Windows Power Plan Effects on Newer Intel Processors

I recently was working with a customer who had purchased a new Lenovo ThinkServer RD640 with two 22nm Intel Xeon E5-2697 v2 Ivy Bridge-EP processors. This processor was introduced in Q3 of 2013, and it is one generation behind the latest Intel Xeon E5-2600 v3 series processors.

This server had a new, default installation of Windows Server 2012 R2 Standard Edition, which meant that it was using the default Windows Balanced Power Plan. Running CPU-Z 1.71.1 showed the actual core speed of Core #0 while the system was at rest, with the Balanced Power Plan (Figure 1) and with the High Performance Power Plan (Figure 2).

clip_image002

Figure 1: CPU-Z Results with Balanced Power Plan

Changing the Power Plan to High Performance had an immediate effect on the processor core speed, as shown in Figure 2.

clip_image002[5]

Figure 2: CPU-Z Results with High Performance Power Plan

 

Here are the Geekbench results for the default Balanced Power Plan (Figure 3) and the High Performance Power Plan (Figure 4). The Single-Core score is more relevant here, since the 32-bit GUI version of Geekbench 3.3 only uses 32 total cores (and there are 48 logical cores in this server).

clip_image002[7]

Figure 3: Geekbench 3.3 Results with Balanced Power Plan

 

clip_image002[9]

Figure 4: Geekbench 3.3 Results with High Performance Power Plan

You need to keep in mind that your BIOS power management settings will override your Windows Power Plan settings, so it is very important to check what is going on with CPU-Z. For you virtualization users, you need to check what your hypervisor power management settings are doing, because they will override what is happening with the guest OS Windows Power Plan settings.

Not only does power management affect your processor core speed (and CPU/memory benchmarks like Geekbench), but it also affects things like the performance of your PCIe expansion slots. In case you want some official Microsoft guidance on this subject, the Microsoft KB article linked below discusses it in quite a bit of detail.

Slow Performance on Windows Server 2008 R2 when using the “Balanced” Power Plan

This issue has been around since Windows Server 2008, and still exists with Windows Server 2012 R2.

Recommended Intel Processors For SQL Server 2014 OLTP Workloads

If you are in the process of evaluating and selecting the components for a new database server to run an OLTP workload on SQL Server 2014 Enterprise Edition, you have several initial choices that you have to make as a part of the decision process. First you have to decide whether you want to go with an AMD-based server or an Intel-based server. Unfortunately, I cannot recommend that you use an AMD processor for SQL Server 2012/2014 OLTP workloads, due to the combination of low single-threaded performance and high SQL Server licensing costs (even with the 25% discount from the SQL Server 2012 Core Factor Table).

Next, you need to decide on the server socket count, which means choosing a single-socket, dual-socket, quad-socket, or eight-socket server (at least in the commodity server market). After you choose the socket count, you need to decide exactly which of the available processors you want to use in that model server. Looking at the choices for several current model servers from the major system vendors, you will discover that you will have to pick from around 15-20 different specific processors. All of this can be a little overwhelming to consider, but I urge you to do some research, and to choose carefully. Letting someone else pick your processors, who may not be familiar with SQL Server 2012/2014 licensing and the demands of different database workload types, could be a lasting, costly mistake.

With the core-based licensing in SQL Server 2012/2014 Enterprise Edition, you need to pay closer attention to your physical core counts, and think about whether you are more concerned with extra scalability (from having more physical cores), or whether you want the absolute best OLTP query performance (from having a processor with fewer cores but a higher base clock speed from the same processor generation). Unlike in the good old days of SQL Server 2008 R2 and older, having more physical cores will cost you more for your SQL Server 2012/2014 Enterprise Edition licensing costs. You really need to think about what you are trying to accomplish with your database hardware. For example, if you can partition your workload between multiple servers, then you could see much better OLTP performance from using two dual-socket servers instead of one quad-socket server.

So, here are the Intel processors that I recommend in mid-April 2014 for OLTP workloads, with their high-level specifications and some commentary.

One-Socket Server (High Capacity)

Intel Xeon E5-2470 v2 (22nm Ivy Bridge-EN)

  • 2.4 GHz, 25MB L3 cache, 8 GT/s Intel QPI 1.1
  • 10 cores, Turbo Boost 2.0 (3.2 GHz), hyper-threading
  • Three memory channels, six memory slots per processor, 96GB RAM with 16GB DIMMs

One-Socket Server (High Performance)

Intel Xeon E3-1280 v3 (22nm Haswell)

  • 3.6 GHz, 8MB L3 cache, 5 GT/s Intel QPI 1.1
  • 4 cores, Turbo Boost 2.0 (4.0 GHz), hyper-threading
  • Two memory channels, four memory slots per processor, 32GB RAM with 8GB DIMMs

At least one Tier One vendor (Dell) is offering a single-socket server with the new Ivy Bridge-EN processor family. This is the entry level, two-socket capable Ivy Bridge processor that has lower clock speeds and less memory bandwidth than the Ivy Bridge-EP processor family, so it is NOT a good choice for a two-socket server. Despite this, it does give you the ability to have ten physical cores and 96GB of RAM in a single-socket server. You would see much better single-threaded OLTP performance from a new 3rd generation E3-1280 v3 Haswell processor, but you would be limited to four physical cores and 32GB of RAM. Again, if you can partition your workload, two single-socket Xeon E3-1280 v3 based servers would give you much better OLTP performance than one Xeon E5-2470 v2 based server with a lower SQL Server 2012/2014 Enterprise Edition licensing cost.

Two-Socket Server (High Capacity)

Intel Xeon E5-2697 v2 (22nm Ivy Bridge-EP)

  • 2.7 GHz, 30MB L3 cache, 8 GT/s Intel QPI 1.1
  • 12 cores, Turbo Boost 2.0 (3.5 GHz), hyper-threading
  • Four memory channels, twelve memory slots per processor, 384GB RAM with 16GB DIMMs

Two-Socket Server (High Performance)

Intel Xeon E5-2643 v2 (22nm Ivy Bridge-EP)

  • 3.5 GHz, 25MB L3 cache, 8 GT/s Intel QPI 1.1
  • 6 cores, Turbo Boost 2.0 (3.8 GHz), hyper-threading
  • Four memory channels, twelve memory slots per processor, 384GB RAM with 16GB DIMMs

Choosing the top of the line, 12-core Xeon E5-2697 v2 would cost twice as much for the SQL Server license costs as the 6 core Xeon E5-2643 v2. Once again, if you can partition your workload, two dual-socket Xeon E5-2643 v2 based servers would give you better overall OLTP performance than one Xeon E5-2697 v2 based server for the same SQL Server 2012/2014 Enterprise Edition licensing cost. You would have more total memory between the two servers, and more potential I/O capacity, at the cost of buying two servers instead of one server.  In some situations, this strategy might not make sense, especially with the added management and maintenance overhead of two servers instead of one.

Four-Socket Server (High Capacity)

Intel Xeon E7-4890 v2 (22nm Ivy Bridge-EX)

  • 2.8 GHz, 37.5MB L3 cache, 8 GT/s Intel QPI 1.1
  • 15 cores, Turbo Boost 2.0 (3.4 GHz), hyper-threading
  • Four memory channels, twenty-four memory slots per processor, 1536GB RAM with 16GB DIMMs

Four-Socket Server (High Performance)

Intel Xeon E7-8893 v2 (22nm Ivy Bridge-EX)

  • 3.4 GHz, 37.5MB L3 cache, 8 GT/s Intel QPI 1.1
  • 6 cores, Turbo Boost 2.0 (3.7 GHz), hyper-threading
  • Four memory channels, twenty-four memory slots per processor, 1536GB RAM with 16GB DIMMs

The brand new Xeon E7-8893 v2 will give you significantly better single-threaded OLTP query performance in a four-socket server than the E7-4890 v2, at the cost of less total capacity because of the lower physical core count. The E7-8893 v2 is a “frequency-optimized” model that is actually meant for eight-socket servers, but is available in several new four-socket server models from the major server vendors.

It would save you enough on SQL Server 2012/2014 Enterprise Edition license costs (about $250K) to buy the server itself and still have lots of money left over. I even think it is a better choice in many situations than a two-socket server with the 12-core, Intel Xeon E5-2697 v2, since you will have much higher single-threaded performance and much higher memory capacity. The downside is a higher hardware cost, since you will be buying four, quite expensive processors.

Eight-Socket Server (High Capacity)

Intel Xeon E7-8890 v2 (22nm Ivy Bridge-EX)

  • 2.8 GHz, 37.5MB L3 cache, 8 GT/s Intel QPI 1.1
  • 15 cores, Turbo Boost 2.0 (3.4 GHz), hyper-threading
  • Four memory channels, twenty-four memory slots per processor, 3072GB RAM with 16GB DIMMs (eight sockets)

Eight-Socket Server (High Performance)

Intel Xeon E7-8891 v2 (22nm Ivy Bridge-EX)

  • 3.2 GHz, 37.5MB L3 cache, 8 GT/s Intel QPI 1.1
  • 10 cores, Turbo Boost 2.0 (3.7 GHz), hyper-threading
  • Four memory channels, twenty-four memory slots per processor, 3072GB RAM with 16GB DIMMs (eight sockets)

You can choose a lower core count, frequency-optimized model, that has a higher clock speed for better single-threaded performance. The lower core count will also save you a LOT of money on SQL Server 2012/2014 licensing costs, although you will give up that extra load capacity with few total processor cores available.

I always like to hear what you think about my posts, so be sure to let me know!

Updates on Intel Xeon Ivy Bridge Server Processor Launch Schedules

It still looks like the 2nd generation, 22nm Intel Xeon E5-1600 v2 and E5-2600 v2 families (Ivy Bridge-EP), for single and two-socket servers, will launch sometime this quarter. Some sources I have talked to think that Intel may wait until the Intel IDF13 in San Francisco, on September 10-12 to release the Ivy Bridge-EP. These processors use the same Socket 2011, as the current 32nm Intel Xeon E5-1600 and E5-2600 families (Sandy Bridge-EP) processors, so current model servers from your favorite server vendor should be able to use these processors, perhaps with a BIOS update.

In most cases you would not actually want to do a processor upgrade on an existing server for economic reasons, but you could if you wanted to. Having socket and chipset compatibility just means that the server vendors will be able to offer the new processor as soon as they get a supply of them from Intel.

The E5-2600 v2 series is aimed at two-socket servers, and will have at least 18 different “Ivy Bridge-EP” SKUs, ranging from the entry-level E5-2603 v2 up to the twelve-core E5-2697 v2. The 22nm processors have up to 12 physical cores, which allows them to have 24 logical cores with hyper-threading enabled.  The second series, the E5-1600 v2, works only in single-socket systems, and is going to initially have three models, the E5-1620 v2, E5-1650 v2, and E5-1660 v2. Both families will work with the Intel C600 series chipsets, and both use Socket 2011.

The second generation 22nm Intel Xeon E7 family, (which includes the Xeon E7-2800 v2, E7-4800, and E7-8800 v2) is aimed at larger, multi-processor servers, and it will be delayed until at least Q1 2014. Previous reports indicated these Ivy Bridge-EX processors would be available in Q4 2013. These processors will have triple the memory capacity of the current 32nm Westmere-EX processors, and they will require new server models from the server vendors. They will also finally have PCI-E 3.0 support, so overall they will be a huge upgrade from the current Westmere-EX.

Also in Q1 2014, Intel is going to release the 22nm Xeon E5-4600 v2 and E5-2400 v2 processors. The E5-4600 v2 will work in four-socket servers, and they use Socket 2011. The E5-2400 v2 (Ivy Bridge-EN) are for two-socket servers, have up to 10 cores, and will use Socket 1356. These Ivy Bridge-EN processors will NOT a good choice for SQL Server 2012 and SQL Server 2014 OLTP workloads compared to higher performance Ivy Bridge-EP processors.

I really hate to see Intel slip their release schedule like this. I think a big part of why this happened is due to a lack of viable competition from AMD. After all, why should Intel rush to push out new technology when they are absolutely dominant from a performance perspective? They can continue to sell the current processors for a little longer with no real consequences.

Given the apparent delay for the Ivy Bridge-EX, a twelve-core Ivy Bridge-EP processor will be the hot ticket for a lot of people who are looking at new database servers over the next six to nine months. A new two-socket Ivy Bridge-EP system with Windows Server 2012 R2 and SQL Server 2014 will be the way to go in the near future.