A couple of weeks ago, two new TPC-E benchmark submissions showed up for four-socket servers with the new 22nm, 15-core Intel Xeon E7-4890 v2 processor that I discussed a few days ago. NEC submitted a result for a four-socket NEC Express5800/A2040b system with a raw TPC-E score of 5,087.17, while IBM submitted a result for a four-socket IBM System x3850 X6 system with a raw TPC-E score of 5,576.27.

These are both incredible scores for a four-socket system, both for the actual raw score and from a score per physical core perspective. Both of these tested systems have actual TPC-E scores that rival an eight-socket system with the previous generation 32nm Intel Xeon E7-4870 Westmere-EX processor, while their single-threaded performance (as measured by the TPC-E score divided by the number of physical cores) is also relatively close to what we see in the latest 22nm Intel Xeon E5-2697 v2 Ivy Bridge-EP processors. This gives you the possibility of eight-socket capacity, with close to modern two-socket single-threaded performance in a four-socket server.

SystemProcessorTPC-E ScoreSocketsTotal CoresScore/Core
IBM System x3650 M4E5-2697 v22590.93224107.96
IBM System x3850 X6E7-4890 v25576.2746092.94
IBM System x3850 X5E7-48703218.4644080.46
IBM System X3850 X5E7-88705457.2088068.22

Table 1: Recent IBM TPC-E Benchmark scores

As you can see from Table 1, the Intel Xeon E7-4890 v2 processor is a huge improvement over the previous Intel Xeon E7-4870 processor, with much higher overall capacity and higher single-threaded performance. You also get much higher memory capacity and PCI-E 3.0 support with the new processor.

On the negative side, your SQL Server 2012/2014 core license costs will be 50% higher if you go with the high-end 15-core E7-4890 v2 processor. One alternative would be to use the 12-core, Xeon E7-4860 v2 processor or even the ten-core, Xeon E7-4830 v2 processor to minimize your SQL Server 2012/2014 license costs. One slight problem with that strategy is that the base and turbo clock speeds are lower in the lower core-count processors in the Xeon E7-48xx v2 product family, since they don’t have lower core count, “frequency-optimized” models like the Xeon E5-26xx v2 product family does.

Four-socket systems with these new processors are going to be much faster and have much more total load capacity than previous four-socket systems with the older Westmere-Ex processor.