Samsung Portable SSD X5 Review

If you have a fairly recent PC or Mac with a Thunderbolt 3 port, and you want/need some very high performance external storage, one of your best choices will be an external Thunderbolt 3 drive, especially one that uses an M.2 NVMe NAND flash drive with a PCIe 3.0 x4 interface. A good example is the Samsung Portable SSD X5. This drive comes in 500GB, 1TB, and 2TB capacities. These currently range in price from $217.99, to $447.99, to $897.99. This may seem expensive (and it is), but these prices have been nearly cut in half compared to when this drive was first available in August 2018.

From the exploded view in Figure 1, it appears that you might be able to disassemble the Samsung enclosure and swap in your own M.2 NVMe drive (which I am sure would void your warranty). This would let you put in any M.2 NVMe SSD that you wanted. I am not 100% sure this is possible though.

Samsung X5

Figure 1: Exploded View of Samsung Portable SSD X5

You will also need a machine with a Thunderbolt 3 port, preferably with PCIe 3.0 x4 bandwidth so that you get the full performance that the drive can deliver. Figure 2 shows the CrystalDiskMark results for this drive in my recent HP Spectre x360 13 AP0023DX laptop, which has an TB3 PCIe 3.0 x4 port.


Figure 2: 500GB Samsung Portable SSD X5 in TB3 PCIe 3.0 x4 port

With Windows 10 version 1809 or later, it is also very important that you set the write-caching policy to what you want it to be for that drive. The new default for external drives is Quick removal, which is safer, but disables write caching in Windows. If you want better write performance, you should enable write caching for the drive as you see in Figure 3.


Figure 3: Windows 10 Write-Caching Policy

Another important factor is exactly what type of Thunderbolt 3 port and PCIe 3.0 interface you have in your laptop or desktop machine. I have a two-year old Dell Precision 5520 laptop that only has a PCIe 3.0 x2 interface for its USB-C Thunderbolt 3 port. This effectively cuts your maximum sequential performance in half compared to a PCIe 3.0 x4 interface. You can see these results in Figure 4.


Figure 4: Performance Effect of PCIe 3.0 x4 Interface

Figure 5 shows the CrystalDiskMark results for a 1TB Samsung 970 EVO Plus M.2 NVMe drive in my HP Spectre x360 laptop. That drive is an incredible value right now, giving great performance for less than $250.00. Flash NAND SSD prices have been in steep decline over the past year. I vividly remember paying $620.00 for a 1TB Samsung 960 PRO M.2 NVMe drive in November 2017.


Figure 5: 1TB Samsung 970 EVO Plus M.2 NVMe SSD in HP Spectre x360

Samsung Portable SSD X5

Figure 6: Samsung Portable SSD X5

This drive is still somewhat pricey, and it does get warm under a heavy load, which happens with all M.2 drives. The built-in heatsink in the enclosure should help with that, compared to an M.2 drive inside a laptop.

Still, if you want TB3 level performance from an external drive and you have a new enough machine to support it, it is nice solution.

Initial CrystalDiskMark Results for Intel Optane 900p

I have been building a new desktop workstation based on an AMD Ryzen Threadripper 1950X processor (which I will be describing in much more detail in a subsequent blog post). I am planning on using one of the brand new 480GB Intel Optane SSD 900p PCIe cards as my boot drive. Initially, I installed Windows 10 Professional, Version 1709 on a pretty lackluster OEM 256GB Toshiba M.2 NVMe drive that I had lying around. My plan is to clone that drive to the Intel Optane 900p.

I also have a couple of 1TB Samsung 960 PRO M.2 NVMe cards in this machine, so I thought I would run a couple of quick CrystalDiskMark tests on the two drives. One thing to keep in mind is that CrystalDiskMark is not the best synthetic benchmark to use to show off the strengths of the Optane 900p.

Traditional NAND-based SSDs excel at very high queue depths that are not usually encountered outside of synthetic benchmarks (especially for random read performance). Optane 900p SSDs perform extremely well for random reads at low queue depths. This gives you outstanding responsiveness and performance where it is going to be most noticeable in daily usage.

You can see part of this effect in the bottom row of CDM test results for reads, where the Optane 900p is doing about 4.3X more 4K IOPS than the Samsung 960 PRO at a queue depth of 1. A better test for this will be Microsoft DiskSpd, which can also measure the latency during the test run.

Here are some of the primary advantages of the Intel Optane 900p compared to current NAND flash storage.


    • High random read and write performance
    • High performance at low queue depths
    • High simultaneous read and write performance
    • High read and write performance at small capacity points
    • High performance maintained as the drive fills with data
    • Higher endurance than current NAND technology



Figure 1: 1TB Samsung 960 PRO with Samsung NVMe driver



Figure 2: 480GB Intel Optane 900p with Intel NVMe driver


Two Recent Laptops Compared

I have two fairly recent-vintage 13” personal laptops that I use primarily for teaching and presentations that I thought would be interesting to compare from some common performance perspectives. The first one, which is slightly over a year old is a Lenovo Yoga 900, which has a 14nm Intel Core i7-6500U Skylake-U processor, 16GB of RAM, a 512GB Samsung PM871 SATA III SSD, one USB 2.0 port, one USB 3.0 port, one USB-C port and a 3200×1800 touch display.

The newer machine is an HP Spectre x360 13-w023dx, which has a 14nm Intel Core i7-7500U Kaby Lake-U processor, 16GB of RAM, a 512GB Samsung SM961 M.2 NVMe SSD, one USB 3.0 port, two USB-C Thunderbolt 3 ports and a 1080P touch display.

The high-level processor specifications and CPU-Z benchmark results for these two systems are shown below:


Processor                     Base Clock      Turbo Clock      Single-threaded CPU          Multi-threaded CPU

Intel Core i7-6500U        2.5GHz            3.1GHz              1467                                    3391

Intel Core i7-7500U        2.7GHz            3.5GHz              1743                                    3958


These Skylake-U and Kaby Lake-U processors are quite similar, with the Kaby Lake having an optimized “14nm plus” process technology that lets Intel set the clock speeds slightly higher at the same power usage levels. Kaby Lake also has improved integrated graphics and an improved version of Intel Speed Shift technology that lets Windows 10 throttle up the clock speed of the processor cores even faster than with a Skylake processor.


Figure 1: Improved Intel Speed Shift in Kaby Lake


The single-threaded CPU-Z 1.78.1 benchmark result is 18.8% higher with the new system, while the multi-threaded CPU-Z benchmark result is 16.7% higher on the new system. I attribute this increase to the higher base and turbo clock speeds, the optimized process technology, and the effect of the improved Intel Speed Shift. The results are shown in figures 2 and 3.



Figure 2: Intel Core i7-6500U CPU-Z Benchmark Results




Figure 3: Intel Core i7-7500U CPU-Z Benchmark Results


Honestly, these current generational CPU performance improvements are slightly better than nothing (but not much), and are certainly not a good enough reason to upgrade from an equivalent Skylake-U system to a Kaby Lake-U system. Where we see a big improvement is with basic storage performance and peripheral connectivity between these two systems.

I was happily surprised that the new HP system came a very fast 512GB Samsung SM961 M.2 NVMe OEM SSD that is equivalent to a Samsung 960 PRO. The reason I was surprised was because some reviews I had read indicated that these HP machines had a much slower Samsung OEM M.2 NVMe SSD. This probably varies by when your machine was manufactured, so perhaps the earliest review machines had the older, slower drives.

As you can see, the difference in the CrystalDiskMark performance between these drives is pretty dramatic.



Figure 4: 512GB Samsung SM961 M.2 NVMe SSD



Figure 5: 512GB Samsung PM871 SATA 3 SSD


For day to day average PC usage, you probably won’t really notice the difference between a fast SATA 3 SSD and an M.2 PCIe NVMe SSD, but if you are using SQL Server on a laptop, having that extra sequential bandwidth and much better random I/O performance is really noticeable. It is also very nice to have Thunderbolt 3 support, which will allow you to have really fast transfer performance to an appropriate external drive.

So the moral of all this is that the best reason to consider upgrading to a new laptop or new desktop machine for many people are the additional storage and peripheral connectivity options that you can get with a new machine.