights reserved.

https://www.SQLskills.com

Terminology

 Transaction – a unit of work performed within the database
 Lock – the synchronization mechanism on a resource that protects 

changes amongst multiple concurrent transactions
 Lock mode – defines the level of access that other transactions have 

while the resource is locked
 Blocking – when a transaction requests a lock mode that conflicts with 

a currently held lock and has to wait for that lock to be released
 Deadlock – when two transactions block each other trying to acquire 

locks on resources the other transaction holds in a conflicting mode

4
© SQLskills, All rights reserved.

https://www.SQLskills.com

Lock Granularity

 RID/KEY – a single row is locked
 RID – row identifier for a single row in a heap
 KEY – index key for a single row in a index

 PAGE – a single page in the database is locked
 HoBT – a heap or B-tree (index) partition is locked 
 TABLE – the entire table is locked
 METADATA – the table schema definition is locked

 Locks are acquired at multiple levels of granularity 
to fully protect the lowest-level resource

 Locks are always acquired 'top-down', from the table level down to 
individual rows
 This forms the lock hierarchy

C
o

n
c

u
rr

e
n

c
y

N
u

m
b

e
r 

o
f 

L
o

c
k

s



3

5
© SQLskills, All rights reserved.

https://www.SQLskills.com

Lock Hierarchy

 DELETE statement begins executing
that affects one row in a table

 A intent exclusive (IX) lock is acquired 
for the table

 A intent exclusive (IX) lock is acquired 
for the page containing the row

 A exclusive (X) lock is acquired for the
row being modified

Sales.SalesOrderDetail

Page

Row

Row

Row

IX

IX

X

6
© SQLskills, All rights reserved.

https://www.SQLskills.com

Lock Compatibility

 If a resource is already locked when a transaction requests a lock on it, 
the new lock can only be acquired if it is compatible with the existing 
lock on the resource

 The most common locks are shown here but a full compatibility 
matrix is available in Books Online (http://bit.ly/SQLLockCompat) 

Existing lock mode

R
e

q
u

e
s

t
e

d
 m

o
d

e

IS S U IX SIX X

Intent shared (IS) Yes Yes Yes Yes Yes No

Shared (S) Yes Yes Yes No No No

Update (U) Yes Yes No No No No

Intent exclusive (IX) Yes No No Yes No No

Shared with intent exclusive (SIX) Yes No No No No No

Exclusive (X) No No No No No No 



4

7
© SQLskills, All rights reserved.

https://www.SQLskills.com

What is a Deadlock

 A condition when two or more processes are holding locks on 
resources and are each waiting for the other to release it’s locks to 
progress, or where two or more processes are waiting for locks on 
resources in a circular chain

Resource 1

Resource 2

Process 

A

Process 

B

8
© SQLskills, All rights reserved.

https://www.SQLskills.com

Misconceptions

 Deadlocks are a bug in SQL Server
 Deadlocks cannot be prevented
 Using NOLOCK on all SELECT statements is the best way to prevent 

deadlocks from occurring
 Adding covering indexes for every type of query will prevent 

deadlocks from occurring
 Troubleshooting deadlocks is a complex task that requires an 

experienced SQL Server developer or administrator



5

9
© SQLskills, All rights reserved.

https://www.SQLskills.com

Deadlock Detection

 The lock monitor thread is responsible for deadlock detection and 
initiates periodic searches to identify and resolve deadlocks 

 The default between deadlock searches is 5 seconds
 Each time a deadlock is detected, the search interval decreases to as 

low as 100ms based on the frequency of the deadlocks occurring in 
the server
 When a deadlock search does not find a deadlock, the search interval 

increases again towards the 5 second default
 When a deadlock is detected, the lock monitor thread assumes that the next 

lock waits are entering a deadlock cycle and will automatically trigger a 
deadlock search, allowing a true deadlock to be detected immediately

 During a deadlock search, the lock monitor identifies blocked tasks 
and then finds the blocking resource owner by recursively searching 
the tasks to identify the cyclic blocking that forms a deadlock

10
© SQLskills, All rights reserved.

https://www.SQLskills.com

Deadlock Priority

 Any user can set the DEADLOCK_PRIORITY session option to control 
deadlock resolution behavior
 It is not possible to stop a user setting DEADLOCK_PRIORITY, even with 

Resource Governor

 Setting a higher DEADLOCK_PRIORITY for important transactions will 
ensure that those transactions are not selected as the deadlock victim 
if a deadlock occurs with a lower priority session
 Setting DEADLOCK_PRIORITY should usually not be used by developers to 

prevent deadlock involving SELECT statements
 The exception is where deadlocks cannot be prevented in other ways, and it 

is critical that the SELECT succeeds



6

11
© SQLskills, All rights reserved.

https://www.SQLskills.com

Deadlock Victim Selection

 When a deadlock is detected, the lock monitor ends it by choosing 
one of the threads as the deadlock victim
 The deadlock victim is killed, rolling back its transaction
 The client receives a 1205 error

 The deadlock victim is selected based on the following criteria:
 The DEADLOCK_PRIORITY of the two sessions is compared and the lowest 

priority session is selected as the victim
 If both of the sessions have the same DEADLOCK_PRIORITY value, the 

transaction that is the least expensive to rollback, based on the log records 
that have been generated, is selected as the victim (default)

12
© SQLskills, All rights reserved.

https://www.SQLskills.com

Collecting Deadlock Graphs

 Trace flags (1222, 1205, 1204)
 SQL Trace / Profiler
 Event Notifications / WMI 
 Extended Events

* More details on each of these is in the Reference slides at the end of the module!



7

13
© SQLskills, All rights reserved.

https://www.SQLskills.com

Process A

UPDATE 

TableA

Process A

UPDATE 

TableB

Process B

UPDATE 

TableB

Process B

UPDATE 

TableA

Reverse Object Order Deadlocks

 Two processes access objects in reverse order 

Table A

Table B

X Lock

X Lock

X Lock

X Lock

14
© SQLskills, All rights reserved.

https://www.SQLskills.com

Bookmark Lookup Deadlock

 Bookmark lookup deadlock

Clustered 

Index

Nonclustered

Index

Process A

INSERT

Process B

SELECT

X Lock

X Lock

S Lock

S Lock



8

15
© SQLskills, All rights reserved.

https://www.SQLskills.com

Serializable Deadlock

 Serializable lock-conversion deadlock

107

104

102

103

108

109

IF NOT EXISTS 

(SELECT 1 FROM T 

WHERE Key = 

105)

INSERT KEY 105

IF NOT EXISTS 

(SELECT 1 FROM T 

WHERE Key = 

106)

INSERT KEY 106

RANGE S-S RANGE S-S

RANGE I-N RANGE I-N

Table T

104

107

16
© SQLskills, All rights reserved.

https://www.SQLskills.com

Cascading Constraint Deadlocks

 Cascade operations for constraint enforcement switch to serializable 
isolation under the covers to prevent concurrent operations from 
inserting values into child tables that would violate the foreign key 
constraint being enforced

 Resulting deadlock is similar to a serializable deadlock with the 
exception that the isolation level reported by the deadlock graph will 
not be serializable, it will instead be the session isolation level

 SQLCAT whitepaper discusses these deadlocks in depth 
(http://bit.ly/RefConstDeadlock) 



9

17
© SQLskills, All rights reserved.

https://www.SQLskills.com

Multi-victim Deadlocks

UPDATE TableB

Table A

Table B

SELECT TableASELECT TableB

S Lock

SELECT TableA

S Lock

S Lock

SELECT TableB

S Lock

UPDATE TableA

X Lock

REPEATABLE READ ISOLATION REPEATABLE READ ISOLATION

18
© SQLskills, All rights reserved.

https://www.SQLskills.com

Memory Grant Deadlocks

 Execution memory in SQL Server is a limited resource that is 
controlled internally by a semaphore
 Semaphores track the availability of a resource and provide controlled 

access to tasks requesting usage of the resource

 Large sort and hash operations require execution memory grants to 
be able to execute efficiently
 If no execution memory is available the queries requesting a grant will wait 

with a RESOURCE_SEMAPHORE wait type

 If a transaction has acquired locks on a resource, blocking can occur if 
a query inside of the same transaction has to wait for execution 
memory to be granted

 If another transaction is waiting for an execution memory grant ahead 
of the active transaction and starts executing it may request a lock 
that conflicts with the existing lock, creating a deadlock scenario



10

19
© SQLskills, All rights reserved.

https://www.SQLskills.com

Intra-Query Parallelism Deadlocks

 Deadlock between parallel threads within the same session that is 
executing using parallelism

 Generally associated with a bug in SQL Server query optimization that 
may not be easily fixed, or could cause query plan regressions and 
may be to risky to fix

 Can be identified in the deadlock graph by all processes having the 
same spid
 The deadlock resources will be on exchangeEvent resources only

 May require reducing parallelism for the query, rewriting the query, or 
tuning the database indexes to change the plan being used during 
the query execution

20
© SQLskills, All rights reserved.

https://www.SQLskills.com

Resolving Deadlocks

 Change indexing to cover queries
 Enable Read Committed Snapshot Isolation

 Writers won’t block readers
 Reads won’t block writers

 Change isolation level
 Use locking hints to force specific lock types to prevent lock 

conversion



11

21
© SQLskills, All rights reserved.

https://www.SQLskills.com

Catching Deadlock Errors

 TRY/CATCH blocks in Transact-SQL can handle 1205 errors from 
deadlocks when they occur
 The ERRORNUMBER() function will return the error number being raised

 ADO.NET can handle deadlocks when they occur by catching the 
SqlException that is raised by the 1205 error returned by SQL Server 
when a deadlock occurs
 The Number property of SqlException will return the error number raised

22
© SQLskills, All rights reserved.

https://www.SQLskills.com

Retrying After a Deadlock

 Custom retry logic can be implemented to reattempt the operation 
that was selected as the deadlock victim
 Typically the lock scenario that resulted in the deadlock occurring only lasts 

a short duration, generally milliseconds, and will not exist when the 
transaction is resubmitted

 The retry logic must be coded so that an infinite loop does not occur if the 
deadlocking persists in the engine

 Logging of the deadlock can occur to allow for diagnosis and 
potential prevention in the future



12

23
© SQLskills, All rights reserved.

https://www.SQLskills.com

Key Takeaways

 Most deadlocks are not a bug in SQL Server and once you understand 
how to read the information in the graph they can usually be 
prevented

 Don’t blindly use NOLOCK on SELECT statements or add covering 
indexes for every type of query to prevent deadlocks; look at the root 
cause of the deadlock before making any changes

 Whenever possible use defensive coding in Transact-SQL with 
TRY/CATCH blocks to handle deadlocks and retry the victim 
transaction before returning an error to the application, or have the 
application handle the 1205 error when it occurs

© SQLskills, All rights reserved.
https://www.SQLskills.com 24

© SQLskills, All rights reserved.
https://www.SQLskills.com

Resources

 Bart Duncan’s blog
 http://blogs.msdn.com/b/bartd/archive/tags/sql+deadlocks/

 Deadlock posts
 http://sqlblog.com/blogs/jonathan_kehayias/archive/tags/Deadlock/

default.aspx

 Jon’s posts on SQL Server Central
 http://www.sqlservercentral.com/Authors/Articles/Jonathan_Kehayias/

244648/

 Jon’s Pluralsight course
 http://pluralsight.com/training/Courses/TableOfContents/sqlserver-

deadlocks



13

25
© SQLskills, All rights reserved.

https://www.SQLskills.com

Review

 Review of locking in SQL Server
 What is a deadlock (reminder)
 Collecting deadlock graphs
 Anatomy of a deadlock
 Reading deadlock graphs
 Resolving deadlocks

25

Questions?



14

Reference Slides

Deadlock collection methods

28
© SQLskills, All rights reserved.

https://www.SQLskills.com

Trace Flags

 Trace Flags enable alternate "code paths" at key points inside the 
Database Engine, allowing additional code to execute

 Prior to SQL Server 2005, trace flags were the only method of 
collecting the necessary information for deadlock troubleshooting

 Trace flags must be explicitly enabled using DBCC TRACEON or 
through startup parameters
 DBCC TRACEON requires the -1 trace flag option so all sessions are affected

 E.g. DBCC TRACEON(1205, -1);

 Trace flags 1205 and 1222 provide process-level information about 
the tasks that participate in the deadlock
 This deadlock information is written to the ERRORLOG file for the instance

 Trace flag 1204 provides deadlock graph node-level information and 
was the only method of getting deadlock information in SQL Server 
2000



15

29
© SQLskills, All rights reserved.

https://www.SQLskills.com

SQL Trace and Profiler

 Starting in SQL Server 2005, the Deadlock Graph trace event can be 
used in a server-side trace or with SQL Server Profiler to capture a full 
graph in XML format for deadlocks that occur

 The Deadlock Graph event XML contains all the information necessary 
to troubleshoot the cause of a deadlock

 Deadlock Graph events can be extracted from trace files, or Profiler 
captured data, into individual XDL files for analysis
 The XDL format of the deadlock graph allows the graphical representation of 

the deadlock in SQL Server Profiler as well as in SQL Server Management 
Studio

 Reading the deadlock graph in XML form can often be faster for 
analysis than trying to interpret the graphical representation

30
© SQLskills, All rights reserved.

https://www.SQLskills.com

Event Notifications

 Event notifications were added in SQL Server 2005 and allow specific 
Trace events to be captured using Service Broker for automated 
processing of the event data when the event occurs

 The DEADLOCK_GRAPH event provides the same information as the 
SQL Trace Deadlock Graph event
 The event is entered in a Service Broker queue instead of being output to 

SQL Trace for consumption

 Configuring Event Notifications requires:
 A queue to capture the event messages
 A service to route the messages to the queue
 A server-level Event Notification for the DEADLOCK_GRAPH event to capture 

the data and send it to the service

 An optional ‘Activation Stored Procedure’ can be created to 
automatically process the events as they are queued



16

31
© SQLskills, All rights reserved.

https://www.SQLskills.com

Windows Management Instrumentation

 Starting in SQL Server 2005, the Database Engine was instrumented to 
integrate with Windows Management Instrumentation (WMI) for 
specific events
 WMI events in SQL Server rely on Event Notifications through the msdb

database natively

 SQL Server Agent alerts were rewritten to be able to monitor for, and 
capture data about, WMI events being raised by the Database Engine
 Server names exceeding 14 characters do not work unless SQL Server 2005 

Service Pack 2 with Cumulative Update 5 has been applied

 Alerts can be created using the WMI query language (WQL) to query 
the specific WMI namespace for the event to be monitored

 A full example of WMI Alerts is available in Books Online 
(http://bit.ly/SQLWMIAlert) 

32
© SQLskills, All rights reserved.

https://www.SQLskills.com

Extended Events

 Extended Events were introduced in SQL Server 2008 as a light-weight 
diagnostic data collection mechanism

 The xml_deadlock_report event fires when the Lock Monitor in SQL 
Server identifies a deadlock and raises error 1205 

 New XML format in Extended Events
 Supports multi-victim deadlock analysis
 Incompatible with graphical display of deadlock graph in SSMS
 Reduces redundant information that existed in the previous XML format

 The RTM releases of SQL Server 2008 and 2008R2 contain a bug which 
causes the new XML format to be incorrectly formed
 SQL Server 2008 SP1+CU6 or higher, and SQL Server 2008R2 RTM+CU1 or 

higher, fix this bug (http://support.microsoft.com/kb/978629) 

 The event is collected by default in the system_health event session 
from SQL Server 2008 onwards


