
SQLskills Online Immersion Event

Solving Common Performance
Problems Using Query Store

Erin Stellato

Erin@SQLskills.com

© SQLskills, All rights reserved.
http://www.SQLskills.com

Erin Stellato
Principal Consultant, SQLskills

Trainer/Speaker

In addition to consulting, I teach content for
our IE0: Accidental DBA course, and our
IEPTO2: Performance Tuning and
Optimization course

PASS Volunteer

I am a member of the PASS Nomination
Committee this year, have previously served
on the board of my local user group
(ONSSUG) and supported the Performance
Virtual Chapter

Data Platform MVP

I have been fortunate to be recognized as an
MVP by Microsoft since 2012

@erinstellatoErin@SQLskills.com

www.sqlskills.com/blogs/erin

© SQLskills, All rights reserved.
http://www.SQLskills.com

Daily Course Format: Tue, Wed, and Th

▪ Class runs for three half days
▪ Tuesday, May 4 through Thursday, May 6, 2021

▪ Each day
▪ Lecture: 90 minutes from 9am until 10:30am PT

▪ Please use “CHAT” for questions during the lecture

▪ Open Q&A: 30 minutes from 10:30am until 11:00am PT
▪ Will address unanswered questions from chat

▪ Mandatory break: 30 minutes from 11:00am until 11:30am PT
▪ Everyone needs a bit of a break!

▪ Lecture: 90 minutes from 11:30am until 1:00pm PT
▪ Please use “CHAT” for questions during the lecture

▪ Open Q&A: up to 60 minutes from 1:00pm until 2:00pm PT
▪ Will address unanswered questions from chat

▪ Can open up for “open mic” questions

Time Conversions
9:00am PT
= Noon ET

= 4:00pm UTC
Use this to see the exact
time in YOUR time zone:

Event Time
Announcer -

SQLskills IEQS
(timeanddate.com)

https://www.timeanddate.com/worldclock/fixedtime.html?msg=SQLskills+IEQS&iso=20210504T09&p1=234&ah=5

© SQLskills, All rights reserved.
http://www.SQLskills.com

Class Format: No LABS???

▪ Class time – lecture / demo / questions! And, please ASK questions!
▪ There are no stupid questions… everyone started with ZERO knowledge about

SQL Server!

▪ If you’re thinking it – you’re probably not alone… speak up!

▪ Why not lab time?
▪ Historically folks defer on labs to respond to email, etc.
 losing valuable class time

▪ We can spend more time on content
 covering both MORE content and in more depth!

▪ You receive all of the demo code and samples; you can reproduce everything we
show you and pick where to really focus your attention!
▪ You can take time to really study the content that’s most appropriate to you

▪ You can skip content that’s not appropriate

▪ You can take the RIGHT time for each/every exercise (rather than some being done quickly
and others needing more time… potentially getting frustrated without enough time)

© SQLskills, All rights reserved.
http://www.SQLskills.com

Course Resources, Pluralsight Access, and Alumni

▪ Send Paul (paul@sqlskills.com) an email for a FREE 30-day access to ALL
SQLskills online training classes on Pluralsight
▪ No strings attached, no credit-card required

▪ If you don’t receive it, send mail to Paul

▪ Course resources will be posted on the course membership page for
class upon course completion

▪ We may want to update a slide or two, add some notes/resources based
on questions and discussions, and process the recordings

▪ Email us: Training@SQLskills.com if you have any problems finding or
accessing any of your course materials

▪ And, now that you’ve attended one of our courses; you are an alumnus
in our system with discounts for additional training courses!

mailto:paul@sqlskills.com
mailto:Training@SQLskills.com

© SQLskills, All rights reserved.
http://www.SQLskills.com

Course Resources

▪ Course content (this slide deck)
▪ One “two-slides per side” PDF for optimal printing (save some trees!)
▪ One “full slide” PDF for optimal viewing and/or online note-taking

▪ Demos
▪ All instructor-led demo scripts
▪ All reference scripts

▪ Reference links and additional resources

▪ Online recordings for these sessions

▪ Upon completion don’t forget to request: “BadgeMe”

Please do not redistribute: These resources are for attendees only.
Please respect our IP and time in creating these resources

and do not share/forward.

© SQLskills, All rights reserved.
http://www.SQLskills.com

Recommendation:
Leverage Great Products!
▪ Even with as much training as we will provide, you can’t know everything

▪ SQL Server is powerful, complex, and has lots of different potential issues
let third party software help!

▪ SQLskills partners with SentryOne because we really feel they’ve made the best suite of SQL
Server products available

▪ LEARN MORE:

▪ SQL Server Monitoring: https://www.sentryone.com/sql-server/sql-server-monitoring

▪ Plus, get your questions answered!

▪ Email Andy / Devon your specific monitoring questions
-- MailTo: ayun@sentryone.com and MailTo: dwilson@sentryone.com

▪ Plan Explorer

▪ https://www.sentryone.com/plan-explorer

▪ Advanced Plan Explorer Usage for Tuning Execution Plans

▪ Special SQLskills-Only Presentations Coming in May!

▪ Details will be posted on your course contents page! SQL Server Monitoring

https://www.sentryone.com/sql-server/sql-server-monitoring
mailto:ayun@sentryone.com
mailto:dwilson@sentryone.com
https://info.sentryone.com/webinar-advanced-plan-explorer-usage-for-tuning-execution-plans
https://info.sentryone.com/webinar-advanced-plan-explorer-usage-for-tuning-execution-plans
http://www.sentryone.com/
https://www.sentryone.com/sql-server/sql-server-monitoring

© SQLskills, All rights reserved.
http://www.SQLskills.com

http://www.SentryOne.com

http://www.sentryone.com/

© SQLskills, All rights reserved.
http://www.SQLskills.com

Overview

▪ Query Store Fundamentals

▪ Understanding the Query Store Data

▪ Finding Performance Issues

▪ Query Store Performance

▪ Query Tuning
▪ Plan Forcing

▪ Finding Patterns

▪ Other Uses of Query Store

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Store Fundamentals

© SQLskills, All rights reserved.
http://www.SQLskills.com

Common Performance Problems

▪ Queries that are slow/take too long to execute

▪ Queries that consume significant resources

▪ Queries that execute with high frequency

▪ Queries with high variability in performance

© SQLskills, All rights reserved.
http://www.SQLskills.com

What data is available AFTER a problem?

ERRORLOG system_health

and default trace

Anything you’ve

set up to capture

data

© SQLskills, All rights reserved.
http://www.SQLskills.com

What tools do you use DURING a problem?

▪ Performance Monitor

▪ DMVs

▪ Extended Events/Trace

▪ Query plans

▪ DBCC commands

▪ Third Party Monitoring Software

▪ Xperf

▪ CU/SP Release notes

▪ Others?

© SQLskills, All rights reserved.
http://www.SQLskills.com

Sources for Query Performance Data

Performance
Monitor

DMVs

Extended
Events

SSMS

© SQLskills, All rights reserved.
http://www.SQLskills.com

Example Data

PerfMon
• SQL Compilations/sec

• SQL Re-compilcations/sec

DMVs

• sys.dm_exec_query_stats

• sys.dm_exec_sql_text

• sys.dm_exec_query_plan

Extended Events

• sp_statement_completed

• sql_statement_completed

• query_post_execution_showplan

SSMS

• Estimated plan

• Actual plan

• STATISTICS IO

• STATISTICS TIME

What about

baseline data?

© SQLskills, All rights reserved.
http://www.SQLskills.com

How do you baseline query performance?

▪ Snapshot data from multiple DMVs

▪ Use sp_whoisactive to snapshot data

▪ Capture data using Extended Events
▪ Trace for SQL Server 2008R2 and earlier

▪ Use a third-party monitoring tool

▪ OpenQueryStore
▪ SQL Server 2008 – SQL Server 2014

▪ Query Store
▪ SQL Server 2016+

© SQLskills, All rights reserved.
http://www.SQLskills.com

You do not need to be a performance-

tuning expert to use Query Store. In fact,

Query Store was written so that anyone who

uses SQL Server can find the worst-

performers and regressed queries.

If you are a performance-tuning expert or

have extensive experience with SQL Server,

then you’ll be able to work beyond the

standard functionality of Query Store to

fully leverage all it has to offer.

Who should use Query Store?

© SQLskills, All rights reserved.
http://www.SQLskills.com

History of Query Store

2014 Q3: First
public session
by Conor
Cunningham at
PASS Summit

2015: Private
preview in
Azure SQL
Database

2015 Q3:
Public session
by Borko
Novakovic at
PASS Summit

2015 Q4:
Publicly
available in
Azure SQL
Database

2016 Q2:
Generally
available in
SQL Server
2016

2016 Q3/Q4:
Enabled by
default for all
Azure SQL
Databases

“Data Driven” approach

© SQLskills, All rights reserved.
http://www.SQLskills.com

What is Query Store?

Billed as a flight data recorder
What kind of a history do you have to look at after a performance issue or server
restart/crash?

Provides information about query execution
Captures performance and query data

Available in *ALL* editions of SQL Server
Highly recommended to run the latest release (2016 SP2 CU14, 2017 CU22, 2019 CU6) for all editions

Enabled by default in Azure SQL Database since late 2016

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Store Basics

Enabled at the

database level

Data persisted in

internal tables

Cannot be enabled for

master, model* or

tempdb

Requires db_owner to

force/un-force plans

Data is not captured on

readable secondaries

Requires VIEW

DATABASE STATE to

view data

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query and Performance Data in Query Store

sys.dm_exec_query_plan

sys.dm_exec_cached_plans

sys.dm_exec_sql_text

sys.dm_exec_query_stats

sys.dm_exec_session_wait_stats

Plan Store

Runtime Stats Store

Wait Stats Store

SQL Server

2017 and

Azure SQL

Database

© SQLskills, All rights reserved.
http://www.SQLskills.com

▪ Compile, bind and
optimization duration

▪ Compile memory

▪ Last execution time

▪ Context settings

▪ Query text

▪ Query plan

Plan Store

Data Captured by Query Store

▪ Execution counts

▪ Duration

▪ CPU

▪ Logical reads

▪ Physical reads

▪ Write

▪ Memory use

▪ DOP

▪ Log bytes/used

▪ tempdb

Runtime Stats Store

▪ Wait statistics per plan

Wait Stats Store

SQL Server

2017 and

Azure SQL

Database

© SQLskills, All rights reserved.
http://www.SQLskills.com

What queries are captured?

▪ Any T-SQL DML
▪ CAPTURE_MODE will change what is captured

▪ SELECT includes cursors, SET assignment, internal queries

▪ Not the same as what is cached in the DMVs
▪ queries that include OPTION (RECOMPILE)

▪ ad hoc queries (even with ‘Optimize for Ad Hoc Workloads’ enabled)

▪ internal queries (e.g. automatic updates to statistics)

▪ Each statement in an object is captured as a separate query
▪ Stored procedures, functions, triggers

▪ Statement text appears in parameterized form (unless ad hoc)

© SQLskills, All rights reserved.
http://www.SQLskills.com

What queries are not captured?

▪ DDL
▪ CREATE, ALTER, DROP

▪ BULK INSERT

▪ “commands”
▪ DBCC, KILL, BACKUP

▪ SET SHOWPLAN

▪ Those executed from different database context

© SQLskills, All rights reserved.
http://www.SQLskills.com

Other Data NOT Captured by Query Store

▪ User/login that executed the query

▪ Workstation from which the query was executed

▪ Application from which the query was executed

▪ Execution plan with actual runtime statistics

© SQLskills, All rights reserved.
http://www.SQLskills.com

Demo: Query Store in Action

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Store Settings

▪ Query Store is not enabled by default in SQL Server 2016, SQL
Server 2017, or SQL Server 2019

▪ Query Store is enabled by default for new databases in Azure
SQL Database (included those in Managed Instances)
▪ Retroactively enabled for databases

▪ There are multiple settings related to Query Store
configuration, and they affect what data is collected and how it
is stored

© SQLskills, All rights reserved.
http://www.SQLskills.com

SQL Query

Compilation

Execution

Query Store

Plan Store

Runtime Stats

Store

Wait Stats

Store

Query

Store

internal

tables

in
 m

e
m

o
ry

Async write

Adapted from: https://msdn.microsoft.com/en-us/library/mt631173.aspx

https://msdn.microsoft.com/en-us/library/mt631173.aspx

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Store Options(1)

OPERATION_MODE = [READ_WRITE | READ_ONLY]
Why it matters: Do you want to capture new data?

QUERY_CAPTURE_MODE = [ALL | AUTO | CUSTOM | NONE]
Why it matters: Do you want to capture all queries, or just those most relevant to your
workload? CUSTOM is new in SQL 2019

MAX_PLANS_PER_QUERY = #
Why it matters: You may have more than 200 unique plans for a query (?) (!)

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Store Options(2)

MAX_STORAGE_SIZE_MB = #
Why it matters: The default is 1GB or less, “right” value depends on multiple
factors

CLEANUP_POLICY = (STALE_QUERY_THRESHOLD_DAYS = #)
Why it matters: You need to think about how much data you want to keep

SIZE_BASED_CLEANUP_MODE = [AUTO | OFF]
Why it mattes: If this is OFF and MAX_STORAGE_SIZE_MB is reached, Query Store will
switch to READ_ONLY

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Store Options (4)

DATA_FLUSH_INTERVAL_SECONDS = #
Why it matters: Determines how frequently Query Store is written to disk

INTERVAL_LENGTH_MINUTES = #
Why it matters: Affects the space needed by Query Store and the time windows across
which you can analyze data

WAIT_STATS_CAPTURE_MODE [ON | OFF]
Why it matters: Enabled by default (and enabled when upgrade to SQL 2017)

SQL Server 2017 and Azure SQL Database

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Store Capture Policy: CUSTOM

▪ This additional option allows you to further customize what
queries are captured
▪ Three options establish OR conditions

▪ Only available in SQL Server 2019 and Azure SQL Database

▪ Benefits workloads that are extremely ad hoc

▪ There are four settings to consider

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Store CUSTOM Mode Options

EXECUTION_COUNT
Why it matters: If a query executes < N times, unless compile or execution time
exceed set values, it won’t be captured

TOTAL_COMPILE_CPU_TIME_MS
Why it matters: Estimation based on existing data may be difficult

TOTAL_EXECUTION_CPU_TIME_MS
Why it matters: Existing data should help with estimation

STALE_CAPTURE_POLICY_THRESHOLD
Why it matters: Sets the window of time for query evaluation

© SQLskills, All rights reserved.
http://www.SQLskills.com

Default Values

▪ Tier change in Azure SQL Databases causes a change in Query
Store settings, unless they were modified using ALTER
DATABASE

Setting 2016/2017 2019

SQL DB

Basic

SQL DB

Standard

SQL DB

Premium

QUERY_CAPTURE_MODE ALL AUTO AUTO AUTO AUTO

MAX_STORAGE_SIZE_MB 100 1000 10 100 1024

CLEANUP_POLICY 30 30 7 30 30

SIZE_BASED_CLEANUP_MODE AUTO AUTO AUTO AUTO AUTO

DATA_FLUSH_INTERVAL_

SECONDS 900 900 900 900 900

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Store Settings(5)

▪ Improper configuration of these settings can cause data to be
removed from Query Store before expected, or Query Store
can stop collecting data entirely
▪ https://www.sqlskills.com/blogs/erin/query-store-settings/

▪ Stored in sys.database_query_store_options, along with current
and desired status

▪ Use Extended Events to monitor
▪ query_store_db_settings_and_state

▪ query_store_db_settings_changed

▪ query_store_disk_size_info

▪ query_store_disk_size_over_limit

https://www.sqlskills.com/blogs/erin/query-store-settings/

© SQLskills, All rights reserved.
http://www.SQLskills.com

Demo: Configuring Query Store

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Store Settings and AG Replicas

▪ Querying sys.database_query_store_options on a replica
fetches the metadata settings cached in memory

▪ Any change made to the configuration of Query Store is
persisted to disk on the primary and thus propagated over to
the secondary and written to disk

▪ However, on-disk changes to the setting are only be
propagated to memory cache once the secondary replica is
restarted or becomes primary

▪ https://www.sqlskills.com/blogs/erin/different-query-store-
settings-for-a-database-in-an-availability-group/

https://www.sqlskills.com/blogs/erin/different-query-store-settings-for-a-database-in-an-availability-group/

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Store Settings in a sqlproj

▪ Query Store configuration values can be defined in a sqlproj
▪ Database development project extension created by Visual Studio and

stores the schema of the database and can include SQL source code

▪ For example, a DACPAC deployment would set configuration
options to the same values that are set in the project
▪ If these are different than what is set in production, values can change

with a deployment

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Store Trace Flags (1)

▪ Current configuration prevents queries from executing until all
necessary Query Store data has been loaded into memory
▪ May be an issue for larger data sets

▪ Check for QDS_LOADDB wait type

▪ TF 7752 allows queries to execute while Query Store data loads
asynchronously during startup
▪ Data about query execution will not be collected until Query Store

data is loaded into memory

▪ This is default behavior in SQL Server 2019

▪ Use Extended Events to monitor initial loading and shutdown

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Store Trace Flags (2)

▪ By default, SQL Server will wait until the Query Store data
that’s in memory is written to disk before fully shutting down
▪ This could delay a failover

▪ TF 7745 bypasses writing Query Store data to disk at shutdown
▪ Query Store data may be lost, the amount is dependent on the value

for DATA_FLUSH_INTERVAL_SECONDS

© SQLskills, All rights reserved.
http://www.SQLskills.com

Cross Database Queries

▪ Queries executed from different database context are not
captured in a user database with Query Store enabled

▪ With Query Store enabled for multiple databases, with queries
across the databases, a query is only captured in the database
from which it is executed

▪ For Linked Servers, if Query Store enabled in both the
originating and destination database, queries are only
captured in the destination database if sp_executesql is used

© SQLskills, All rights reserved.
http://www.SQLskills.com

Understanding the Query Store Data

© SQLskills, All rights reserved.
http://www.SQLskills.com

Image attribution: https://msdn.microsoft.com/en-us/library/mt631173.aspx

https://msdn.microsoft.com/en-us/library/mt631173.aspx

© SQLskills, All rights reserved.
http://www.SQLskills.com

SELECT

TOP (1)

[Extent1].[UserId] AS [ID]

FROM [dbo].[UserSessions] AS [Extent1]

WHERE [UserID] =

28ACBBC0-75DF-4BEF-B9B7-48CB8860897C;

query_text_id query_sql_text

2144475 SELECT TOP (1) [Extent1].[UserId] AS [ID] FROM [dbo].[UserS…

3135658 SELECT TOP (1) [Extent1].[UserId] AS [ID] FROM [dbo].[UserS…

plan_id query_id query_plan_hash query_plan

is_forced_

plan

2168010 2656838 0x2B21AE35885B1F12 <ShowPlanXML x… 0

3163697 3674359 0x2B21AE35885B1F12 <ShowPlanXML x… 0

context_settings_id set_options

14 0x000210FB

15 0x000214FB

SELECT

TOP (1)

[Extent1].[UserId] AS [ID]

FROM [dbo].[UserSessions] AS [Extent1]

WHERE [UserID] =

8640610E-0627-4D9D-B07E-542EBA495922;

q
u

e
ry

_t
ex

t
q

u
e

ry
p

la
n

co
n

te
xt

_s
et

ti
n

gs

query_id query_text_id

context_

settings_

id object_id query_hash

query_

parameterization

_type_desc count_compiles

2656838 2144475 14 0 0xF0B23C1ECE53788E None 3

3674359 3135658 14 0 0xF0B23C1ECE53788E None 1

© SQLskills, All rights reserved.
http://www.SQLskills.com

Compiling and the Plan Store

Statement DOES

exist in Query

Store

Statement does

NOT exist in Query

Store

Statement exists in

Query Store, but

there is new

context

Statement exists in

Query Store but

has a new plan

sys.query_store_query_text

sys.query_context_settings

sys.query_store_query

sys.query_store_plan

If context does not exist

Update

compile stats If context does not exist

Update compile stats or new plan

Update compile stats

In the plan cache, only

execution stats are updated

© SQLskills, All rights reserved.
http://www.SQLskills.com

Understanding Runtime Statistics

SELECT [OrderID], [OrderDate], [CustomerPurchaseOrderNumber]

FROM [Sales].[Orders]

WHERE [CustomerID] = @CustID

ORDER BY [OrderDate];

runtime_stats_interval_id plan_id count_executions avg_duration last_duration max_duration min_duration

2932 805 1 800 800 800 800

query_id

768

plan_id query_plan

805 <ShowPlanXML xmlns=“http://sc

sys.query_store_query sys.query_store_plan

sys.query_store_runtime_stats

© SQLskills, All rights reserved.
http://www.SQLskills.com

Understanding Runtime Statistics

SELECT [OrderID], [OrderDate], [CustomerPurchaseOrderNumber]

FROM [Sales].[Orders]

WHERE [CustomerID] = @CustID

ORDER BY [OrderDate];

runtime_stats_interval_id plan_id count_executions avg_duration last_duration max_duration min_duration

2932 805 432 621 589 816 300

query_id

768

plan_id query_plan

805 <ShowPlanXML xmlns=“http://sc

sys.query_store_query sys.query_store_plan

sys.query_store_runtime_stats

© SQLskills, All rights reserved.
http://www.SQLskills.com

Understanding Runtime Statistics

SELECT [OrderID], [OrderDate], [CustomerPurchaseOrderNumber]

FROM [Sales].[Orders]

WHERE [CustomerID] = @CustID

ORDER BY [OrderDate];

runtime_stats_interval_id plan_id count_executions avg_duration last_duration max_duration min_duration

2932 805 432 621 589 816 300

2933 805 1 350 350 350 350

query_id

768

plan_id query_plan

805 <ShowPlanXML xmlns=“http://sc

sys.query_store_query sys.query_store_plan

sys.query_store_runtime_stats

© SQLskills, All rights reserved.
http://www.SQLskills.com

Understanding Runtime Statistics

SELECT [OrderID], [OrderDate], [CustomerPurchaseOrderNumber]

FROM [Sales].[Orders]

WHERE [CustomerID] = @CustID

ORDER BY [OrderDate];

runtime_stats_interval_id plan_id count_executions avg_duration last_duration max_duration min_duration

2932 805 432 621 589 816 300

2933 805 1 350 350 350 350

sys.query_store_runtime_stats

runtime_stats_interval_id start_time end_time

2932 2021-05-05 08:00:00.0000000 +00:00 2021-05-05 09:00:00.0000000 +00:00

2933 2021-05-05 09:00:00.0000000 +00:00 2021-05-05 10:00:00.0000000 +00:00

sys.query_store_runtime_stats_interval

© SQLskills, All rights reserved.
http://www.SQLskills.com

Demo: Exploring Query Store Data

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Store Views

• sys.query_store_query_text

• sys.query_store_query

• sys.query_context_settings
Text

• sys.query_store_planPlan

• sys.query_store_runtime_statistics

• sys.query_store_runtime_statistics_intervalRuntime Stats

• sys.query_store_wait_statsWait Stats

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Store System Tables

▪ Data resides in PRIMARY filegroup

▪ The Query Store data is exposed through catalog views

▪ The underlying tables all have primary keys, but none have
foreign keys
▪ Integrity is logically enforced within the engine

▪ If you find Query Store in an ERROR state (actual_state = 3),
run sp_query_store_consistency_check to fix
▪ Very extreme edge case

▪ Tables are reorganized regularly (internally managed)
▪ Use Extended Events to monitor

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Store Dates

▪ Stored as DATETIMEOFFSET data type

▪ Use AT TIME ZONE get dates in your time zone

▪ Reference time zone list in sys.time_zone_info

▪ Use DATEADD to search date ranges

▪ https://www.sqlskills.com/blogs/erin/handling-dates-in-query-
store/

SELECT
[start_time] AT TIME ZONE 'Eastern Standard Time' [EST StartTime]

FROM [sys].[query_store_runtime_stats_interval]

https://www.sqlskills.com/blogs/erin/handling-dates-in-query-store/

© SQLskills, All rights reserved.
http://www.SQLskills.com

How Much Space Do I Need?(1)

▪ There are multiple factors to consider:
▪ How long are you keeping the data?

▪ Across what interval are you capturing data?

▪ Are you capturing wait statistics (2017+, Azure SQL DB)

▪ What does your workload look like?
▪ Number of unique queries?

▪ Number of unique plans?

▪ What is the capture mode?

Biggest impact on

space required

© SQLskills, All rights reserved.
http://www.SQLskills.com

How Much Space Do I Need? (2)

▪ Default size for Azure SQL Database is either 10MB, 100MB, or
1GB (depends on tier)
▪ Counts against total space for the database

▪ Interval for all is 60 minutes

▪ My recommendation: start with 2GB and monitor
▪ current_storage_size_mb in sys.database_query_store_options

▪ Extended Events
▪ query_store_database_out_of_disk_space

▪ query_store_disk_size_over_limit

© SQLskills, All rights reserved.
http://www.SQLskills.com

How the Interval Setting Affects Space

▪ sys.query_store_runtime_statistics

INTERVAL_

LENGTH_

MINUTES

Rows/

Day

Rows/

Month

Approximate

space (KB)

Total space for 30 days

for 1000 unique

queries (MB)

Total space for 30 days

for 5000 unique

queries (MB)

60 24 732 20 20 100

30 48 1,464 40 40 195

15 96 2,928 80 80 390

10 144 4,392 120 118 590

5 288 8,784 240 235 1175

1 1,440 43,920 1,201 1175 5865

Each row in sys.query_store_runtime_stats is 28 bytes

© SQLskills, All rights reserved.
http://www.SQLskills.com

Estimating Space Needed for Plans(1)

▪ The following table represents a calculation/estimation
▪ (Average size of plan (bytes) *

Unique number of plans)

/ 1024 / 1024

▪ To know the average size of your plans, you’ll have to
interrogate the system tables (sys.query_store_plan)

© SQLskills, All rights reserved.
http://www.SQLskills.com

Estimating Space Needed for Plans(2)

Approximate

size of each

plan (bytes)

Total space

(MB)

50,000 plans

Total space

(MB)

100,000 plans

Total space

(MB)

250,000 plans

Total space

(MB)

500,000 plans

Total space

(MB)

1,000,000 plans

2000 95 191 477 954 1907

5000 238 477 1192 2384 4768

7000 334 668 1669 3338 6676

10000 477 954 2384 4768 9537

© SQLskills, All rights reserved.
http://www.SQLskills.com

Example 1 of Used Space

▪ INTERVAL_LENGTH_MINUTES = 30

▪ CLEANUP_POLICY = (STALE_QUERY_THRESHOLD_DAYS = 30)

Data Rows MB

query_text 581905 102

query 582140 38

plan 596200 420

runtime_stats 1105562 795

runtime_stats_interval 1388 <1

context_settings 25 <1

© SQLskills, All rights reserved.
http://www.SQLskills.com

Example 2 of Used Space

▪ INTERVAL_LENGTH_MINUTES = 60

▪ CLEANUP_POLICY = (STALE_QUERY_THRESHOLD_DAYS = 30)

Data Rows MB

query_text 709719 1076

query 709833 534

plan 721567 3674

runtime_stats 1695027 1465

runtime_stats_interval 153 24

context_settings 19 8

© SQLskills, All rights reserved.
http://www.SQLskills.com

Finding Performance Issues

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Store

▪ Enable for each user database

▪ Configure collection options

▪ Retention policy affects size of
data in user DB

▪ Does not capture runtime
parameters

▪ Captures query-level wait stats

▪ SQL Server 2016+

▪ Ability to force plans

3rd Party

▪ Captures data for all DBs on an
instance

▪ Configure collection options

▪ Data stored in a separate DB (on
a separate instance)

▪ Captures runtime parameters
with queries

▪ Captures instance-level wait stats

▪ All SQL Server versions

▪ Cannot force plans

Query Store vs. Third-Party Monitoring Tools

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Store Reports

▪ Available within Management Studio
▪ Current SSMS version is 18.x

▪ Can be used for SQL 2016/2017/2019, or Azure SQL DB

▪ Current reports:
▪ Regressed Queries

▪ Overall Resource Consumption

▪ Top Resource Consuming Queries

▪ Queries With Forced Plans

▪ Queries with High Variation

▪ Query Wait Statistics*

▪ Tracked Queries

© SQLskills, All rights reserved.
http://www.SQLskills.com

Using the Reports

▪ Performance reports are configurable

▪ Can specify resource(s), time frame, and number of queries to
return

▪ Filtering options include CPU, Duration, Execution Count,
Logical Reads, Logical Writes, Memory Consumption, Physical
Reads
▪ Wait Time, Log Memory, tempdb Memory, Row Count also available in

SQL Server 2017

▪ Avg, Min, Max, Total, StDev

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Regression

Calculated using captured values
CPU, duration, I/O, memory

Displayed in UI via “Regressed Queries” report
You can select a single resource on which to filter, as well as the time frame

You can also query the catalog views directly
Write your own T-SQL to find regressed queries based on changes in one or more
resources (e.g. duration increased by 20% and IO increased by 40%)

© SQLskills, All rights reserved.
http://www.SQLskills.com

Azure SQL Database

▪ Azure Portal contains Intelligent Performance data for each
database
▪ Performance overview

▪ Performance recommendations

▪ Query Performance Insight

▪ Automatic Tuning

▪ Azure SQL Analytics can also be configured for additional
monitoring and recommendations
▪ Available for Azure SQL DB (single and pooled) and Managed Instance

databaes

© SQLskills, All rights reserved.
http://www.SQLskills.com

Demo: Using Query Store Reports

© SQLskills, All rights reserved.
http://www.SQLskills.com

Notes About Querying the Catalog Views

▪ Every underlying system table has a clustered index, and most
have one nonclustered index

▪ You cannot create additional indexes to support queries, thus
index scans will be required for a lot of ad-hoc queries that
search non-indexed columns

▪ Options
▪ Use DBCC CLONEDATABASE to create a schema-only copy of the

database with Query Store data and query it

▪ Use read-only secondaries for queries against Query Store

© SQLskills, All rights reserved.
http://www.SQLskills.com

Indexes for the Query Store Tables

Data Clustered Index Nonclustered Index

query_text query_text_id statement_sql_handle

query query_id query_text_id, context_settings_id

plan plan_id query_id (-)

runtime_stats

plan_id,

runtime_stats_interval_id,

execution_type runtime_stats_id

runtime_stats_interval runtime_stats_interval_id end_time

context_settings context_settings_id(-)

wait_stats

runtime_stats_interval_id,

plan_id, wait_category,

execution_type wait_stats_id

© SQLskills, All rights reserved.
http://www.SQLskills.com

Comparing Data Across Sources

DMVs

• Aggregate metrics
for a query

• Performance of
query as long as it’s
been in cache

• Based on what plans
are in cache at that
moment

XE and Trace

• Individual query
metrics

• Captured across a
window of time

• Data may or may
not be filtered

Query Store

• Aggregate metrics

for a query plan

• Performance of plan

during pre-defined,

consistent intervals

• Continuously

captured

© SQLskills, All rights reserved.
http://www.SQLskills.com

Demo: DMVs vs. XE vs. Query Store

© SQLskills, All rights reserved.
http://www.SQLskills.com

Wait Statistics in SQL Server

▪ The term “wait” means that a thread running on a processor
cannot proceed because a resource it requires is unavailable
▪ The thread has to wait until that resource is available

▪ The resource the thread is waiting for is tracked by SQL Server
▪ Each resource maps to a wait type

▪ Example resources a thread may wait for:
▪ A lock (LCK_M_XX wait type)

▪ A data file page to be read into the buffer pool (PAGEIOLATCH_XX)

▪ Results from part of a parallel query (CXPACKET)

© SQLskills, All rights reserved.
http://www.SQLskills.com

Using Wait Statistics

▪ Information historically only available at the instance level or at
the thread level
▪ sys.dm_os_wait_stats

▪ sys.dm_os_waiting_tasks

▪ Excellent for understanding what the system is “normally”
waiting on, or troubleshooting to understand what’s waiting at
this moment

© SQLskills, All rights reserved.
http://www.SQLskills.com

Enhancements to Wait Statistics

▪ SQL Server 2016 added the ability to look at session-level wait
statistics
▪ sys.dm_exec_session_wait_stats

▪ Only available for current sessions

▪ SQL Server 2016 SP1 added wait statistics to the actual
execution plan

▪ SQL Server 2017 includes wait statistics in Query Store
▪ sys.query_store_wait_stats

© SQLskills, All rights reserved.
http://www.SQLskills.com

Wait Statistics and Query Store

▪ Wait statistics are tied to the query plan and the runtime stats
interval
▪ Not the same as wait stats information in a plan

▪ Wait types are grouped into categories for simplicity
▪ Consider the resource requirements needed to track 900+ wait types

▪ Slight change in approach for those who are familiar with wait stats

▪ Information captured:
▪ Wait category

▪ Wait time (total, average, last, min, max, stdev)

© SQLskills, All rights reserved.
http://www.SQLskills.com

Wait Category Wait types included

CPU SOS_SCHEDULER_YIELD

Buffer IO PAGEIOLATCH%

Parallelism CXPACKET, EXECSYNC

Lock LCK_M_%

Latch LATCH_%

Buffer Latch PAGELATCH%

Network IO ASYNCH_NETWORK_IO, NET_WAITFOR_PACKET, PROXY_NETWORK_IO, …

Other Disk IO ASYNCH_IO_COMPLETION, IO_COMPLETION, BACKUPIO, WRITE_COMPLETION, …

Tran Log IO WRITELOG, LOGMGR, LOGBUFFER, LOGMGR_RESERVE_APPEND, CHKPT, …

Memory RESOURCE_SEMAPHORE, CMEMTHREAD, CMEMPARTITIONED,
MEMORY_GRANT_UPDATE, …

Wait Statistics Categories

https://www.sqlskills.com/help/waits/

© SQLskills, All rights reserved.
http://www.SQLskills.com

Top Waits in Azure

© SQLskills, All rights reserved.
http://www.SQLskills.com

Demo: Wait Statistics in Query Store

© SQLskills, All rights reserved.
http://www.SQLskills.com

The Relationship Between Plans and Statistics

SELECT [OrderID], [OrderDate],

[CustomerPurchaseOrderNumber]

FROM [Sales].[Orders]

WHERE [CustomerID] = @CustID

ORDER BY [OrderDate];

runtime_stats_interval_id start_time end_time

2932 2021-05-05 08:00:00.0000000 +00:00 2021-05-05 09:00:00.0000000 +00:00

2933 2021-05-05 09:00:00.0000000 +00:00 2021-05-05 10:00:00.0000000 +00:00

2934 2021-05-05 10:00:00.0000000 +00:00 2021-05-05 11:00:00.0000000 +00:00

sys.query_store_runtime_stats_interval

query_id = 768
plan_id = 805

© SQLskills, All rights reserved.
http://www.SQLskills.com

runtime_stats_interval_id plan_id count_executions avg_duration last_duration max_duration min_duration

2932 1397 432 621 589 912 303

2933 1397 581 493 350 816 291

2934 1397 634 587 502 865 447

runtime_stats_interval_id plan_id wait_category_desc total_query_wait_time_ms avg_query_wait_time_ms

2932 1397 CPU 234 35

2932 1397 Buffer IO 1305 24

2932 1397 Parallelism 21846 158

2932 1397 Other Disk IO 124 8

runtime_stats_interval_id start_time end_time

2932 2021-05-05 08:00:00.0000000 +00:00 2021-05-05 09:00:00.0000000 +00:00

2933 2021-05-05 09:00:00.0000000 +00:00 2021-05-05 10:00:00.0000000 +00:00

2934 2021-05-05 10:00:00.0000000 +00:00 2021-05-05 11:00:00.0000000 +00:00

© SQLskills, All rights reserved.
http://www.SQLskills.com

Estimating Cardinality in SQL Server

▪ The Query Optimizer evaluates the cost of one or more plans
when deciding which plan to ultimately execute

▪ One factor used to determine cost is the number of estimated
rows that will need to be processed for each operator
▪ This is the cardinality estimate

▪ The cardinality estimator (CE) component was significantly
changed in SQL Server 2014
▪ First redesign since SQL Server 7.0

© SQLskills, All rights reserved.
http://www.SQLskills.com

Cardinality Estimate Issues

▪ Major red flag to watch for, not just when upgrading to 2014+
▪ Skewed estimate vs. actual

▪ Magnification and distortion as we move through the plan tree

▪ Other symptoms:
▪ Performance may be good sometimes and bad other times

▪ Differences in object access (seeks vs. scans)

▪ Differences in join types (loop vs. hash)

▪ Inadequate query memory allocated, causing spills
▪ Conversely, too much memory allocated, reducing concurrency

▪ Query performs badly or doesn’t execute at all due to memory error

© SQLskills, All rights reserved.
http://www.SQLskills.com

Cardinality Estimator Version

▪ The new CE will be used in SQL Server 2014 if the database has
the compatibility level set to 120

▪ CE version is determined by the
LEGACY_CARDINALITY_ESTIMATION database scoped setting*
▪ Database compatibility level is relevant for new CE

▪ Trace flags 9481 and 2312 can still be used to change CE for individual
queries (with QUERYTRACEON hint)

▪ CE version for tempdb is relevant if you use temporary tables

© SQLskills, All rights reserved.
http://www.SQLskills.com

Compatibility Mode

▪ The database compatibility mode affects T-SQL and query
processing behavior
▪ Not changed automatically as part of an upgrade

▪ https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-
transact-sql-compatibility-level?view=sql-server-ver15

▪ Current compatibility mode can be used with the legacy CE

▪ Testing is still recommended

▪ Compatibility Mode is tracked in Query Store
(sys.query_store_plan)

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-compatibility-level?view=sql-server-ver15

© SQLskills, All rights reserved.
http://www.SQLskills.com

Demo: CE and Compat Mode with Query Store

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Store Performance

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query and Plan Hashes (“fingerprints”)

▪ Added in SQL Server 2008

▪ Available in sys.dm_exec_query_stats

▪ Improved ability to find queries that are syntactically the same
with different literal values

▪ Easier to find patterns in query execution

▪ Blog posts:
▪ https://blogs.msdn.microsoft.com/bartd/2008/09/03/query-

fingerprints-and-plan-fingerprints-the-best-sql-2008-feature-that-
youve-never-heard-of/

▪ https://blogs.msdn.microsoft.com/bartd/2010/05/26/finding-
procedure-cache-bloat/

https://blogs.msdn.microsoft.com/bartd/2008/09/03/query-fingerprints-and-plan-fingerprints-the-best-sql-2008-feature-that-youve-never-heard-of/
https://blogs.msdn.microsoft.com/bartd/2010/05/26/finding-procedure-cache-bloat/

© SQLskills, All rights reserved.
http://www.SQLskills.com

query_hash

▪ Generated from a tree of logical operators *after* parsing

▪ Queries do not *have* to have the same text to have the same
query_hash
▪ Whitespace and comments do not matter

▪ Object names must be the same (e.g. table, view) and same
aliases

▪ Hints, if used, must be exactly the same

▪ SET options can change query_hash if they change semantics

▪ Not affected by database or instance
▪ Same query in two different databases will have the same query_hash

© SQLskills, All rights reserved.
http://www.SQLskills.com

query_plan_hash

▪ Generated from a tree of physical operators

▪ Plans must have the same shape and use the same operators
▪ Same shape but different join operator will have different

query_plan_hash values

▪ Certain operator attributes must be the same
▪ Table name = yes, Row estimates = no

▪ Not affected by database or instance
▪ The same shaped plan in two different databases can have the same

query_plan_hash

▪ query_hash is included in query_plan_hash

© SQLskills, All rights reserved.
http://www.SQLskills.com

Parameterization in SQL Server

▪ Default is SIMPLE (database setting)

▪ If a statement is deemed to be “safe”, then it can be
automatically parameterized

© SQLskills, All rights reserved.
http://www.SQLskills.com

If No Parameterization Then…

▪ If the statement is not safe and cannot be parameterized, then
the un-parameterized statement (containing specific literal
values) will be placed in the plan cache
▪ It can be re-used if the exact same query is submitted – as long it

matches EXACTLY in terms of textual matching

▪ This consumes space in the plan cache

▪ It also consumes space in Query Store

© SQLskills, All rights reserved.
http://www.SQLskills.com

Example Ad Hoc Queries

SELECT

w.ColorID,

s.StockItemName

FROM Warehouse.Colors w

JOIN Warehouse.StockItems s

ON w.ColorID = s.ColorID

WHERE w.ColorName = 'Blue';

SELECT

TOP 1 o.SalesPersonPersonID,

o.OrderDate,

ol.StockItemID

FROM Sales.Orders o

JOIN Sales.OrderLines ol

ON o.OrderID = ol.OrderID

WHERE o.CustomerID = 3284;

© SQLskills, All rights reserved.
http://www.SQLskills.com

Ad hoc Statements and the Plan Cache

▪ Plan cache space is limited
▪ There are known issues related to ad hoc (un-parameterized)

statements bloating the plan cache

▪ View cached plans: sys.dm_exec_cached_plans

▪ Plan cache memory limits:
▪ SQL Server 2008+ and SQL Server 2005 SP2

▪ 75% of visible target memory from 0-4GB
+ 10% of visible target memory from 4Gb-64GB
+ 5% of visible target memory > 64GB

2005 SP2 +

Memory Plan Cache

4GB 3.0GB

8GB 3.5GB

16GB 4.2GB

32GB 5.8GB

64GB 9.0GB

128GB 12.2GB

256GB 18.6GB

512GB 31.4GB

© SQLskills, All rights reserved.
http://www.SQLskills.com

Managing the Plan Cache with Ad Hoc Stmts

▪ Check the size of the plan cache and how it’s being used:
▪ https://www.sqlskills.com/blogs/kimberly/plan-cache-adhoc-

workloads-and-clearing-the-single-use-plan-cache-bloat/

▪ Enable the Optimize for Ad Hoc Workloads instance setting
▪ This exists as a DATABASE SCOPED option in Azure SQL DB

▪ When a query first executes, only the compiled plan stub will go into
cache
▪ If the query executes a second time, the full plan will go into cache

▪ Option: create a job that runs on a regular basis to check the
size of single-use plans and clear them if they exceed a certain
amount (e.g. > 2GB)

https://www.sqlskills.com/blogs/kimberly/plan-cache-adhoc-workloads-and-clearing-the-single-use-plan-cache-bloat/

© SQLskills, All rights reserved.
http://www.SQLskills.com

Ad Hoc Statements and Query Store

▪ Queries are uniquely identified based on:
▪ Query text

▪ Context settings

▪ OBJECT_ID

▪ Type of query parameterization

▪ batch_sql_handle

▪ Query Store space is limited, based on
MAX_STORAGE_SIZE_MB setting

▪ You can control what statements are saved in Query Store
using QUERY_CAPTURE_MODE

© SQLskills, All rights reserved.
http://www.SQLskills.com

Demo: Query Store and Performance

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Store Overhead

▪ Designed to have minimal overhead

▪ High volume, ad hoc workloads may appear as though they have
performance issues
▪ This can be related to synchronous overhead on the query compilation

path, due to conflicts when writing to the statement hash map
▪ This can be related to how the asynchronous flush of data from memory

to disk is managed internally
▪ This can be related to the amount of memory needed to track ad hoc

queries

▪ Performance optimizations added in 2017
▪ Back-ported to SQL Server 2016 SP2 CU2

▪ https://support.microsoft.com/en-us/help/4340759

▪ Don’t let the reference to spinlocks concern you

Will show up as
QDS_STMT waits

https://support.microsoft.com/en-us/help/4340759

© SQLskills, All rights reserved.
http://www.SQLskills.com

Key performance optimizations

▪ Internal memory limits

▪ Smaller transactions for background flushes of data

▪ Changes to Query Store’s cleanup mechanism

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Store Memory Use

▪ Unique key for each query is stored in a hash map in memory
(per database)

▪ Workloads that are more ad-hoc typically have a larger hash
map
▪ More unique queries based on query text

▪ Potentially same query_hash

▪ Potentially same query_plan_hash

▪ Runtime statistics information is stored in a separate hash map
in memory (per database)
▪ Changed to be stored in one hash map per instance

▪ Implemented for SQL 2016+ in latest CUs

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Store Memory Structures
Memory Clerk/Object Description

MEMORYCLERK_QUERYDISKSTORE_HASHMAP
Hash table of queries and plans for the instance/node
Uses MEMOBJ_QUERYDISKSTORE (NUMA enabled)
Repopulated from disk at startup

CACHESTORE_QDSRUNTIMESTATS
Cache of aggregated runtime stats before they are persisted to
disk

MEMOBJ_QUERYSTOREPARTITIONEDHEAP CPU partitioned heap for execution stats for the instance

USERSTORE_QDSSTMT
Temporary buffers per DB to store statements before persisted
to disk

MEMORYCLERK_QUERYDISKSTORE
General clerk for overall Query Store for instance
Should be fairly fixed in size and small
Uses MEMOBJ_QUERYDISKSTORE (NUMA enabled)

CAHCHESTORE_QDSCONTEXTSETTINGS Tracks unique context settings across all queries per DB

MEMORYCLERK_QUERYDISKSTORE_STATS
Used for allocating partitioned runtime stats objects
(partitioned per CPU core) in the Query Store fast path

© SQLskills, All rights reserved.
http://www.SQLskills.com

Internal Memory Limits

▪ “Query Store now imposes internal limits to the amount of
memory it can use and automatically changes the operation
mode to READ-ONLY until enough memory has been returned
to the Database Engine, preventing performance issues.”

© SQLskills, All rights reserved.
http://www.SQLskills.com

SQL Query

Compilation

Execution

Query Store

Plan Store

Runtime Stats

Store

Wait Stats

Store

Query

Store

internal

tables

in
 m

e
m

o
ry

Async write

Adapted from: https://msdn.microsoft.com/en-us/library/mt631173.aspx

https://msdn.microsoft.com/en-us/library/mt631173.aspx

© SQLskills, All rights reserved.
http://www.SQLskills.com

Internal Memory Limits

▪ “Query Store now imposes internal limits to the amount of
memory it can use and automatically changes the operation
mode to READ-ONLY until enough memory has been returned
to the Database Engine, preventing performance issues.”

▪ Azure SQL DB

▪ SQL Server 2019 CU8

▪ SQL Server 2017 CU22

▪ SQL Server 2016 SP2 CU15

© SQLskills, All rights reserved.
http://www.SQLskills.com

Smaller transactions for background flushes of data

▪ Data is regularly flushed, asynchronously, from memory to disk
▪ Background activity

▪ Previously, for high-volume workloads, this could take an extended
period of time

© SQLskills, All rights reserved.
http://www.SQLskills.com

SQL Query

Compilation

Execution

Query Store

Plan Store

Runtime Stats

Store

Wait Stats

Store

Query

Store

internal

tables

in
 m

e
m

o
ry

Async write

Adapted from: https://msdn.microsoft.com/en-us/library/mt631173.aspx

Async write

https://msdn.microsoft.com/en-us/library/mt631173.aspx

© SQLskills, All rights reserved.
http://www.SQLskills.com

Smaller transactions for background flushes of data

▪ Data is regularly flushed, asynchronously, from memory to disk
▪ Background activity

▪ Previously, for high-volume workloads, this could take an extended
period of time

▪ Azure SQL DB

▪ SQL Server 2019

▪ SQL Server 2017

▪ SQL Server 2016 SP2 CU2

© SQLskills, All rights reserved.
http://www.SQLskills.com

Changes to Query Store’s cleanup mechanism

▪ Query Store cleanup kicks in when it consumes 90% of its
maximum size (MAX_STORAGE_SIZE_MB)

▪ Cleanup also regularly occur to keep only the last N days of
data (STALE_QUERY_THRESHOLD_DAYS)
▪ Cleanup removes queries based on age and significance, and also

removes their plans, runtime statistics and wait statistics

▪ Cleanup continues until it drops to 80% of maximum size

© SQLskills, All rights reserved.
http://www.SQLskills.com

SQL Query

Compilation

Execution

Query Store

Plan Store

Runtime Stats

Store

Wait Stats

Store

Query

Store

internal

tables

in
 m

e
m

o
ry

Async write

Adapted from: https://msdn.microsoft.com/en-us/library/mt631173.aspx

purge

https://msdn.microsoft.com/en-us/library/mt631173.aspx

© SQLskills, All rights reserved.
http://www.SQLskills.com

Changes to Query Store’s cleanup mechanism

▪ Query Store cleanup kicks in when it consumes 90% of its
maximum size (MAX_STORAGE_SIZE_MB)

▪ Cleanup also regularly occur to keep only the last N days of
data (STALE_QUERY_THRESHOLD_DAYS)
▪ Cleanup removes queries based on age and significance, and also

removes their plans, runtime statistics and wait statistics

▪ Cleanup continues until it drops to 80% of maximum size

▪ SQL Server 2019

▪ SQL Server 2017 CU16

▪ SQL Server 2016 SP2 CU8

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Capture Mode Considerations

▪ Default for QUERY_CAPTURE_MODE is now AUTO
▪ Default in 2016 and 2017 was ALL

▪ Not recommended, even with parameterized workload

▪ AUTO ignores infrequent queries and any that have insignificant
compile and execution CPU times.
▪ Thresholds (execution count, compile and runtime CPU) are internally

determined

▪ Queries that are part of a stored procedure are ALWAYS captured in
Query Store, regardless of compile and execution durations

▪ Note that Query Store still has to track (in memory) what
queries have executed that are insignificant

© SQLskills, All rights reserved.
http://www.SQLskills.com

Capture Mode Considerations in 2019

▪ Implementing a QUERY_CAPTURE_MODE of CUSTOM allows
you control what queries are captured in Query Store
▪ Determined by execution count, total compile CPU time OR total

execution CPU time

▪ Interval across which these are tracked also must be set
▪ Range is 1 hour to 7 days

▪ Query Store still has to track what queries have executed that
do not meet established thresholds

© SQLskills, All rights reserved.
http://www.SQLskills.com

Monitoring Query Store Impact

▪ CPU (PerfMon)

▪ Memory
▪ sys.dm_os_memory_clerks

▪ Monitor aforementioned types

▪ query_store_db_diagnostics Event
▪ Database specific

▪ In SQL Server 2016+

▪ query_store_global_mem_obj_size_kb Event
▪ Instance level

▪ Exists in SQL Server 2016+

© SQLskills, All rights reserved.
http://www.SQLskills.com

Troubleshooting Query Store(1)

▪ Status is READ_ONLY
▪ Reached MAX_STORAGE_SIZE_MB

▪ What is set for SIZE_BASED_CLEANUP?

▪ Database maximum size on disk reached

▪ Memory limit reached
▪ Azure SQL DB

▪ SQL Server 2016 SP2 CU15, SQL Server 2017 CU22, SQL Server 2019 CU8

▪ Confirm database allows writes (e.g. READ_ONLY, EMERGENCY mode,
SINGLE_USER)

© SQLskills, All rights reserved.
http://www.SQLskills.com

Troubleshooting Query Store(2)

▪ Queries are not being captured
▪ What are capture policy settings?

▪ QUERY_CAPTURE_MODE

▪ Custom settings in 2019

▪ Not all queries are captured (e.g. DDL, DBCC)

▪ If lock timeouts are occurring (error 1222), Query Store may not be
able to acquire necessary internal locks *in the allowed time*, and it
will stop captured data by design, to prevent introducing a bigger
performance issue

© SQLskills, All rights reserved.
http://www.SQLskills.com

Troubleshooting Query Store(3)

▪ Unable to turn off Query Store
▪ Customers previously reported being unable to turn off Query Store

when the instance was starting up, and when the system was not
performing well.

▪ Now have an option to forcibly and immediately turn Query Store OFF
in case of severe issues.

ALTER DATABASE OPTION SET QUERY_STORE = OFF (FORCED)

▪ Available in:
▪ SQL Server 2019 CU6+

▪ SQL Server 2017 CU21+

▪ SQL Server 2016 SP2 CU14+

© SQLskills, All rights reserved.
http://www.SQLskills.com

How ad-hoc is your workload?

/* Perform cardinality analysis when suspect ad hoc workloads */

SELECT COUNT(*) AS CountQueryTextRows
FROM sys.query_store_query_text;

SELECT COUNT(*) AS CountQueryRows
FROM sys.query_store_query;

SELECT COUNT(DISTINCT query_hash) AS CountDifferentQueryRows
FROM sys.query_store_query;

SELECT COUNT(*) AS CountPlanRows
FROM sys.query_store_plan;

SELECT COUNT(DISTINCT query_plan_hash) AS CountDifferentPlanRows
FROM sys.query_store_plan;

© SQLskills, All rights reserved.
http://www.SQLskills.com

Demo: Performing Workload Analysis

© SQLskills, All rights reserved.
http://www.SQLskills.com

Number of

compiles and

recompiles

Number of

distinct query

texts

Number of

distinct query

shapes Potential issue

LOW LOW LOW No problem

HIGH LOW LOW Problems with excessive compiles, potentially affecting plan cache and

predictable performance

HIGH HIGH LOW Problems with excessive number of non-parameterized queries (similar but

larger problems as above)

HIGH HIGH HIGH Could be a completely ad-hoc workload such as random query generator,

which is extremely rare; more likely due to excessive table name versioning

or excessive schema use.

Workload Considerations

© SQLskills, All rights reserved.
http://www.SQLskills.com

Workload Analysis (1)

▪ LOW number of distinct queries

▪ LOW number of distinct plans

▪ Compiles probably high, potentially affecting plan cache and
predictable performance

Data Count

Number of Query Text Rows (query_text_id) 709719

Number of Query Rows (query_id) 709833

Number of Distinct Query Rows/Shapes (query_hash) 4033

Number of Plans (query_plan_id) 721567

Number of Distinct Plans/Shapes (query_plan_hash) 7003

© SQLskills, All rights reserved.
http://www.SQLskills.com

Workload Analysis (2)

▪ HIGH number of distinct queries

▪ HIGH number of distinct plans

▪ Extremely random workload (e.g. table versioning)

Data Count

Number of Query Text Rows (query_text_id) 581905

Number of Query Rows (query_id) 582140

Number of Distinct Query Rows/Shapes (query_hash) 347292

Number of Plans (query_plan_id) 596200

Number of Distinct Plans/Shapes (query_plan_hash) 216565

© SQLskills, All rights reserved.
http://www.SQLskills.com

To be clear…

▪ If you enable Query Store and find that query duration, CPU,
etc. increases, you need to look at your workload

▪ On any version of SQL Server, you run the risk of running into
performance issues because of the way your workload is
designed

▪ However, with SQL 2016+, there are ways to detect these
issues by using Query Store, but it doesn’t mean that these
issues weren’t present in your workload before the upgrade

▪ Query Store Performance Overhead…Updated
▪ https://www.sqlskills.com/blogs/erin/query-store-performance-

updated/

https://www.sqlskills.com/blogs/erin/query-store-performance-updated/

© SQLskills, All rights reserved.
http://www.SQLskills.com

Options for Addressing AdHoc Statements

▪ Parameterization via code changes

▪ Use “templatized” plan guides

▪ Enable FORCED parameterization at the database level
▪ This is typically NOT something we recommended

▪ Many more statements will be parameterized
▪ A benefit is that will reduce plan cache bloat and the number of queries in Query

Store (decreased compilation, decreased CPU)

▪ A drawback is that if you have variability in your data and parameter sensitivity,
performance can start to vary wildly

▪ Also: this applies to ALL queries in the database

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Tuning: Forcing Plans

© SQLskills, All rights reserved.
http://www.SQLskills.com

How do you fix a poorly-performing query?

Change code
and/or schema

Add RECOMPILE
Manually get the

“best” plan in
cache

UPDATE
STATISTICS

Use a plan guide
Force a plan in

Query Store

© SQLskills, All rights reserved.
http://www.SQLskills.com

Plan Guides

▪ Multiple options exist for plan guide creation (OBJECT, SQL,
TEMPLATE)

▪ Allow you to add hints without changing existing code, and
allow you to parameterize ad-hoc queries

▪ Schema-bound

▪ Can be tricky to implement

▪ It is not always easy to understand why a plan guide is not
being used

▪ Monitor success/failure with Trace or Extended Events

© SQLskills, All rights reserved.
http://www.SQLskills.com

Forcing Plans with Query Store

▪ Query Store allows you to easily find queries with multiple
plans and force one plan

▪ Not schema-bound

▪ Monitor failures with Extended events

▪ If a plan is no longer optimal, Query Store will continue to use
it, unless you un-force it or forcing fails

A bad plan is not the one which failed, but the one which

succeeded at the greatest cost.

-Anonymous DBA

© SQLskills, All rights reserved.
http://www.SQLskills.com

Demo: Creating Plan Stability

© SQLskills, All rights reserved.
http://www.SQLskills.com

Image attribution: https://msdn.microsoft.com/en-us/library/mt631173.aspx

https://msdn.microsoft.com/en-us/library/mt631173.aspx

© SQLskills, All rights reserved.
http://www.SQLskills.com

Plan Forcing Internals

▪ Plan forcing in Query Store is a wrapper around the USE PLAN
query hint
▪ This is a best effort; there are no guarantees

▪ Theoretically, this should shorten the optimization phase

▪ When you initially force a plan, a recompile of the query is
triggered on the next execution (to get the forced plan into
cache, and this evicts the previous plan)
▪ Any plan forcing change (force or unforce, automatic or manual) for a

query triggers recompilation on its next execution, even if there is an
existing plan for that query already in cache

© SQLskills, All rights reserved.
http://www.SQLskills.com

Plan Forcing Internals

▪ Optimizer goes through different trees and finds the "best"
plan
▪ It has to validate the plan in some way

▪ This is done the first time the query is executed (compiled), if the
forced plan is not already in cache

▪ Subsequent query executions reuse the plan in cache, like every other
query, until the query is recompiled or evicted from cache

▪ If the forced plan fails, the optimizer will choose a different
plan

▪ The Query Optimizer is a factor here – if forcing doesn’t work,
don't blame Query Store

© SQLskills, All rights reserved.
http://www.SQLskills.com

Why isn’t a forced plan used?

▪ There are cases where the optimizer will choose a plan that has
the same shape as the one that is forced - it’s morally
equivalent (and doesn’t show up as a forcing failure).

▪ In other scenarios, the optimizer cannot use the plan that was
forced
▪ Schema changes

▪ TIME_OUT

© SQLskills, All rights reserved.
http://www.SQLskills.com

▪ Can use a plan guide for an
ad hoc query or stored
procedure

▪ Schema bound

▪ Adding a hint in a plan guide
does not alter the query text

▪ Can be tricky to implement

▪ Understanding failures can be
difficult

PLAN GUIDES

Comparison

▪ Can force a plan for an ad hoc
query* or stored procedure
add

▪ Not schema bound

▪ Adding a hint changes the
query text

▪ Very simple to implement

▪ Understanding failures is
easier

FORCING PLANS

© SQLskills, All rights reserved.
http://www.SQLskills.com

Points to Remember with Plan Forcing(1)

▪ It may not always be obvious that a plan is forced – check the
actual plan and Query Store to determine

▪ Query performance can be different across environments for
multiple reasons – including forced plans!

▪ Pay attention to forced plans when testing code and schema
changes
▪ Changing index names

▪ Changing object names

▪ A forced plan overrides a plan guide*

© SQLskills, All rights reserved.
http://www.SQLskills.com

Points to Remember with Plan Forcing (2)

▪ You cannot force a plan on read-only secondary by forcing the
plan on the primary

▪ You cannot force a plan for a query if it hasn’t been generated by
that query

▪ Turning off Query Store negates the ability to use forced plans
▪ They cannot be removed manually, until un-forced

▪ Forced plans will not be aged out of Query Store

▪ Be aware that forced plans are removed if you installed SQL Server
2017 CU2 and then upgrade to a later CU
▪ https://www.sqlskills.com/blogs/erin/query-store-fix-in-sql-server-2017/

https://www.sqlskills.com/blogs/erin/query-store-fix-in-sql-server-2017/

© SQLskills, All rights reserved.
http://www.SQLskills.com

Typical Reasons Forcing Can Fail

▪ Drop an index (NO_INDEX)

▪ Change an index name (NO_INDEX)

▪ Remove columns from an index (NO_PLAN)

▪ Change the object_id due to DROP/CREATE rather than ALTER

© SQLskills, All rights reserved.
http://www.SQLskills.com

Developers decided to add an OPTION (RECOMPILE) to
the query (which created a new query_id, 3320). This
seemed to address the issue based on the new plans.

Solutions here could also include forcing the plan (e.g.
force plan 1838 for the original query), or re-writing the
query. It’s important to understand WHY different plans
were generated.

Query Store plan example from class:
Query 1464 would run well the majority of the time, but
then it would generate plan 3484 which was extremely
slow comparatively. The query executed on a regular
basis as part of a screen refresh, so this created
problems for users and created high CPU on the server.

© SQLskills, All rights reserved.
http://www.SQLskills.com

Automatic Tuning

▪ Reduces manual intervention required from data professionals

▪ Monitors workload performance, makes changes, continues to
monitor and make additional changes if needed (e.g. revert)
▪ Query Store must be enabled

▪ Two components:
▪ Automatic plan correction

▪ Automatic index management

© SQLskills, All rights reserved.
http://www.SQLskills.com

Automatic Tuning

▪ SQL Server 2017
▪ Automatic Plan Correction

▪ Disabled by default

▪ Azure SQL Database
▪ Automatic Plan Correction

▪ Automatic Index Management

▪ Starting January 15, 2018 a change was rolled out to start to enable
Automatic Tuning for all existing Azure SQL DBs
▪ Users notified in advance

▪ Eventually will be enabled by default for all new databases

© SQLskills, All rights reserved.
http://www.SQLskills.com

Automatic Plan Correction

▪ Available in SQL Server 2017 and Azure SQL Database

▪ Only available in Enterprise Edition

▪ Disabled by default

▪ Can use the information captured to make corrections
manually
▪ Stored in sys.dm_db_tuning_recommendations

▪ Recommendations will not appear in Standard Edition

ALTER DATABASE <database_name_here>
SET AUTOMATIC_TUNING (FORCE_LAST_GOOD_PLAN = ON);

© SQLskills, All rights reserved.
http://www.SQLskills.com

Compare

query

performance

(current vs

previous)

Regression in

performance?

If regressed,

force last

known good

plan

Monitor to see

if plan is still

good

If regression,

recompile, or

failed

forcing…un-

force

© SQLskills, All rights reserved.
http://www.SQLskills.com

Demo: Automatic Plan Correction

© SQLskills, All rights reserved.
http://www.SQLskills.com

Can I trust it?

▪ It is not perfect, but it has been developed with operational
telemetry from Azure SQL Database implementations

▪ It may not “catch” every regression you expect, and it may
make a not-so-great decision

▪ Its ability to recover from any “bad decision” is highly reliable
as there is continuous validation of forced plans and automatic
back-off logic built-in

© SQLskills, All rights reserved.
http://www.SQLskills.com

Notes About Forcing

▪ If you manually force a plan – either because you determined it
was needed or based on a recommendation from
sys.dm_db_tuning_recommendations – it will never be
automatically un-forced

▪ Only plans that are forced with the Automatic Plan Correction
feature will be automatically un-forced

▪ APC only considers recent plans, older plans may exist for a
query that seem “better” than what is selected
▪ Consider: the older a plan is, the ability to reliably predict if past

performance is the same now/in the future decreases

© SQLskills, All rights reserved.
http://www.SQLskills.com

Monitoring Automatic Plan Correction

▪ Information in sys.dm_db_tuning_recommendations is lost on
instance restart
▪ Snapshot to a table if you want to retain information

▪ Create an Extended Events session that captures automatic
tuning events, writes to an event_file target, and starts when
the instance starts (always running)
▪ automatic_tuning_error

▪ automatic_tuning_plan_regression_detection_check_completed

▪ automatic_tuning_plan_regression_verification_check_completed

▪ automatic_tuning_recommendation_expired

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Tuning: Finding Patterns

© SQLskills, All rights reserved.
http://www.SQLskills.com

Mining Data from Query Store

▪ Very common to use the plan cache to find problems and
potential issues

▪ Examples:
▪ Implicit conversions

▪ Specific operators used in plans

▪ Missing indexes

▪ Specific index use

▪ Largest issue with using the plan cache: it’s transient

© SQLskills, All rights reserved.
http://www.SQLskills.com

Using sys.query_store_plan

▪ The same information from the plan cache is now persisted in
sys.query_store_plan

▪ The query plan is stored as VARBINARY(MAX)
▪ This means you don’t have to know XQuery…unless you want to find

specific operations or details

▪ The XML for query plans is bound to a published schema
▪ Converting to XML allows you to parse the data efficiently

▪ http://schemas.microsoft.com/sqlserver/2004/07/showplan/

http://schemas.microsoft.com/sqlserver/2004/07/showplan/

© SQLskills, All rights reserved.
http://www.SQLskills.com

Demo: Mining Query Store Plans

© SQLskills, All rights reserved.
http://www.SQLskills.com

Other Uses of Query Store

© SQLskills, All rights reserved.
http://www.SQLskills.com

Using Query Store for Testing

▪ Query Store captures data that can be used as a baseline for
testing:
▪ Hardware upgrades

▪ Code changes

▪ Changes in the Cardinality Estimator

▪ While data collection is built in to SQL Server, analysis is not

▪ A restored copy of a production database can be used for
testing

© SQLskills, All rights reserved.
http://www.SQLskills.com

Testing Hardware Upgrades

▪ Execute code in production, data is captured in Query Store

▪ Backup the database

▪ Restore the database in the new environment

▪ Execute the code

▪ Look for changes via Query Store

© SQLskills, All rights reserved.
http://www.SQLskills.com

Testing Code Changes

▪ Execute code in production, data is captured in Query Store

▪ Backup the database

▪ Restore the database in the new environment

▪ Make code changes
▪ Any changes to stored procedures, functions, etc. should be done

using ALTER, not DROP/CREATE

▪ When testing index changes, be aware that the index name is what is
stored in the plan

▪ Execute the code

▪ Look for changes via Query Store

© SQLskills, All rights reserved.
http://www.SQLskills.com

Testing CE and Compat Mode Changes

▪ Execute code in production, data is captured in Query Store

▪ Backup the database

▪ Restore the database in the new environment

▪ Change the CE version or Compatibility Mode version

▪ Confirm if any plans are forced, and if they should still be
forced for testing

▪ Execute the code

▪ Look for changes via Query Store
▪ Queries with a new/additional plan

© SQLskills, All rights reserved.
http://www.SQLskills.com

Demo: Testing Considerations

© SQLskills, All rights reserved.
http://www.SQLskills.com

Additional Considerations

▪ DBCC CLONEDATABASE can be used for testing, as Query Store
data can be retained in the clone
▪ Testing is done without data in the database, therefore performance

metrics are not useful, only plan information

▪ https://sqlperformance.com/2017/02/sql-performance/clonedatabase-
query-store-testing

▪ Query Store can also be used in QA/Dev/Test databases for
testing
▪ If these databases are restored nightly, Query Store data is lost unless

you export it manually and store/reference it elsewhere

▪ Values for query_id and plan_id can/will be different

https://sqlperformance.com/2017/02/sql-performance/clonedatabase-query-store-testing

© SQLskills, All rights reserved.
http://www.SQLskills.com

Methods for Replaying Workloads(1)

▪ Profiler
▪ Replays a trace file using Profiler from a single client

▪ https://docs.microsoft.com/en-us/sql/tools/sql-server-profiler/replay-
traces?view=sql-server-2017

▪ Distributed Replay
▪ Replays a trace file using DRU services from up to 16 clients

▪ Requires Enterprise Edition to replay from more than one client
▪ https://www.sqlskills.com/blogs/jonathan/category/distributed-replay/

▪ Most appropriate for SQL Server 2012 through SQL Server 2016

https://docs.microsoft.com/en-us/sql/tools/sql-server-profiler/replay-traces?view=sql-server-2017
https://www.sqlskills.com/blogs/jonathan/category/distributed-replay/

© SQLskills, All rights reserved.
http://www.SQLskills.com

Methods for Replaying Workloads(2)

▪ Database Experimentation Assistant
▪ Graphical tool (built on DRU) to replay and evaluate a workload after a

change (A/B testing)

▪ https://www.microsoft.com/en-us/download/details.aspx?id=54090

▪ Ostress
▪ Component of RML Utilities that allows replay from multiple sessions

▪ https://support.microsoft.com/en-us/help/944837/description-of-the-replay-
markup-language-rml-utilities-for-sql-server

https://www.microsoft.com/en-us/download/details.aspx?id=54090
https://support.microsoft.com/en-us/help/944837/description-of-the-replay-markup-language-rml-utilities-for-sql-server

© SQLskills, All rights reserved.
http://www.SQLskills.com

Uses of Query Store

▪ Troubleshooting query performance

▪ Plan Forcing

▪ Proactively analyze workload patterns
▪ Determine patterns in coding and plan execution

▪ A/B testing
▪ Testing query performance before an upgrade (hardware, software,

application)

▪ Testing changes in the Cardinality Estimator and with different
compatibility modes

▪ New functionality will continue to build upon Query Store

© SQLskills, All rights reserved.
http://www.SQLskills.com

Query Store Fixes of Note(1)

▪ Access violation when SQL Server 2016 tries to start Query
Store during startup
▪ Fixed in SQL Server 2016 SP2 CU4

▪ https://support.microsoft.com/en-us/help/4052133/access-violation-when-sql-
server-starts-query-store-during-startup

▪ Fixed as part of improvements in SQL Server 2017

▪ Transactions and log truncation blocked in SQL Server 2017
when using ALTER DATABASE <DatabaseName> SET
QUERY_STORE CLEAR
▪ Fixed in SQL Server 2016 SP2 CU5 and SQL Server 2017 CU 11

▪ https://support.microsoft.com/en-us/help/4461562/transactions-and-log-
truncation-may-be-blocked-when-using-query-store

https://support.microsoft.com/en-us/help/4052133/access-violation-when-sql-server-starts-query-store-during-startup
https://support.microsoft.com/en-us/help/4461562/transactions-and-log-truncation-may-be-blocked-when-using-query-store

© SQLskills, All rights reserved.
http://www.SQLskills.com

Other Query Store Fixes of Note(2)

▪ “Non-yielding Scheduler” occurs when you clean up in-
memory runtime statistics in Query Store in SQL Server 2016
▪ Fixed in SQL Server 2016 SP2 CU7

▪ https://support.microsoft.com/en-us/help/4501205/fix-non-yielding-scheduler-
occurs-when-you-clean-up-in-memory-runtime

▪ Fixed as part of improvements in SQL Server 2017

▪ Filled transaction log causes outages when you run Query
Store in SQL Server 2016 and 2017
▪ Fixed in SQL Server 2016 SP2 CU8

▪ Fixed in SQL Server 2017 CU 16
▪ https://support.microsoft.com/en-us/help/4511715/fix-filled-transaction-log-

causes-outages-when-you-run-query-store-in

https://support.microsoft.com/en-us/help/4501205/fix-non-yielding-scheduler-occurs-when-you-clean-up-in-memory-runtime
https://support.microsoft.com/en-us/help/4511715/fix-filled-transaction-log-causes-outages-when-you-run-query-store-in

© SQLskills, All rights reserved.
http://www.SQLskills.com

Other Query Store Fixes of Note(3)

▪ Memory limitations implemented
▪ Added in SQL Server 2016 SP2 CU15, SQL Server 2017 CU22, SQL

Server 2019 CU8

▪ “Query Store scalability improvement for adhoc workloads. Query
Store now imposes internal limits to the amount of memory, it can use
and automatically changes the operation mode to READ-ONLY until
enough memory has been returned to the Database Engine,
preventing performance issues.”

© SQLskills, All rights reserved.
http://www.SQLskills.com

Resources

▪ SQL Server: Introduction to Query Store
▪ https://www.pluralsight.com/courses/sqlserver-query-store-

introduction

▪ Automatic Tuning in SQL Server 2017 and Azure SQL Database
▪ https://www.pluralsight.com/courses/sqlserver-azure-database

▪ Blog:
▪ https://www.sqlskills.com/blogs/erin/category/query-store/

▪ Post from Kendra about “morally equivalent” plans
▪ https://sqlworkbooks.com/2018/03/what-is-a-morally-equivalent-

execution-plan-and-why-is-it-good/

https://www.pluralsight.com/courses/sqlserver-query-store-introduction
https://www.pluralsight.com/courses/sqlserver-azure-database
https://www.sqlskills.com/blogs/erin/category/query-store/
https://sqlworkbooks.com/2018/03/what-is-a-morally-equivalent-execution-plan-and-why-is-it-good/

© SQLskills, All rights reserved.
http://www.SQLskills.com

Review

▪ Query Store Fundamentals

▪ Understanding the Query Store Data

▪ Finding Performance Issues

▪ Query Store Performance

▪ Query Tuning
▪ Plan Forcing

▪ Finding Patterns

▪ Other Uses of Query Store

Thank you!

