sqlskills-logo-2015-white.png

Recent TPC-E Results on SQL Server 2017

Lenovo has submitted the two most recent TPC-E OLTP benchmark results, both using SQL Server 2017 running on Windows Server 2016 Standard Edition, using 28-core Intel Xeon Platinum 8180 processors.

The most recent result was for a four-socket Lenovo ThinkSystem SR950 with 3TB of RAM using a 48TB initial database size. This system had an official result of 11,357.28, which is the highest score ever submitted for a four-socket server. This system has a total of 112 physical cores, so if you divide the total score of 11,357.28 by 112, you get a measure of the single-threaded performance of the Intel Xeon Platinum 8180 processor under a full load (where the clock speed of the individual cores will be pretty close to the 2.5GHz base clock speed). In this case, the result is 101.40 score/core.

Back on June 27, 2017, Lenovo submitted a result for a two-socket Lenovo ThinkSystem SR650 with 1.5TB of RAM using a 28.5TB initial database size. This system had an official result of 6,598.36, which is the highest score ever submitted for a two-socket server. This system has a total of 56 physical cores, so if you divide the total score of 6,598.36 by 56, you get a score/core of 117.83, which is significantly higher than the result for the Lenovo ThinkSystem SR950 configured to use four-sockets (using the exact same Intel Xeon Platinum 8180 processor).

I would attribute most of this difference to the added NUMA overhead from a four-socket system, compared to a two-socket system. Another difference, which probably hurt the score of the two-socket system was the fact that it had to be running on a pre-release version of SQL Server 2017, based on the submission date of the benchmark.

This is just another piece of evidence that even with NUMA, capacity does not scale in a linear fashion as you add sockets to a server. Assuming you can split your workload across multiple database servers rather than just one, having two, two-socket servers instead of one, four-socket server will give you both more CPU capacity and better single-threaded CPU performance even when using the exact same model processor.

I would also argue that you could purposely pick a lower core count, but higher base clock speed processor from the same Intel Xeon Scalable Processor Family to find a sweet spot for SQL Server 2017 usage, where you have fewer physical cores to license, with better single-threaded performance across a higher number of servers.




Leave a Reply

Your email address will not be published. Required fields are marked *

Other articles

Imagine feeling confident enough to handle whatever your database throws at you.

With training and consulting from SQLskills, you’ll be able to solve big problems, elevate your team’s capacity, and take control of your data career.